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SEVINAR UNI+ORM SPACES 1975 - 76

Point=charactler of uniformities and completeness
J. TFelant

Introduction O: ikesults contained in this paper genera-
lize results from [P ,LP3] and (31.

Jefinition 1: Let K b an infinite cardinal. Let n be
5 positive integer. We derine ¥ (K,n) as a set of all ele-
ments Voot (exp K)™ such that pryVe proVe ... cpr V and
pr) Ve g.

Hotntion 2: Let n>1 be a positive integer. For V €
eX (XK,n - 1), put UWV) = L Ue KX (K,n) | pryUc pryV €
¢ proUc ...€pr Ve prnU§ .

Construction 3: Let =« be an int'inite cardinal. Denote
g, = {-g—;{ |i=o0,1,... ,21{} for k non-ncgative integer, H =

= uin | x = 0,1,2,...% . Put M() = { £: H—>

—> CXpP o© i(f(hl):’f(hg) for any h),h,€ H such that h;> hy)
and £(O)*@. For telfec ), £AH, is an element of

¥ (o0 ,2% + 1) in the fact. For V € X (o ,2k) we defineVnow a
bise orf 2 pseudometric uniformity 7 on M(e¢): B =-{,?I’[Ve
€ K(ew,2M)Y, i =0,1,2,000 &

Fut (U(e ),V ) tor thc Hausdortf reflection of the just
derincd pseudomctric uniformity. Clearly, each point of U(ee )
can be represented by som. point of M(ot) and we shall suppose
it.

Notation 4: Given a cardinal m, S (m) denotes the posi-
tive part of the unit sphere in £, (m) with the uniformity
induced by A, -norm, (i.c. s¥(m) =4f e 2o (m) | sup £ = 2
and £(i)=0 for all iem%).

Proposition 5: (U(m),?') is unifermly homeomorphic to
$¥(m). Proof will be clear from the following:

Notation: For ae m, derinc M(a) =£fe S (n)| aecoz £3 . Put
5’30 =4{M(a) | aemny. For VyeV,e...eV cm, define

M4V, 35 ={ge sTm) [ 27X "‘tl"‘,'ﬂ)c vie (2, 110,
¥ V=dfe M) | £/4H, € UCVIL,  We define
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i=1,...,4n3
Pt B, =4iM(Lv;3 5| VeV,c...cV cm}

Lemma 6: 33n forms a base of S (m).

Proof of Lemma 6: For fe S’ (m), put Bg (£) ={ge
e S*(m)xsggw | £(x) - g(x) Iie 3.
1) {BE, (£) | f€S+(m)54 Jan for any € < a
£esT(m), define v;(£) = 7L e¢ 9'(“—‘-2',%—)*4 11)

Ba(f)cM({Vi(f)} 1) as if ge B(£) then I:(x) - g(x) I <

. Really,

< = > 3 -
m for each x€ m and so g

cg-]'((ﬂ'a—;‘.’, 11)
2) §n<{85(f) \ fe st(m)}for any n > 2 s

for M(LV;3 ?_.l) ¢ B, take any £ e s*(m) such that
-1(( m’-"' 43) = V.

1!
hence £ 1(O) =m - V. Then M({V}i )cBe(f ): take f¢

€ MLV, } _l) and xem. Find i such that er -V (we

-(t+1)
put V ., = m). Then £ _(x) e C ma(:-q- ’ m'm 1.

: 2
So dist (£ 4£) £ 2= < €

i=1,2,¢.0yn

Dcfinition 7: If @ 1is a family of sets, an order o
Q is defined ord & = sup£{ D1 D c QA and NQ #* £}
For a uniform space (X,W) a point-character pc (X,%) is
defined as the least cardinal &« such that there is a bas
B of U such that an order of each cover from J3 is le

or equal to X .

Theorem 8: pc U(m) '»sup {f éo(,lf is a regular cardlnal}
for each infinite cardinal m .

Corollary 9: The uniformity on & (&) induced by sup-
norm has not any point-finite base.

Remark 10: Corollary 9 improves results from [Pl] and [54

Outline of the proof of Theorem 8:

> . o - J 3 « -
Notation: Suppose We % (K,n-1), {Yi} Y=o 18 & se
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quence of subsets of K, j<n-1l. W - {Yi} g=l is an ele-
- {y.}d - -

ment of X (K,n-1) such that prt(w {Yi} i=1) = pr W

- -@Y' t=l,oao,n-1 .

I’JV{YI} {XC U,(n - {Y i= l\ pI‘tX(\Yt_l # g, t=1,ooo
co-,JJ
Lemma 1l1: Ve are given: 1) a mapping c: K(m,n) —

— P(m) such that c(V)#J and V(l)c c(V)c V(n) for
each V. (AP (m) 1is the set of all subsets of m)

2) an infinite cardinal m

3) a regular infinite cardinal S < m .

Notation: For &< P(m), Iéal <§' y JE {l,...,n-l}
Ve X (m,n-1), F(D,j,V) denotes the following formula:

D ST vy,

x.VY. x:lx Y
3J i Y2k le -1
) (Xi and Yi denote

Y, 5x, 3y - (VV{Yi} ) -9
zembers of [m]f_g )e

If there are Ve X (m,n-1) such that |V(1)[=m and
Je {l 25000y N~ 1} such that F(&,j,V) does not hold
for any & ;\_m]<§ then there is We X (m,n-1) such

that | c(U (W))] :g .

Remark 12: Lemma 11 is Lemma in [Plj s, P. 150.

For proving Theorem 8, it is enough to show thet the
U(m)-uniform cover 530 (see Construction 3) has no U(m)-
uniform refinement of order less than §+ . We can empldy

Lemma 11 and the following definition:

HC—a

Construction 13: We are going to construct a mapping
¢ for Lemma ll. Suppose W is U(m)-uniform cover such
that W'<A and an order of [ is less than m .
Choose a mapping d : W —>HB, such that d(P)>P for = .

each Pe Y. W is refined by some ‘%q' Choose f : Bq-

—1) such that f(P)DP for each Pec .ﬂq. Define

c: "gq—"ﬁo by ¢ = dof. Now define <c¢ : f]{,(m,2q+2)-.

— Pw) by

———
c((Vl,...,V

29+2)) = ClVyeeesVoa,yy .



- 58-

Comment 14: Uniform spaces of point-character less
than an infinite cardinal o form an epireflective clas
in UNIF containing all praecompact spaces, b% denotes
the corresponding modification. In [P3], I promised to

prove that b* does not preserve Cauchy filters. Now I-
going to do it.

Notation 15: Inv*(Cauchy) denotes the class of all
functors F : UNIF —UNIF such that id : X —F(X) 1s
uniformly continuous for each uniform space X and X
and F(X) have the same set of Cauchy filters for each

Problem 16: The question was raised by Z.Frolik whe
her there is a member of Inv*(Cauchy) distinct from the
identical functor. This problem remains to be open and
the following theorem shows that a non-identical member ¢
Invt(Cauchy) should be pretty wild.

Theorem 17: If Fe Inv'(Cauchy) then pc F(U(m))>§
for each infinite regular cardinal ‘f" m .

Corollary 18: 8‘% Inv*(Cauchy) for any cardinal «.

Remark 19: As the identical functor is contained in
Inv*(Cauchy), Theorem 17 may generalize Theorem 8 (see
Problem 16). So proving Theorem 17 we shall reprove Theo-
rem 8,

Proof of Theorem 17: The basic fact is the validity
of the following formula T:
T: There is a point fe« U(m), If(h)\ =m for each hef
such that for each cover QP e (U(m), ), ord ﬁ<§ , the
re is a member P of J such that there is an integer

n, such that for all integers n greater than n, the
following holds: YD 3H ,H_ DD _V¥D  ,

2 2 -ln 2°-1 2 2°-1
D, SH_ e ™9 D)2 )cP. (D,H e [n]%€),

i1 2Ra
f(n) = f'/(Hn - {O}) . Really, if T holds then one can

construct a filter $ that is Cauchy w.r.t. bS(U(m),U7
anc¢ does not converge to any point in U(m) but U(m) !
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a complete uniform space.
Proof of T will be done by the way of contradiction.

Pet  Z{m) = {er(m)' [f(h)] = m for each heH}.
Choose a (z)-uniform cover P such that ;3n

<9

o)

(see Tonstruction undé euach member of 'ﬁn intersects
o

lesa than m members of # , so ord P < € .

®ix an integer n>nge Define ic Z(U(m))x P by 1i(A) =

= {Pesﬂ)l PDay . decuause ¢f (2), the following formula
% (1) holds: fez(m) d 5P |X,I<g YD 3 Hy ,

H, 2Dy : ie(®) {1}V o) - X .

(1) "s a coro lury of the following formula forced by (2):
Vfe2m) Y, c? , \¥l<g ¥Dp 3 H , Hy>D)

cae™ o (v} ey

and the fact that for each fe Z(m), Y, can be divided in-

0 two disjoint sets Yi,, Yi =0 that:

(1Y ) 1 = s 3 (n) =

1) YPeY] VD, I Ky , HjoD ¢ i - 4K PV {D}])>
3P

v De!i 3D, VE , H2D : ee(n) - {H;} )V{Dl});éP,

snd the regularity of & 1s very useful, as well.

J
v

‘For each pe,{;l,...,2n } denote by T(p) the following
formula: VfeZ(m) 3 Xpc P, IXP]<§VDP 3 Hp , HpoDp o
. »(n) P ¢ P
e YDy 3 B, HoD i o {u 3P e{n} P -
We will show that  ¢{p) implies T(p+l) for p=l,...
n

010,2 -l [}
e an use again the formule

1 . .« 3 (n) 17 "‘l Ce
9D wee JHp, HyoDy 2 20 - {H p PV {D } L)

p+l *
The formula (?) i true as T(p' and (2) hold.

cY
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;|

Now divide Y into two classes Yp+l and 80

p+l
that a condition similar to (1) is satisfied. Clearly,
#(2") implies T.

Remark 20: 1) We conclude again the paper by promi.
ses: there is a reasonable hope to remove "cornets"
from the above proofs. We can do it even so that we are
able to prove more generzl statements concerning point-
-character of uniformities: (All spaces are assumed not
to be O-dimensional.)

If § is a regular infinite cardinal less than ang
< <111 then the point-character of TE?(X)I 1S grea-

ter than § . Moreover, if & > Wy §<0(,, f regular
and & = \I| then the point-character of l&f{Xi} fe]
. . u — .

is greater than /g . ﬂ;’(X)I (Ibfixi.}iel , resp.) is s

uniform space on an underlying set X (Tf X

je X5 0 resp.)

whose base is formed by all covers of the form
N T Zl(lL) (fw m Il(]Li), resp.) where U (resp.
ich ieA

ILi) is a uniform cover of X (X, , resp.) and A is

a subset of I such that |Aj< & .
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