Previous |  Up |  Next

Article

Title: On bicompacta which are unions of two subspaces of a certain type (English)
Author: Arhangel'skii, Aleksander V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 19
Issue: 3
Year: 1978
Pages: 525-540
.
Category: math
.
MSC: 54D30
MSC: 54D55
MSC: 54D65
MSC: 54E25
MSC: 54E30
idZBL: Zbl 0401.54017
idMR: MR0515008
.
Date available: 2008-06-05T20:59:07Z
Last updated: 2012-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/105874
.
Reference: [1] A. V. ARHANGEL'SKIĬ: Mappings and spaces.Russian Math. Surveys 21 (1966), 4, 115-162. MR 0227950
Reference: [2] A. V. ARHANGEL'SKIĬ: Bicompact sets and the topology of spaces.Trans. Mosc. Math. Soc. 13 (1965), 1-62. MR 0195046
Reference: [3] A. V. ARHANGEL'SKIĬ: On compact spaces which are unions of certain collections of subspaces of special type.Comment. Math. Univ. Carolinae 17 (1976), 737-753. MR 0445453
Reference: [4] H. B. BEЛИЧКО: О nepистых npocтpaнствах и иx нenpepывных отображениях.Maтем. C6. 90 (132): 1 (1973), 34-47.
Reference: [5] T. Д. ДИМОВ: О некоторых специальных бикомпактных разширениях периферически бикомпактных пространств.Докл. Boлr. Aкад. Hayк 30, 4 (1977), 483-486. Zbl 1170.01341, MR 0644166
Reference: [6] R. ENGELKING: General Topology.PWN, Warazawa, 1977. Zbl 0373.54002, MR 0500780
Reference: [7] I. JUHÁSZ: Cardinal functions in Topology.Math. Centre Tracts, 34, Amsterdam, 1971. MR 0340021
Reference: [8] Я. A. KOФHEP: Об одном новом классе пространств и некоторых задачах из теории симметризуемости.ДAH CCCP 187, 2 (1969), 270-273. MR 0248713
Reference: [9] E. MICHAEL M. E. RUDIN: Another note on Eberlein compacts.Pacific J. Math. 72, 2 (1977), 497-199. MR 0478093
Reference: [10] C. Й. НЕДЕВ: $\sigma$-метризуемые пространства.Tpyды ММО 24 (1971), 201-230. Zbl 0311.14006
Reference: [11] A. B. PAНЧИН: Теснота, секвенциальностъ и замкнутые покрытия.ДAH CCCP 232, 5 (1977), 1015-1018.
Reference: [12] H. ROSENTHAL: The hereditary problem for weakly compactly generated Banach spaces.Compositio Math. 28 (1974), 83-111. MR 0417762
Reference: [13] M. HENRIKSEN J. R. ISBELL: Some properties of compactifications.Duke Math. Journ. 25 (1958), 83-106. MR 0096196
Reference: [14] T. HOSHINA: Compactifications by adding a countable number of points.General Topology and its Relations to Modern Anal. and Algebra, IV, Academia, Prague, 1977. Zbl 0387.54009, MR 0461446
Reference: [15] W. A. R. WEISS: Some applications of set theory to topology.Thesis, University of Toronto, Toronto, 1975.
Reference: [16] A. B. APXAHГЕЛЬСКИЙ: Число Суслина и мощностъ. Характеры точек в секвенциальных бикомпактах.ДАН CCCP 192, 2 (1970), 255-258.
Reference: [17] Ju. M. SMIRNOV: On the metrizability of bicompacta decomposable into the union of sets with countable bases.Fund. Math. 43 (1956), 387-393. MR 0084127
Reference: [18] A. J. OSTASZEWSKI: On countably compact, perfectly normal spaces.J. London Math. Soc. (2), 14 (1976), 505-516. Zbl 0348.54014, MR 0438292
.

Files

Files Size Format View
CommentatMathUnivCarol_019-1978-3_9.pdf 1.356Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo