Jan Pelant

Point character of uniformities and completeness

In: Zdeněk Frolík (ed.): Seminar Uniform Spaces., 1976. pp. 55-61.

Persistent URL: http://dml.cz/dmlcz/703143

Terms of use:

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

SEMINAR UNIFORM SPACES 1975 - 76

Point-character of uniformities and completeness
J. Pelant

Introduction 0: Results contained in this paper generalize results from [P1],[P3] and [Š].

Definition 1: Let K b an infinite cardinal. Let n be a positive integer. We define $\mathfrak{X}(K,n)$ as a set of all elements V of $(\exp K)^n$ such that $\operatorname{pr}_1 V \subset \operatorname{pr}_2 V \subset \ldots \subset \operatorname{pr}_n V$ and $\operatorname{pr}_1 V \neq \emptyset$.

Notation 2: Let n>1 be a positive integer. For $V \in \mathcal{K}(K, n-1)$, put $\mathcal{U}(V) = \{U \in \mathcal{K}(K, n) \mid \operatorname{pr}_1 U \subset \operatorname{pr}_1 V \subset \operatorname{pr}_n U \}$.

Construction 3: Let ∞ be an infinite cardinal. Denote $\mathbb{H}_k = \{-\frac{i}{2^k} \mid i = 0,1,\ldots,2^k\}$ for k non-negative integer, $\mathbb{H} = \{-\frac{i}{2^k} \mid i = 0,1,2,\ldots,2^k\}$ for k non-negative integer, $\mathbb{H} = \{-\frac{i}{2^k} \mid i = 0,1,2,\ldots,3^k\}$. Put $\mathbb{M}(\infty) = \{f : \mathbb{H} \longrightarrow \exp \infty \mid (f(h_1) \supset f(h_2)) \text{ for any } h_1,h_2 \in \mathbb{H} \text{ such that } h_1 \geq h_2)$ and $f(0) \neq \emptyset$. For $f \in \mathbb{M}(\infty)$, $f \not \cap \mathbb{H}_k$ is an element of $\mathbb{K}(\infty,2^k+1)$ in the fact. For $\mathbb{V} \in \mathbb{K}(\infty,2^k)$ we define now a base of a pseudometric uniformity \mathbb{V}' on $\mathbb{M}(\infty)$: $\mathbb{B}_i = \{\mathbb{V} \mid \mathbb{V} \in \mathbb{K}(\infty,2^i)\}$, $i = 0,1,2,\ldots$

Put $(U(\alpha), \mathcal{V})$ for the Hausdorff reflection of the just defined pseudometric uniformity. Clearly, each point of $U(\infty)$ can be represented by some point of $M(\alpha)$ and we shall suppose it.

Notation 4: Given a cardinal m, $S^+(m)$ denotes the positive part of the unit sphere in $\mathcal{L}_{\infty}(m)$ with the uniformity induced by \mathcal{L}_{∞} -norm, (i.e. $S^+(m) = ff \in \mathcal{L}_{\infty}(m) \mid \sup f = 1$ and $f(i) \geq 0$ for all $i \in m$?).

Proposition 5: (U(m), V) is uniformly homeomorphic to $S^+(m)$. Proof will be clear from the following:

Notation: For $a \in m$, define $M(a) = \{ f \in S^+(m) \mid a \in \cos f \}$. Put $\mathcal{B}_0 = \{ M(a) \mid a \in m \}$. For $V_1 \subset V_2 \subset \ldots \subset V_n \subset m$, define $M(i \vee i) = \{ f \in S^+(m) \mid f^{-1}([i \mapsto 1-i]) \mid V_i \subset f^{-1}([i \mapsto 1-i]) \}$. $\forall V = \{ f \in M(\alpha) \mid f \mid H_{\infty} \in \mathcal{U}(V) \}$. We define

 $i = 1, \ldots, n$ Put $\overline{\mathfrak{B}}_n = \{ M(\{V_i\}\}_{i=1}^n \mid V_1 \in V_2 \in ... \in V_n \in m \}$ Lemma 6: \mathfrak{B}_n forms a base of $S^+(m)$.

