Previous |  Up |  Next

Article

Title: Property $A$ of the $(n+1)^{th}$ order differential equation $\left [\frac 1{r_1(t)}\left (x^{(n)}(t)+p(t)x(t)\right )\right ]' = f(t,x(t),\cdots ,x^{(n)}(t))$ (English)
Author: Kováčová, Monika
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 36
Issue: 5
Year: 2000
Pages: 487-498
.
Category: math
.
MSC: 34C10
MSC: 34C15
idZBL: Zbl 1072.34034
idMR: MR1822818
.
Date available: 2008-06-06T22:27:16Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107763
.
Reference: 1. Cecchi M., Došlá Z., Marini M.: Comparison theorems for third order differential equations.Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA,1995). MR 1419517
Reference: 2. Greguš M., Graef J. R.: On a certain nonautonomous nonlinear third order differential equation.Applicable Analysis, 1995, 58, no. 1-2, 175-185. Zbl 0880.34035, MR 1384596
Reference: 3. Greguš M., Graef J. R., Gera M.: Oscillating nonlinear third order differential equations.Nonlinear Anal. Nonlinear Analysis. Theory, Methods & Applications., 1997, 28, No. 10, 1611-1622. Zbl 0871.34022, MR 1430504
Reference: 4. Greguš M., Gera M., Graef J. R.: On oscillatory and asymptotic properties of solutions of certain nonlinear third order differential equations.Nonlinear Analysis. Theory, Methods & Applications. 1998, 32, No. 3, 417–425. Zbl 0945.34021, MR 1610594
Reference: 5. Kiguradze I. T.: Oscillation tests for a class of ordinary differential equations.Diferen. Uravnenja, 28 No. 2, 1992, 180-190. Zbl 0788.34027, MR 1184921
Reference: 6. Kováčová M.: Comparison Theorems for the n-th Order Differential Equations.Nonlinear Analysis Forum, 2000, vol. 5, 173–190. MR 1798693
.

Files

Files Size Format View
ArchMathRetro_036-2000-5_16.pdf 278.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo