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Cardinal reflections and goint-character of uniformities-

counterexamples

J. Pelant

It is proved in [2) uncer Generalized Continuum Hypothesis
“that uniform covers of X of cardinality less than K form a
uniform space for any uniform space X and any. infinite cardi-
nal K . Because of a lack of better amusements, we raised the
. question whethar this statement aepends on set-theoretical as-
sumptions. As we knew Vidossich’s theorem asserting: if X 1is
a uniform space with G--point-finite‘ base and K 1is any infi-
nite cardinal, then tiniform covers of X of cardinality less
than K form a uniformity, we expected that the solution of
the above question could be useful for & -point-finite base
problem. It is‘ really the case. We are going to show that there
is a model of 2FC due to J.E. Baumgzart ner where there exists a
uniform space whose uniform covers of cardinality less than c.,)1
does not form a uniformity. Secondly, we show that for any car-
dinal K , there is a uniform space with point-character grea-
ter than K &

I wish to thank J.E. Baumfartner who kindly informed me

about his results which Ivneeded in the present notee.

Definition: Let (X,9L) be a uniform space. A point-cha-
racter pc(X,) is defined by oc (X,Y) = min4§sup fcard Ue
G B‘B eEPD & xe U} xeX3\0313 a base of ’l(/f.

Definition: Let K be an infinite cardinal. Let n be a
positive integer. We define ‘)C(K,n) 28 a set of all elements
V of (epr)n such that 'prIVD pfzv D e D prnV and
pr,V % & .
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Notation: Let n>1 be a positive integer. For V&
¢ X(K,n-1), out %(V)z{Ueyﬁ(K,n)'prlU;}
> pr;V o pryUs pro,V o eee D pr VO pr U § .

The following lemma is basic for the procedure used here:

Lemma: Let K be an uncountable cardinal. Let n = 2
be a positive integer. Let ¢ be any mapping from X (K ,n)
into K such that c(K) e proK for ony K € I {K,n) . Let
m be a regular cardinal less than K , For any P c K of
cardinality greater than m , there is V &€ K (K,n - 1) such
that pryV =P and card cf AUV))Z m.
Before mroving Lemma, we show how the promised theorems follow

from this.
Construction: Let o©f be an infinite cardinal. Denote

015000, 2k} for k non-negative integer, H =

1
H, = 4 o | 1
= U4 |k=0,1,2,..0}% . Put Mloc) = £f: H —>
—> exp o ((flhy) D flh,) for any hy, h, € H such that
h) > hy) snd f(O)e @ . For fe Mlex), fAH  is an ele-

ky

meant of ¥ (< ,Zk + 1) 1in the fact. For V € Y (e ,27) we

derine ¥ ={reMia) | tAH € U (V)P . We define now a ba-
. .'V )
se of a pseudometric uniformity on M(o¢ : 34_ ={V I_V €

e ¥ {,2M§ , 1i=0,1,2,....
Claim: ‘JB;*4 L 3& for i= 0,1,,2,... °

Choose f& M(ac), take g e st (f, Bs., ) , then geV

u t4+4
where V € K (o¢,2") such that
23 -1

)

prjv =f' (W j = 1,2’000,21 .
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A uniform space just defined will be denoted by U(ec) .

Remarks. 1) Ul{e¢) need not be Hausdorff but Ul{ee) res-
tricted to the set {f € M() ‘hfh’of(h) = a\g, T(0), ¥ n ¢
is Haxsdorff and the following theorems ar¢ valid for this sub-
gpace as well,

2) Construction can be generalized: ot , 3 are infini-
te cardinals, exppoe = {A|Ac e , card & <= 33 . M(a, f3)
is a set of all mappings from H 1into exppo.‘ > exppoc such
that pry f(hl) D pr, f(h]) 3 pr, f'(h2) 2 pr, f(h2) whenever
h1¥ h2 . Analogously, we use sequences of elements of
eXpgeX X exXpg for a definition of a uniform space Uloc,f3).
We have mentioned a space Ulec, f3 ) as any uniform space of
cover-character not grester than e¢ and point-character less
than [S is homeomorphic to s subspace of some product of
Ul(ex,f3) . Unfortunately, it is clear that. cover-character of
Ulot, (3) can be greater than o¢ 'in general. Nevertheless, the
cover-character of Ula ,f3) 1is not greater than if
card expﬂ oK £ o o However, another difficulty is point-cha-

racter,

Theorem 1 : Let K be an infinite regular cardinal. U(K*)

has a point-character grester than or equal to IK .
Suppose there exists a uniform cover % ={U_ i, A

of U( K*¥) sguch that U < B, and cardfajaeAr&f «
€ Uu}<K for any fe M(K¥) . There 18 1 such that
B, <U . Suppose A 1is a well-ordered set. Define a parti-
tion of B: , Liigdy cq 0 Y Ras'[Pt ﬁ‘i | a=min{be
€ A|Pc U,$33 . Clesrly, A4 Ral“.A is a uniform cover

and
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1) card{alee_l&&fGURa3<K for any fe M(KY) .

| For each a € A there is vV, € K K*,1) such that

U R, e '\78 , it means £(1)2 V, for any f € UR, . For
v e K(K*,2Y) with TeRr, , define c’(V) = minV, . 4s
"V, pryU, 'cf(U) € pryU . (1) implies that |
card ¢’{U |u e X (K"’,Zi) &V¥ard< K for any fe M(KY),
Define now c: GQ(K+, 21 4 2) —_— K+ by c(Vl,Vz,...
ooy Vaiyg, Voi,,) = ¢"(Vpyeeey Vpiy)) o It follows from Lemms
that there is Q@ € J(K* 2} + 1) such that card c( U(Q)>
> K . Take fe M(K¥) such thst

-f(2+4 3’ , 3 =1,250.0, 2 42,

Then card c’{U e JC(K"', o) (fe U 3 > K , which is a
contradiction.

Theorem (Baumgartner): There is a model of ZFC where the=
re is Q c exp a.)1 such that card A = @4 for each A€
ceQ , cara Q = 2“1

two distinct elements of QU .

- and card (Aln Aa) < @, for any

Theorem 2 : .‘In the above model of ZFC, there is a uniform
cover Y of Ul@w,) , card ¥/ = @4 such that each uni-
form star-refinement of 4 has cardinality greater than Wy o

Proof: For & & &g ,put F={fe M(a,)| £(1) o
3 a-? . Define Y = {3 }a,cc'o,, . Suppose thgre is U(a)1)-
cover U ={Ub}bea.),, such that U % U . Tpere 1s 1
such that J3; < U . Define a partition of .’B;{Rbgg,ew"
by Ry = {W €, | b= min{d 501\wc U3%? . Clearly,
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{ URy ;.“012 Y . Detine c’t M(@y) —» @, by

¢’ (f) = min fa | st 4(£, {uRb}&ew’)c % .

(2)  According to [3], it holds ¢ (LJR) ¢ N {.prlvl?l’e Ry §

for all b,

i

Define c: R (@, ,2" +1)—> w, by e(V) = min{c’(f)| £ e

| 2%+ 1-3 ,
< H( 0)1 ) Bnd prJv =f (’—;’g_z) J = 1.,_2’000.’ 2i + 1} °

Using properties of Baumgartner ‘s model and Lélhm&, we recelive
3 <y

that there exists & < UC(@4,2 ) such that card & = 2-

card ¢ (W (V)) 2 @)y for each V& & , card (pr; V N

n pr\U |< <@, for any two distinct elements of & . It imp-

lies that (2) must fail to be true.

Remarks In the fact, properties of the model from Theorem
are stronger than we need., It would be sufficient if the follo-
wing statement holds: There exists ( c exp &), such that
card QU > 0@y , card A = @, foreach Ae QA and there is
a cardinal K £ card &  such that card N a,'< @, for any
O c A ,card Q' 2 K .

It 18 clear that we can give further counterexamples to

'«»any.body who gives us some "nicg". _lhodel‘ of ZFC.

Proof of lemma: Suppose n>2 .(for n = 2 Lemma is
obvious).‘Choose a mapping ¢ 1like in Lemma. m 1is a‘reg.ular
cardinal less than K , Let us assume that Lemma fails to be
true. We will show that it implies a contradiction. Take Vo €
€X(K, n-1) such that pr,V, =P and card pryVo > m,

J = lyeeey n=1

First of all, we introduce some notation :



Suppose W € X (K ,n -1) , {Yi]_gs 0 is a sequence of sub-

~sets of K , j&£n-1. w-4 Yiif,,, is an element of
K (K ,n-1) such that prn_t(w -4 Y3%.,) = pr W =
5 v
-;3t Yi ) t = 1,.0.’ n ".1 .

oLyl g =dxew - {35 ) | oy X0y =06,

t =0,1,000, 37 o

M is a subset of K ,'W 1is an element of Y (K ,n-1) ,

je{ly,eee, n=-1% , A(j,M,W) denotes the following fnrmula‘
(Xi and Y; are subsets of KK such that card Xié m and

card Y; £ m) :
A formula <= A(j,M,¥W) will be denoted by B'(J,M,W)‘. Let us em-

phasize fhat Aln - 2,M,Vo) cannot be true for any M , card M £
é m . |
Rewrite then the above formulae as follows:
. VY. - 1P

ali,M,W) ¢ 3 a(j VY_J.: G(J3) 3.0( {Yi;“?- ) VYJ_]_ >

. . . ’1. B L)
> 6(4y33_ 2 ) 36ydd L 4 VY 200033 o)

v 34 ' F .

Je4y3d_ I Vy oaqy i3 iyl )
where Y°=G({Y13%:4v)-.. |
We can suppose that & assigns to J ({Yiz‘é':h ’ resp.) the
unique subset G(j) of K (G({Yi}?tzh resp.). (One can use -

an order structure of ordinals for a more exact definition of G .)
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G will be called a corresponding choicee.

BC,M,W) : VxJ*:-J'F({in?',i ERI R IR 3?""‘-"‘13?;,'-,)3 -
D BV Xjpeee IPEXIL_ 5 )X VY INIXIT )0
2% VY :elw v{ri;g',o ) -M=0,

where Y, =F(-(xi;?'_ﬂz ), k= 3y 3= 1lyeeey 1.

Again, let us suppose that F assigns to "xi;;-h s K= 1,400
eeey J the unique subset F({Xili & ) of K « F 1is cal-
led a correspondlng choice.

For =0 , 1= 1000y Jd F(g) - will denote a ' sequence

We are going to define by trans"inite induction the mapp-
ings Rt m —3 € 0,1,0ee, n =13 , Stm —> § 1,000, n-12,
Mim— exp K , V:m —> 'JC’sK»,n'-_- 1) .
V, 1s as above, M, = ct @ (V,)) , R(O) =0 , S(0) =
If A(1,M,,V,) holds thern we define: R(1) =0, V, =V, s My =
=@, s(1) =1, G‘1 is the correaponding choice,
If B(l,Mo. Vo) holds then Fl denotes the corresponding chailce
and we define R(1) =1, V; =V = F, @) ,s() =1, M =
=clWvy)) =M o | | |
Suppose thet R , M , V , S are defined for all q«p € m.

1} p is an 4solated ordinal, p=r +1

a) R(r)>0: if A1, U {u Jq &r}, V,) , then define R(p) =
=0, Mp =0, Vp =V., S(p) = 1 and G. is the corresponding

P
choice;
if B(1, u-im Iq‘r} V,) then R(p)=1, s(p) =1, v, =
=V, - F (), up=c('u,.(vp)) _4uq|q4r3 ‘where F_ is

the corresponding choice.
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b) R(r) =0
If A(S(r) + 1, Ui Mg |q P r} holds then we define
R(p)-O,Vp=Vr, -ﬁ,s(p) s(r) +1 and Gp is the

corresponding choice, .
‘If B(s(r) + 1, u-(u |q-r3 V.) holds then R(p) = s(r) +

+ 1 = S(p), F‘p is the corresponding choice, Vp =V, - Fp(ﬁ) R

p=c(QL(V ))-U{M lqert.

For p€ m+1 ,dafme H(p_) =max'f.jlsup {qep&R(q) jf =
=p} . |
2) p 1s a limit ordinal. Suppose that H(p) =j , Jj must be

greater than 0 . W, denotes an element of (K, n-=-1)

such that prjW, = f\{pr q|q<p? for J = lyeeey n =1,
e a(j, U4M, |aepd ,W) holds then R(p) =0, S(p) =3,
=0, V, =Wp and G, 1s the corresponding choice.

1 B(j, \J{Mq]q €ps ._Wp) ‘holds then R(p) =, s(p) = 3§,
Vp =i, - Fp&ﬁ) » F, 1s the corresponding choice, M, = ‘

= e('U.(Vp')) - U4 Mqlqe Py .

Let us suppose¢ that mappings R, M, V, S are defined (and the
corresponding choices 28 well).Let J be a positive integer
which is equal to H(m) . Put qq = sup4q € mlR(q):- Jt « As
m 18 regular we have card{p'6é m IR(p)= jap=>q % =m.

Let < pq'}«em; be an increasing transfinite sequence such that

{pdloce m}~{pcm|R(p) J&p>qo?.

X; =@, f‘s""‘p@‘xj’ Yy = U { Y"‘Ioc € mPyee

(V) (prk Vp - U { ppk qu‘.f l oL & m}), (for k

J - 1 replsce

G

.y © _ +
1.“' -1 -1)), 5 = Fp“.({xi;t.:‘._) '

o



B -15%~-
Yk-—' u{ Yk lde m} ) k‘:j ,‘j- l"l-o’ 2’1 e
» A . 3 .
Define further Y~ =Y,V Ghd44°4(‘l'f;33:1 ) for o & m.

Put V.=V =4% $3_4 - We show that eard ¢ (U(V) = m
_ » , s
and it will be g desired contradiction:

It -holds; (Vp“ v 4 Y;‘}g: 0 ) c ’ZL(V)} and further

x 23 -

e, V& 3P ) - UL M jasp P # P
o v ad _ » o

and c (vpd V { Yi }4,0 c U{Mq \ q .‘-’ p&:&v" 4 ; e

Let us observe that P ¢4 must be an isolated ordinal.

Tt follows immediately from these facts that cnrd ¢ (V) 2 m .

Remarka: 1) One can prove by the above metnod slightly
modified that the uniform space U ( AP has not 6 =-point-
finite base. More generally, if m < cf f then U( o , R) ,

> 7 1 | oint- ' oo ; -
72 (3 , ‘has no m-point-m base (a collection _“Ua 3¢é A Of

- subsets of X is m-roint-m i1ff A = , U A, and
Qem D

card {2 |a e 4, and xe¢ U,§< m for each b& m and each
2 € X). Cutline of modification: ¢ would be a mapping from
Jcﬂ (at,n) into o > m such that pr,K ® pr) e(K) for
any K € 'xtj(o(.,n) arxt the formula A(j,M,V) woula have the
form:

VbemSXJVYJ:)XJ..»BKlVYIQXIBYO s

[4

pryte(V v4Y, 32 ) nacxivt) -m=¢,
and mappings R, S, V, M would be defined on o¢ .
~2) It follows from the precedent remark that the metrie

uniformity of £%° (2 7 ) has not 6 -point-finite hoses
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