Proof of Lemma 6: For $f \in S^+(m)$, put $B_{\varepsilon}(f) = \{g \in S^+(m), g \in S^+(m)\}$

 $B_{\varepsilon}(f) \subset M(\{V_1(f)\}_{i=1}^n)$ as if $g \in B(f)$ then |f(x) - g(x)| < f $<\frac{1}{2m}$ for each x \in m and so $g^{-1}([\frac{m+1-i}{m}, 1]) \in f^{-1}((\frac{2(m-i)+1-i}{2m}))$ $c g^{-1}((\frac{m-i}{2}, 11)$

2) $\overline{\mathcal{B}}_n < \{B_{\varepsilon}(f) \mid f \in S^+(m)\}$ for any n > 2:

for M($\{V_i, \{i_{i-1}, i_{i-1}, i_{i-1$ $f_0^{-1}((\frac{m-i}{m}, 11) = V_i, i = 1,2,...,n$

hence $f_0^{-1}(0) = m - V_n$. Then $M(\{V_i\}_{i=1}^n) \subset B_{\epsilon}(f_0)$: take $f \in C$ put $V_{n+1} = m$). Then $f_0(x) \in (\frac{m-(i+1)}{m}, \frac{m-i}{m}]$ So dist $(f_0,f) \leq \frac{2}{m} < \varepsilon$.

Definition 7: If a is a family of sets, an order o a is defined ord $a = \sup \{ |a|^{\dagger} | a = a \}$ and $\bigcap a \neq \emptyset$ For a uniform space (X, \mathcal{U}) a point-character pc (X, \mathcal{U}) is defined as the least cardinal & such that there is a bas ${\mathcal B}$ of ${\mathcal U}$ such that an order of each cover from ${\mathcal B}$ is le or equal to α .

Theorem 8: pc $U(m) > \sup \{\xi \in \alpha | \xi \text{ is a regular cardinal} \}$ for each infinite cardinal m .

Corollary 9: The uniformity on $\mathcal{L}_{\infty}(\mathcal{U}_{1})$ induced by supnorm has not any point-finite base.

Remark 10: Corollary 9 improves results from $[P_1]$ and [9]Outline of the proof of Theorem 8:

Notation: Suppose $W \in \mathcal{K}(K,n-1)$, $\{Y_i\}_{i=0}^{J}$ is a se-

quence of subsets of K, $j \le n-1$. W - $\{Y_i\}_{i=1}^{j}$ is an element of $\mathcal{K}(K,n-1)$ such that $pr_t(W - \{Y_i\}_{i=1}^{J}) = pr_tW -i \stackrel{\cup}{=} Y_i$, t=1,...,n-1.

 $\mathbb{W} \nabla \{Y_{\underline{i}}\} \stackrel{\mathtt{J}}{\overset{\mathtt{i}}{=} 0} = \{X \in \mathcal{U}(\mathbb{W} - \{Y_{\underline{i}}\} \stackrel{\mathtt{J}}{\overset{\mathtt{i}}{=} 1} \mid \operatorname{pr}_{\underline{t}} X \cap Y_{\underline{t} - 1} \neq \emptyset, \quad \underline{t} = 1, \dots$

Lemma 11: We are given: 1) a mapping c: $\chi(m,n) \rightarrow$ $\longrightarrow \mathcal{P}(m)$ such that $c(V) \neq \emptyset$ and $V(1) \subset c(V) \subset V(n)$ for each V. $(\mathcal{P}(m))$ is the set of all subsets of m)

2) an infinite cardinal m

3) a regular infinite cardinal $\xi < m$.

Notation: For $\partial \subset \mathcal{P}(m)$, $|\partial| < \xi$, $j \in \{1, ..., n-1\}$ $V \in \mathcal{K}(m,n-1)$, $F(\mathcal{Q},j,V)$ denotes the following formula: $\exists x_j \forall x_j$, $x_j \Rightarrow x_j \exists x_{j-1} \forall x_{j-1}$, $x_{j-1} \Rightarrow x_{j-1} \dots \exists x_1 \forall x_1$, $Y_1 \supset X_1 \exists Y_0 : (V \nabla \{Y_i\}_{i=0}^{J}) - \emptyset = \emptyset (X_i \text{ and } Y_i \text{ denote})$ members of $[m] \leq \xi$). If there are $V \in \mathcal{K}(m,n-1)$ such that |V(1)| = m and $j \in \{1,2,...,n-1\}$ such that $F(\mathcal{Q},j,V)$ does not hold for any $\mathcal{Q} \subset [m]^{<\xi}$ then there is $W \in \mathcal{K}(m,n-1)$ such that $|c(\mathcal{U}(W))| \geq \xi$

Remark 12: Lemma 11 is Lemma in $[P_1]$, p. 150.

For proving Theorem 8, it is enough to show that the U(m)-uniform cover $\,{\mathcal B}_{{f o}}\,$ (see Construction 3) has no U(m)uniform refinement of order less than ξ^+ . We can employ Lemma 11 and the following definition:

Construction 13: We are going to construct a mapping c for Lemma 11. Suppose W is U(m)-uniform cover such that $\mathcal{W} \prec \mathcal{B}$ and an order of \mathcal{W} is less than m . Choose a mapping $d: \mathcal{W} \longrightarrow \mathcal{B}_0$ such that $d(P) \supset P$ for each Pe W. W is refined by some \mathcal{B}_q . Choose f: \mathcal{B}_q . $\rightarrow W$ such that $f(P)\supset P$ for each $P\in \mathcal{B}_q$. Define $\overline{c}: \mathcal{B}_0 \longrightarrow \mathcal{B}_0$ by $\overline{c} = d \circ f$. Now define $c: \mathcal{K}(m, 2^q + 2) \rightarrow$ $\longrightarrow \mathcal{P}(\mathbf{m})$ by

 $c((V_1,...,V_2q_{+2})) = \overline{c}((V_2,...,V_2q_{+1}))$

Comment 14: Uniform spaces of point-character less than an infinite cardinal α form an epireflective class in UNIF containing all praecompact spaces, b^{α} denotes the corresponding modification. In $[P_3]$, I promised to prove that b^{α} does not preserve Cauchy filters. Now I going to do it.

Notation 15: $Inv^+(Cauchy)$ denotes the class of all functors $F: UNIF \longrightarrow UNIF$ such that $id: X \longrightarrow F(X)$ is uniformly continuous for each uniform space X and X and F(X) have the same set of Cauchy filters for each

Problem 16: The question was raised by Z.Frolík whe her there is a member of Inv⁺(Cauchy) distinct from the identical functor. This problem remains to be open and the following theorem shows that a non-identical member of Inv⁺(Cauchy) should be pretty wild.

Theorem 17: If $F \in Inv^{+}(Cauchy)$ then pc $F(U(m)) > \xi$ for each infinite regular cardinal $\xi < m$.

Corollary 18: $b^{\alpha} \notin Inv^+(Cauchy)$ for any cardinal α .

Remark 19: As the identical functor is contained in Inv*(Cauchy), Theorem 17 may generalize Theorem 8 (see Problem 16). So proving Theorem 17 we shall reprove Theorem 8.

Proof of Theorem 17: The basic fact is the validity of the following formula T: T: There is a point $f \in U(m)$, |f(h)| = m for each $h \in \mathbb{R}$ such that for each cover $\mathcal{P} \in (U(m), \mathcal{V})$, ord $\mathcal{P} < \xi$, there is a member P of \mathcal{P} such that there is an integer no such that for all integers no greater than no, the following holds: $\forall D_n \exists H_n$, $H_n \supset D_n \forall D_n$, $D_n = D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n$, $D_n = D_n \cap D_n \cap D_n$, $D_n = D_n$, $D_n =$

and does not converge to any point in U(m) but U(m) 1

```
a complete uniform space.
Proof of T will be done by the way of contradiction.
     Z(m) = \{f \in U(m) | |f(h)| = m \text{ for each } h \in H\}
       Choose a (m)-uniform cover \mathcal P such that \mathcal B_n < \mathcal P
(see Construction and each member of \mathcal{B}_{n_0} intersects
less than m members of {\mathcal P} , so ord {\mathcal P} < \xi .
Fix an integer n > n_0. Define i \subset \mathcal{P}(U(m)) \times \tilde{\mathcal{P}} by i(A) =
= \{P \in \mathcal{P} \mid P \supset A\} . Because of (2), the following formula
v(1) holds: \forall f \in Z(m) \exists X_1 \subset \mathcal{P}, |X_1| < \xi \forall D_1 \exists H_1,
H_1 \supset D_1 : i(f^{(n)} \setminus \{H_1\}) \nabla \{D_1\} - X_1.
&(1) is a coro lary of the following formula forced by (2):
\forall f \in Z(m) \exists Y_1 \subset \mathcal{P}, |Y_1| < \xi \forall D_1 \exists H_1, H_1 \supset D_1:
: i(f^{(n)} - \{H_1\}) \nabla \{D_1\} \subset Y_1
and the fact that for each f \in Z(m), Y_1 can be divided in-
to two disjoint sets Y_1^1, Y_1^2 so that:
(1): \forall P \in Y_1^1 \ \forall D_1 \exists H_1, H_1 \supset D_1 : i(f^{(n)} - \{H_1\}) \nabla \{D_1\}) \Rightarrow
\forall P \in Y_1^2 \exists D_1 \forall H_1, H_1 \supset D_1 : i(f^{(n)} - \{H_1\}) \nabla \{D_1\}) \not = P,
and the regularity of & is very useful, as well.
For each p \in \{1, ..., 2^n\} denote by \tau(p) the following formula: \forall f \in Z(m) \exists X_p \subset P, |X_p| < \xi \forall D_p \exists H_p, H_p \supset D_p.
... \forall D_1 \exists H_1, H_1 \supset D_1 : i((f^{*(n)} - (\{H_i\}_{i=1}^P) ) \not \{D_i\}_{i=1}^P)) =
= Xp.
We will show that \mathcal{C}(p) implies \mathcal{C}(p+1) for p=1,...
\dots, 2^{n}-1.
We an use again the formula
(3) \forall f \in Z(m) \exists Y_{p+1} \subset \mathcal{P}, |Y_{p+1}| < \xi \forall D_{p+1} \exists H_{p+1},
H_p \supset D_p \dots \exists H_1, H_1 \supset D_1 : i(f^{(n)} - \{H_i\}_{i=1}^{p+1}) \nabla \{D_i\}_{i=1}^{p+1}
CY<sub>p+1</sub>.
```

The formula (?) i true as $\mathcal{C}(p)$ and (2) hold.

Now divide Y_{p+1} into two classes Y_{p+1}^1 and so that a condition similar to (1) is satisfied. Clearly, $\mathcal{C}(2^n)$ implies T.

Remark 20: 1) We conclude again the paper by promi. ses: there is a reasonable hope to remove "cornets" from the above proofs. We can do it even so that we are able to prove more general statements concerning point--character of uniformities: (All spaces are assumed not to be O-dimensional.) If \xi is a regular infinite cardinal less than and $\ll \leq |I|$ then the point-character of $\pi_{2}^{u}(X)_{I}$ is greater ter than ξ . Moreover, if $\alpha \ge \omega_1$, $\xi < \alpha$, ξ regular $\alpha \leq |I|$ then the point-character of $\overline{I}_{a} \{X_i\}_{i \in I}$ is greater than ξ . $\Pi_{\alpha}^{u}(X)_{I}$ ($\Pi_{\alpha}\{X_{i}\}_{i\in I}$, resp.) is a uniform space on an underlying set X^{I} ($\overline{I}_{i \in I} X_{i}$, resp.) whose base is formed by all covers of the form $\bigcap_{i \in A} \mathcal{T}_{i}^{-1}(\mathcal{U}) \quad (\bigcap_{i \in A} \mathcal{T}_{i}^{-1}(\mathcal{U}_{i}), \text{ resp.}) \text{ where } \mathcal{U} \quad (\text{resp.})$ $\mathcal{U}_{\mathtt{i}}$) is a uniform cover of X (X, resp.) and A is a subset of I such that $|A| < \alpha$.

References

[P ₁]	Pelant J.: Cardinal reflections and point-
	character of uniformities, Seminar Uniform Spa-
	ces 1973-1974
	directed by Z.Frolík, Matematický ústav ČSAV
[P2]	Pelant J.: Universal metric spaces, this volume
[P ₃]	Pelant J.: Reflections not preserving complete-
	ness, Seminar Uniform Spaces 1973-1974
	directed by Z.Frolík, Matematický ústav ČSAV
[§]	Ščepin V.: Ob odnoj probleme Isbella (Russian),
	Dokl. AN SSSR, 1975