Previous |  Up |  Next

Article

Title: On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates (English)
Author: Hlaváček, Ivan
Author: Křížek, Michal
Language: English
Journal: Aplikace matematiky
ISSN: 0373-6725
Volume: 32
Issue: 4
Year: 1987
Pages: 276-289
Summary lang: English
Summary lang: Russian
Summary lang: Czech
.
Category: math
.
Summary: Second order elliptic systems with boundary conditions of Dirichlet, Neumann's or Newton's type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order $O(h^2)$ are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense. (English)
Keyword: post-processing
Keyword: averaged gradient
Keyword: elliptic systems
Keyword: second order elliptic systems
Keyword: linear finite elements
Keyword: regular uniform triangulations
Keyword: error estimats
Keyword: optimal order
Keyword: superconvergence
MSC: 32J25
MSC: 65N15
MSC: 65N30
MSC: 73-08
MSC: 73C99
MSC: 74S05
idZBL: Zbl 0636.65116
idMR: MR0897832
DOI: 10.21136/AM.1987.104259
.
Date available: 2008-05-20T18:32:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/104259
.
Reference: [1] J. H. Bramble J. A. Nitsche A. H. Schatz: Maximum-norm interior estimates for Ritz-Galerkin methods.Math. Соmр. 29 (1975), 677-688. MR 0398120
Reference: [2] P. G. Ciarlet: The finite element method for elliptic problems.North-Holland, Amsterdam, New York, Oxford, 1978. Zbl 0383.65058, MR 0520174
Reference: [3] G. Fichera: Existence theorems in elasticity.Encycl. of Physics, ed. S. Flügge, vol. VIa/2, Springer-Verlag, Berlin, 1972.
Reference: [4] G. Geymonat: Sui problemi ai limiti per i sistemi lineari ellittici.Ann. Mat. Рurа Appl. 69 (1965), 207-284. MR 0196262, 10.1007/BF02414374
Reference: [5] P. Grisvard: Behaviour of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain;.in: Numerical solution of partial differential equations III, Academic Press, New York, 1976, 207-274. MR 0466912
Reference: [6] P. Grisvard: Boundary value problems in nonsmooth domains.Univ. of Maryland, Dep. of Math., College Park, Lecture Notes 19, 1980.
Reference: [7] E. Hewitt K. Stromberg: Real and abstract analysis.Springer-Verlag, New York, Heidelberg, Berlin, 1975. MR 0367121
Reference: [8] I. Hlaváček M. Křížek: On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary conditions.Apl. Mat. 32 (1987), 131-154. MR 0885758
Reference: [9] I. Hlaváček M. Křížek: On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type.Apl. Mat. 32 (1987), 200-213. MR 0895878
Reference: [10] J. Kadlec: On the regularity of the solution of the Poisson problem on a domain with boundary locally similar to the boundary of a convex open set.Czechoslovak Math. J. 14 (1964), 386-393. Zbl 0166.37703, MR 0170088
Reference: [11] V. A. Kondratěv: Boundary problems for elliptic equations in domains with conical or angular points.Trudy Moskov. Mat. Obšč. 16 (1967), 209-292. MR 0226187
Reference: [12] M. Moussaoui: Régularité de la solution d'un problème à derivée oblique.Comptes Rendus Acad. Sci. Paris, 279, sér. A, 25 (1974), 869-872. Zbl 0293.35014, MR 0358062
Reference: [13] J. Nečas: Les méthodes directes en theorie des équations elliptiques.Masson, Paris, or Academia, Prague, 1967. MR 0227584
Reference: [14] J. A. Nitsche A. H. Schatz: Interior estimate for Ritz-Galerkin methods.Math. Соmр. 28 (1974), 937-958. MR 0373325
Reference: [15] B. Westergren: Interior estimates for elliptic systems of difference equations.(Thesis), Univ. of Göteborg, 1982.
Reference: [16] Q. D. Zhu: Natural inner superconvergence for the finite element method.Proc. China-France Sympos. on Finite Element Methods, Beijing, 1982, Gordon and Breach, Sci. Publ., Inc., New York, 1983, 935-960. MR 0754041
.

Files

Files Size Format View
AplMat_32-1987-4_3.pdf 1.657Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo