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TRANSMISSION OF CONVERGENCE

Christoph J. Neugebauer

Abstract. If E(f) = {x : lim sup f ⋆ µj(x) > lim inf f ⋆ µj(x)}, we examine
the type of convergence of gk to f so that |E(gk)| ≤ M , k = 1, 2, . . . , implies

|E(f)| ≤ M .

1. Introduction

Let {µj}j≥1 be positive Borel measures on Rn with suppµj ⊂ K, K compact,
and normalized so that µj(Rn) = 1, j = 1, 2, . . . . For f : Rn → [0,∞] —
throughout all functions will be non-negative — let

E(f) = {x : lim sup f ⋆ µj(x) > lim inf f ⋆ µj(x)},

the exceptional set for convergence of {f ⋆ µj(x)}, where

f ⋆ µj(x) =
∫

Rn

f(x + y) dµj(y).

The problem we wish to study in this note is to estimate |E(f)| with
{|E(gk)|} for appropriate approximations of {gk} to f , i.e., when are the
convergence properties of {gk ⋆µj}j≥1 transmitted to {f ⋆µj}j≥1 as k →∞?
If we can control the maximal operator

Mf(x) = sup
j

f ⋆ µj(x)

then it is well known that gk → f in Lp is enough. In fact:
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194 CHRISTOPH J. NEUGEBAUER

Assume that

Mf(x) < ∞ on a set of positive measure for every f ∈ Lp,

gk → f0 in Lp.

Then |E(f0)| ≤ lim inf |E(gk)|.
To see this, first observe that by Proposition 1 in [6, p. 441],

|{x : Mf(x) > y}| ≤ A

yp
‖f‖p

p,

that is, Mf is of weak type (p, p). Write E(f0) =
⋃

Ei, where

Ei = {x : lim sup f0 ⋆ µj(x)− lim inf f0 ⋆ µj(x) > 1/i}.

For gk fixed, after adding and subtracting lim sup gk⋆µj(x)−lim inf gk⋆µj(x),
we get

Ei ⊂ {x : 2 lim sup[f0 ⋆ µj(x)− gk ⋆ µj(x)] > 1/(2i)} ∪ E(gk)

⊂ {x : M(|f0 − gk|)(x) > 1/(4i)} ∪ E(gk)

and thus
|Ei| ≤ A(4i)p‖f0 − gk‖p

p + |E(gk)|.
Thus |Ei| ≤ lim inf |E(gk)|, and hence |E(f0)| ≤ lim inf |E(gk)|. �Remark. To obtain the last displayed inequality one only needs that

|{x : M(|f0 − gk|)(x) > y}| ≤ c

yp
‖f0 − gk‖p

p (1)

with c independent of k and y > 0. We shall use this remark later.
The hypothesis on the maximal operator Mf is not satisfied in many

interesting situations. For example, if dµj =
χRj

|Rj |
dx, where the Rj ’s are

oriented rectangles containing the origin and |Rj | → 0, then Mf is not of

weak type (1, 1); or, if dµj =
χRj

|Rj |
dx, where the Rj ’s are arbitrary rectangles

containing the origin with |Rj | → 0, then Mf is not of weak type (p, p) for
any p, 1 ≤ p < ∞. Other examples where the maximal operator cannot be
controlled for a given p are given by measures µj singular with respect to
Lebesgue measure, e.g., Mf(x) = supt>0 f ⋆ dσt(x), maximal averages over
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surfaces. For further details we refer the reader to [6, Ch. 11]. It is precisely
the cases where Mf is too large which interest us and which we wish to
examine. To this end we need an A∗

s-condition and the minimal operator.
We write for 0 < s < ∞ and φ : Rn → [0,∞],

A∗
s(φ) = sup

j,x
φ ⋆ µj(x) ·

(
1
φs

⋆ µj(x)
)1/s

.

We observe that in the special case where dµ =
χQ

|Q| dx, Q an arbitrary cube

with 0 ∈ Q, if A∗
s(φ) < ∞, then φ is in the Muckenhoupt Ap-weight class,

p = 1 + 1/s (see [4], [5]).
The minimal operator of order s is defined by

msf(x) = inf
j

(
fs ⋆ µj(x)

)1/s
.

The behavior of ms is much better than that of M . We shall show that
under the sole assumption (4) of Theorem 1 below, |{x : msf(x) < 1/y}| ≤
(cq/yq)‖1/f‖q

q for any q, 0 < q < ∞ (see Section 2), and under the stronger
assumption (5) of Theorem 2 below, m even satisfies a distributional in-
equality |{x : mf(x) < 1/y}| ≤ c1|{x : f(x) < c2/y}| (see Section 3).
Moreover, if M is of weak type (p0, p0) for some p0, 1 ≤ p0 < ∞, then
‖1/msf‖q ≤ c‖1/f‖q for any q, 0 < q < ∞ (see Section 6).

Hölder’s inequality shows that ms′f ≤ ms′′f if s′ ≤ s′′, and we write
m∞f = lim

s→∞
msf .

One of our main results is:

Theorem 1. Assume that 0 < p, r, s < ∞. If

either
1
gk
→ 1

f0
in Lp or gk → f0 in Lp, (2)

A∗
s(|gk − f0|) ≤ c < ∞, k = 1, 2, . . . , (3)

m∞f(x) > 0 on a set of positive measure for every f,
1
f
∈ Lr(Rn), (4)

then |E(f0)| ≤ lim inf |E(gk)|.Remark. In the special cases where dµj =
χEj

|Ej |
dx, the differentiation of

the integral case, or dµj = φεj
dx, the approximate identity case, this type of

problem was already examined in [2], [3] with a more restrictive hypothesis.
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In Section 5 we shall examine a version of Theorem 1 where the Lp-con-
vergence in (2) is relaxed and (4) is strengthened. In particular, let {νj} be
another sequence of Borel measures on Rn with νj(Rn) = 1 and supp νj ⊂ K,
j = 1, 2, . . . . Now let

A∗
1(φ) = sup

j,x
φ ⋆ µj(x) · 1

φ
⋆ νj(x),

mf(x) ≡ mνf(x) = inf
j

f ⋆ νj(x).

Finally, let L0 =
{
f : |{x : f(x) < 1}| < ∞

}
. Note that, if 1/f ∈ Lr, then

f ∈ L0.

Theorem 2. If
gk → f0 a.e. as k →∞,

A∗
1(|gk − f0|) ≤ c < ∞, k = 1, 2, . . . ,

mf(x) > 0 on a set of positive measure for every f ∈ L0, (5)

then |E(f0)| ≤ lim inf |E(gk)|.
The following is an example illustrating the type of convergence in The-

orem 2. Let αk ց 0 with αk/αn+1 ≤ c < ∞. If {gk} satisfies αn+1 ≤
|gk(x)− f0(x)| ≤ αk for each x, then A∗

1(|gk − f0|) ≤ c.
The proofs of Theorems 1, 2 will be given in Sections 4, 5. In Sections 2

and 3 we examine weak-type and distributional inequalities for the minimal
operator which we need for the proof of Theorems 1 and 2. Section 6 contains
some remarks and variants of these Theorems.

2. Weak-type inequalities

This section is devoted to showing that the condition (4) of Theorem 1
implies a weak-type inequality for msf .

Definition. We say that ms is of weak type (r, r) on E (with constant A)
if for every f with supp 1/f ⊂ E,

|{x : msf(x) < 1/y}| ≤ A

yr

∥∥∥ 1
f

∥∥∥
r

r

where A is independent of y > 0 and f .

We let Q = [0, 1)n and we let Q∗ be a cube containing Q + K, where K
is the common support of {µj}.
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Lemma 3. Let j ∈ Zn and let Q∗
j = Q∗ + j. If ms is of weak type (r, r) on

Q∗
j with constant A, then ms is of weak type (r, r) on any other Q∗

i with the
same constant.Proof. This follows from translation invariance. �

Lemma 4. If ms is of weak type (r, r) on Q∗, then ms is of weak type (r, r)
on Rn.Proof. Let 1/f ∈ Lr(Rn), and let Qj = Q + j, Q∗

j = Q∗ + j, j ∈ Zn. If
fj = f/χQ∗

j
, then from Lemma 3,

|{x : msfj(x) < 1/y}| ≤ A

yr

∥∥∥ 1
fj

∥∥∥
r

r
.

Note that
∑

χQ∗
j
≤ N < ∞.

If x0 ∈ Rn, then x0 is in a unique Qj and thus msf(x0) = msfj(x0).
Hence

{x : msf(x) < 1/y} ⊂
⋃

j

{x : msfj(x) < 1/y}

from which
|{x : msf(x) < 1/y}| ≤ A

yr

∑

j

∥∥∥ 1
fj

∥∥∥
r

r
.

Since
1
N

∑

j

1
fj(x)r

=
1
N

∑

j

χQ∗
j
(x)

f(x)r
≤ 1

f(x)r
,

we obtain
|{x : msf(x) < 1/y}| ≤ NA

yr

∥∥∥ 1
f

∥∥∥
r

r

and the proof is complete. �

Lemma 5. Assume that ms is not of weak type (r, r) on Rn. Then there
exists F : Rn → [0,∞] such that msF (x) = 0 for a.e. x, and 1/F ∈ Lr(Rn).Proof. From Lemma 4 we know that ms is not of weak type (r, r) on Q∗.
Hence, for every k ∈ N there is yk > 0 and gk such that 1/gk ∈ Lr(Rn),
supp 1/gk ⊂ Q∗ and

|{x : msgk(x) < 1/yk}| >
2k

yr
k

∥∥∥ 1
gk

∥∥∥
r

r
.
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If B∗ is a cube containing Q∗ −K, then

|{x : msgk(x) < 1/yk}| = |{x ∈ B∗ : msgk(x) < 1/yk}|,
since msgk(x) = ∞, x /∈ B∗.

Let g′k = ykgk/k. Then

|{x ∈ B∗ : msg
′
k(x) < 1/k}| ≥ 2k

kr

∥∥∥ 1
g′k

∥∥∥
r

r
.

Hence |B∗|
/
‖1/g′k‖r

r →∞ and so ‖1/g′k‖r
r → 0. By passing to a subsequence,

we may assume that
∑ ‖1/g′k‖r

r < ∞. We can now find a sequence {fk},
fk = g′jk

with possible repetitions, and rk → 0 such that, if Ek = {x ∈ B∗ :
msfk(x) < rk}, then

∑ |Ek| = ∞ and
∑ ‖1/fk‖r

r < ∞.
By the Lemma in [6, p. 442], there is {xk} ⊂ Rn such that, if Fk = Ek+xk,

then
lim sup Fk =

⋂

k≥1

⋃

j≥k

Fj = Rn

except for a set of measure zero. Now we let f̃k(x) = fk(x− xk) and

F (x) = inf
k

f̃k(x).

Then msF (x) ≤ infk msf̃k(x), and so msF (x) ≤ rk, x ∈ Fk. Therefore,
msF (x) = 0 for a.e. x. Since

1
F (x)r

= sup
k

1
f̃k(x)r

≤
∑

k

1
f̃k(x)r

,

we see that 1/F ∈ Lr(R). �Remark. It may be of interest to have an example where ms is not of
weak type (r, r). Let D = {xj}j≥1 be a countable dense subset of B = {x :
|x| ≤ 1}, and let µj = δ(xj). If f ∈ C(Rn) with f(0) = 0 and 1/f ∈ Lr(Rn),
then for x ∈ B, msf(x) = 0. Consequently, ms is not of weak type (r, r)
on Rn.

Lemma 6. Assume that 0 < q, r < ∞ and that ms is of weak type (r, r) on
Rn. Then ms is of weak type (q, q) on Rn.Proof. By Lemma 5 it suffices to show that msf(x) > 0 on a set of
positive measure for every f , 1/f ∈ Lq(Rn). If q < r, then 1/fq/r ∈ Lr(Rn)
and by Hölder’s inequality

(fqs/r ⋆ µj(x))1/s ≤ (fs ⋆ µj(x))q/(rs).

Assume now that q > r. If Q and Q∗ are as above, then for x ∈ Q,
msf(x) = ms(f/χQ∗)(x) and χQ∗/f ∈ Lr(Rn). �
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Lemma 7. If 0 < r, s, t < ∞ and mt is of weak type (r, r) on Rn, then ms

is of weak type (r, r) on Rn.Proof.
|{x : msf(x) < 1/y}| = |{x : [mt(fs/t)(x)]t/s < 1/y}| ≤ A

ysr/t

∥∥∥ 1
f

∥∥∥
sr/t

sr/t
.

Lemma 6 completes the proof. �
We are now ready to prove our main weak-type inequality result.

Theorem 8. Assume that 0 < q, r, s < ∞ and m∞f(x) > 0 on a set of
positive measure for every f , 1/f ∈ Lr(Rn). Then ms is of weak type (q, q)
on Rn.Proof. If we deny the conclusion, then by Lemma 6, ms is not of weak type
(r, r) on Rn. Hence, by Lemma 7, mj is not of weak type (r, r) on Rn for every
j ∈ N. By Lemma 5, we have for each j ∈ N a function Fj : Rn → [0,∞] such
that mjFj(x) = 0 for a.e. x and 1/Fj ∈ Lr(Rn). We now choose 0 < αj < ∞
such that

∑
αj‖1/Fj‖r

r < ∞.
Let F = infj Fj/α

1/r
j . Then for every j and for a.e. x,

mjF (x) ≤ α
−1/r
j mjFj(x) = 0.

Hence m∞F (x) = 0 for a.e. x. Since

1
F r

= sup
j

αj

F r
j

≤
∑

j

αj

F r
j

,

we see that 1/F ∈ Lr(Rn). This contradicts our hypothesis. �Remarks. (i) The proofs of Lemmas 4 and 5 proceed along the lines of
the proof of Proposition 1 in [6, p. 441] for the maximal operator.

(ii) We do not know whether the hypothesis of Theorem 8 implies the
strong-type inequality

∫

Rn

dx

msfq
≤ cq

∫

Rn

dx

fq
.

In Section 6 we shall present a condition which will give us this strong-
type inequality. We shall also make a comment in Section 6 concerning the
weak-type (q, q) constant of ms.

(iii) For the example in the remark after Lemma 5 where ms was not of
weak type (r,r), the above theorem gives a function F such that m∞F (x) = 0
for a.e. x and 1/F ∈ Lr(Rn).
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3. Distributional inequalities

This section is similar to the previous one and deals with a distributional
inequality for mf(x) ≡ mνf(x) = infj f ⋆ νj(x), where {νj} is a sequence
of Borel measures on Rn with νj(Rn) = 1 and supp νj ⊂ K, j = 1, 2, . . . ,
where K is a compact subset of Rn.

Definition. We say that m satisfies a distributional inequality on E with
constants c1, c2 if, and only if,

|{x : mf(x) < 1/y}| ≤ c1|{x : f(x) < c2/y}|

for every f : Rn → [0,∞] with supp 1/f ⊂ E.

We use the same notation as in Section 2 for Q, Q∗, Qj and Q∗
j . From

translation invariance, if m satisfies a distributional inequality on Q∗
j with

constants c1, c2, then the same is true on any other Q∗
i .

Lemma 9. If m satisfies a distributional inequality on Q∗, then m satisfies
a distributional inequality on Rn.Proof. Let fj = f/χQ∗

j
. By the above observation, there are constants

c1, c2 such that

|{x : mfj(x) < 1/y}| ≤ c1|{x : fj(x) < c2/y}|,

where c1, c2 are independent of f and j. Note that
∑

χQ∗
j
≤ N < ∞. As in

Lemma 4,

|{x : mf(x) < 1/y}| ≤ c1

∑

j

|{x : fj(x) < c2/y}|.

Since Ej = {x : fj(x) < c2/y} = {x : f(x) < c2/y} ∩ Q∗
j , we see that∑

χEj
≤ χ{f<c2/y}(x) ·N and thus

∑ |Ej | ≤ N |{x : f(x) < c2/y}|. �
For the next result we recall that L0 is the class of f : Rn → [0,∞] such

that |{x : f(x) < 1}| < ∞.

Theorem 10. Assume that mf(x) > 0 on a set of positive measure for
every f ∈ L0. Then m satisfies a distributional inequality on Rn.Proof. If we deny the conclusion, then by Lemma 9, m does not satisfy
a distributional inequality on Q∗. Hence for every k ∈ N, we have yk > 0
and a function gk with supp 1/gk ∈ Q∗ such that

Lk ≡ |{x : mgk(x) < 1/yk}| ≥ 2k|{x : gk(x) < ck/yk}|
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for some ck →∞. Let g′k = (ykgk)/ck. Then

Lk = |{x ∈ B∗ : mg′k(x) < 1/ck}| ≥ 2k|{x : g′k(x) < 1}|,

where, as in Lemma 5, B∗ is a cube containing Q∗ −K. From this we get
that |{x : g′k(x) < 1}| → 0, and thus we may assume that

∑ |{x : g′k(x) <
1}| < ∞. Consequently, there exist rk → 0 and fk = g′j with possible
repetitions such that, if Ek = {x ∈ B∗ : mfk(x) < rk}, then

∑ |Ek| = ∞
and

∑ |{x : fk(x) < 1}| < ∞. As in Lemma 5, we have {xk} ⊂ Rn such
that, if Fk = Ek + xk, then

lim sup Fk = Rn

except for a set of measure zero. We now set f̃k = fk(x − xk) and F (x) =
infk f̃k(x). Since mF (x) ≤ infk mf̃k(x) and mf̃k(x) ≤ rk, x ∈ Fk, we see
that mF (x) = 0 for a.e. x. Also note that F ∈ L0 since

|{x : F (x) < 1}| ≤
∑

j

|{x : f̃k(x) < 1}| < ∞.

This contradicts our hypothesis, and the proof is complete. �Remark. It may be of interest to give an example of m satisfying the
hypothesis of Theorem 10. Let mf(x) = infx∈Q

1
|Q|

∫
Q

f , where Q is a cube.
Let f ∈ L0 and let E = {x : f(x) ≥ 1}. Then |E| = ∞. We claim that
mf(x) > 0 at every point of density of E. If x0 is such a point of E, and
x0 ∈ Q, then |E ∩ Q|/|Q| → 1 as |Q| → ∞ or 0. Hence, infj f ⋆ χQj

/|Qj |,
Qj ⊂ K, satisfies a distributional inequality. In Section 6 we remove the
restriction Qj ⊂ K and we give a double weight generalization of this dis-
tributional inequality in R.

4. Proof of Theorem 1

We shall first assume that 1/gk → 1/f0 in Lp and prove that

|E(f0)| ≤ lim inf |E(gk)|.

We first observe that if x ∈ E(f0), then lim sup f0 ⋆µj(x) > lim inf f0 ⋆µj(x)
and hence lim inf f0 ⋆ µj(x) < ∞. Moreover, by Theorem 8 with s = 1 and
q = p, lim inf f0 ⋆ µj(x) > 0 for a.e. x. Thus

E(f0) =
{

x : lim sup
1

f0 ⋆ µj(x)
> lim inf

1
f0 ⋆ µj(x)

}
.
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We write E(f0) =
⋃

Ei, where

Ei =
{

x : lim sup
1

f0 ⋆ µj(x)
− lim inf

1
f0 ⋆ µj(x)

>
1
i

}
.

We now fix gk and observe that

Ei ⊂
{

x : lim sup
( 1

f0 ⋆ µj(x)
− 1

gk ⋆ µj(x)

)

− lim inf
( 1

f0 ⋆ µj(x)
− 1

gk ⋆ µj(x)

)

+ lim sup
1

gk ⋆ µj(x)
− lim inf

1
gk ⋆ µj(x)

>
1
i

}

⊂
{

x : 2 lim sup
∣∣∣ 1
f0 ⋆ µj(x)

− 1
gk ⋆ µj(x)

∣∣∣ >
1
2i

}
∪ E(gk).

Let

Aj(x) =
[(

f0 · gk

|f0 − gk|

)α

⋆ µj(x)
]1/α

, α =
s

2s + 1
.

By Hölder’s inequality with exponents p1 = p2 = (2s+1)/s, p3 = 2s+1, we
get

Aj(x) ≤ f0 ⋆ µj(x) · gk ⋆ µj(x) ·
(

1
|f0 − gk|s

⋆ µj(x)
)1/s

and hence using (3)

|f0 ⋆ µj(x)− gk ⋆ µj(x)|Aj(x) ≤ cf0 ⋆ µj(x) · gk ⋆ µj(x).

Consequently, if 0 < f0 ⋆ µj(x) · gk ⋆ µj(x) < ∞, then

∣∣∣∣
1

f0 ⋆ µj(x)
− 1

gk ⋆ µj(x)

∣∣∣∣ ≤ cAj(x)−1 ≤ c

[
mα

(
f0gk

|f0 − gk|

)
(x)

]−1

. (6)

If both f0 ⋆µj(x) and gk ⋆µj(x) are infinite, then (6) is obvious, and, if, say,
gk ⋆ µj(x) = ∞ and f0 ⋆ µj(x) < ∞, then gk ⋆ µj(x) = |f0 − gk| ⋆ µj(x) and
thus

Aj(x)
f0 ⋆ µj(x)

≤ c
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and (6) follows. Hence

|Ei| ≤
∣∣∣∣
{

x : mα

(
f0gk

|f0 − gk|

)
(x) < 4ci

}∣∣∣∣ + |E(gk)|

≤ Cip
∥∥∥∥
|f0 − gk|

f0gk

∥∥∥∥
p

p

+ |E(gk)|.

The second inequality follows from Theorem 8 with mα in place of ms and
q = p. This gives us |Ei| ≤ lim inf |E(gk)| and thus |E(f0)| ≤ lim inf |E(gk)|.

We shall now prove that |E(f0)| ≤ lim inf |E(gk)| assuming that gk → f0

in Lp. This is where we use (1) in the remark in the introduction. Since by
condition (3),

|gk − f0| ⋆ µj(x) ·
(

1
|gk − f0|s

⋆ µj(x)
)1/s

≤ c < ∞

we have

M(|f0 − gk|)(x) ≤ c

[
ms

(
1

|f0 − gk|

)
(x)

]−1

,

and hence by Theorem 8 with q = p,

|{x : M(|f0 − gk|)(x) > y}| ≤ |{x : ms(1/(|f0 − gk|))(x) < c/y}|

≤ A

yp
‖f0 − gk‖p

p.

Since the constant A does not depend on k or y > 0, the inequality (1)
completes the proof. �Remark. The hypothesis (4) of Theorem 1 requires that m∞f(x) > 0 on
a set of positive measure for every f , 1/f ∈ Lp. In the special case

msf(x) = inf
x∈Q

(
1
|Q|

∫

Q

fs

)1/s

,

where Q is a cube in Rn, m∞f(x) can be readily estimated.

If 1/f ∈ Lp(Rn) for some p, 0 < p < ∞, then m∞f(x) ≥ f(x) for a.e. x.
If in addition f ∈ L1

loc(Rn), then m∞f(x) = f(x) for a.e. x.Proof. Let x0 be a point of approximate continuity of f and f(x0) > 0.
For λ < f(x0), the set Eλ = {x : f(x) > λ} has x0 as a point of density.
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Since 1/f ∈ Lp, there is N > 0 such that

|Q| ≥ N implies
(

1
|Q|

∫

Q

1
fp

)1/p

<
1

f(x0)
.

Since 1 = 1
|Q|

∫
Q

fαf−α, for any s > 0, by Hölder’s inequality with α =
sp/(s + p) and exponents r = (s + p)/p, r′ = (s + p)/s′, we have

1
(

1
|Q|

∫
Q

fs
)1/s

≤
(

1
|Q|

∫

Q

1
fp

)1/p

.

Thus for x0 ∈ Q and |Q| ≥ N

f(x0) <

(
1
|Q|

∫

Q

fs

)1/s

.

Consider now those Q with x0 ∈ Q and |Q| < N . If

c = inf
x0∈Q
|Q|<N

|Q ∩ Eλ|
|Q| ,

then c > 0. For such Q’s we have

(
1
|Q|

∫

Q

fs

)1/s

≥
(

1
|Q|

∫

Q∩Eλ

λs

)1/s

≥ λc1/s.

Consequently, msf(x0) ≥ λc1/s and hence m∞f(x0) ≥ λ.
If f is also locally integrable, then msf(x) ≤ f(x) for a.e. x and thus

m∞f(x) ≤ f(x) for a.e. x. �

5. Proof of Theorem 2

By Theorem 10, we have the distributional inequality

|{x : mf(x) < 1/y}| ≤ c1|{x : f(x) < c2/y}|.

If φ : R+ → R+, and Φ(t) =
∫ t

0
φ, then

∫

Rn

Φ(1/mf(x)) dx ≤ c1

∫

Rn

Φ(c2/f(x)) dx.
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To see this, multiply the distributional inequality by φ(y) and integrate
in y from 0 to ∞. Write |{x : mf(x) < 1/y}| =

∫
χE(x, y) dx, where

E = {(x, y) : mf(x) < 1/y}. Interchange the order of integration to obtain
the left-hand side of the integral inequality. Below we apply the integral
inequality with φ(τ) = (1 + τ2)−1, Φ(t) = tan−1 t.

For N a positive integer, let BN = {x : |x| ≤ N} and let BN ′ be a ball
containing BN + K. Then EN (f0) ≡ E(f0) ∩ BN ⊂ E(fN ′

0 ), where fN ′
0 =

f0χBN′ . The A∗
1-condition implies that

sup
j

sup
x∈BN

∣∣gN ′
k − fN ′

0

∣∣ ⋆ µj(x) ·
(

1
|gN ′

k − fN ′
0 | ⋆ νj(x)

)
≤ c < ∞.

Thus for x ∈ BN ,

M
(∣∣gN ′

k − fN ′
0

∣∣)(x) ≤ c

m
(
1/|gN ′

k − fN ′
0 |

)
(x)

.

If EiN = Ei ∩BN , then as before

|EiN | ≤
∣∣∣∣
{

x :
1

4ci
<

1
m

(
1/|gN ′

k − fN ′
0 |

)
(x)

}∣∣∣∣ + |E(gk)|.

Thus

|EiN | ≤
∣∣∣∣
{

x : Φ
( 1

m
(
1/|gN ′

k − fN ′
0 |

)
(x)

)
> Φ

( 1
4ci

)}∣∣∣∣ + |E(gk)|

≤ c1

Φ(1/(4ci))

∫

Rn

Φ
(
c2

∣∣gN ′
k − fN ′

0

∣∣(x)
)
dx + |E(gk)|.

The integrand goes to zero as k →∞ for a.e. x and is bounded by χBN′ · π/2.
The Lebesgue Dominated Convergence Theorem shows that

|EiN | ≤ lim inf |E(gk)|.

To complete the proof, let N →∞ and then i →∞. �

As an illustration, let dνj =
χQj

|Qj |
dx, where Qj ⊂ K, j = 1, 2, . . . , and let

{µj}j≥1 be a sequence of Borel measures with µj(Rn) = 1 and suppµj ⊂ K
for every j.

Corollary. If gk → f0 a.e. and A∗
1(|gk − f0|) ≤ c < ∞ for each k, then

|E(f0)| ≤ lim inf |E(gk)|.Proof. By the remark after Theorem 10, mf(x) = infj f ⋆νj(x) is positive
on a set of positive measure for every f ∈ L0. �
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6. Concluding remarks

In this final section we shall make some comments about the results in the
previous sections and point out some generalizations.

1. We included the case 1/gk → 1/f0 in Theorem 1 because in the dif-
ferentiation of the integral case (dµj =

χEj

|Ej |
dx, Ej → 0) E(f) = E(F ),

F (x) = f(x) + e|x| and 1/F ∈ Lp(Rn).

2. It may be of interest to compare mf with M(1/f). Since

1 =
(
f1/2 · f−1/2 ⋆ µj(x)

)2 ≤ f ⋆ µj(x) · 1
f

⋆ µj(x),

we get
1

mf(x)
≤ M(1/f)(x).

If M(1/f)(x) < ∞ on a set of positive measure (the hypothesis of Propo-
sition 1 in [6, p. 441]), then mf(x) > 0 on this set. The converse is not
true. An example is the strong differentiation of the integral of f ∈ L1(Rn),
n > 1. The stronger finiteness assumption on the maximal function allows us
to replace the weak-type inequality of Theorem 8 by a strong-type inequality.

Assume that 0 < s < ∞ and 1 ≤ p0 < ∞. If Mf(x) < ∞ on a set of positive
measure for every f ∈ Lp0(Rn), then

∫

Rn

dx

(msf)q
≤ c

∫

Rn

dx

fq
, 0 < q < ∞,

with the constant c independent of f and q.Proof. Since, by Proposition 1 in [6, p. 441],

|{x : Mf(x) > y}| ≤ c

yp0
‖f‖p0

p0

and since ‖Mf‖∞ ≤ ‖f‖∞, we can apply the Marcinkiewicz Interpolation
Theorem and get ‖Mf‖p

p ≤ cp‖f‖p
p for p0 < p < ∞. Fix p0 < p1 < ∞. If

0 < σ < 1, then

1 =
(
fσ · f−σ ⋆ µj(x)

)1/σ ≤ f ⋆ µj(x) ·
( 1

fr
⋆ µj(x)

)1/r

,
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where r = σ/(1− σ) or σ = r/(1 + r). Hence

1
mf(x)

≤ M(1/fr)(x)1/r or
1

msf(x)
≤ M(1/f̺)(x)1/̺, ̺ = rs.

Now let 0 < q < ∞ and let ̺ = q/p1. Then
∫

Rn

dx

(msf)q
≤

∫

Rn

M(1/f̺)q/̺dx ≤ cp1

∫

Rn

dx

fq
.

�

3. If we strengthen the A∗
s-condition, we can drop condition (4) of Theo-

rem 1. More generally, let {µjx}j≥1 be positive Borel measures, x ∈ Rn. As
before we let

E(f) =
{

x : lim sup
∫

Rn

f dµjx − lim inf
∫

Rn

f dµjx > 0
}

.

Let Bjx = {t : |t − x| ≤ 1/j} and let dµ∗jx = dµjx + |Bjx|−1χBjx
dy. Note

that, if f ∈ L1
loc(Rn), then |E(f)| = |E∗(f)|, where E∗(f) is defined in the

same way as E(f) with µjx replaced by µ∗jx. Finally, let 0 < s < ∞ and

A′
s(φ) = sup

j,x

∫

Rn

φ dµ∗jx ·
∫

Rn

( 1
φs

dµ∗jx

)1/s

.

Theorem 11. Let 0 < p, s < ∞ and let f0, gk ∈ L1
loc(Rn), k = 1, 2, . . . . If

either
1
gk
→ 1

f0
in Lp or gk → f0 in Lp,

A′
s(|f0 − gk|) ≤ c < ∞,

then |E(f0)| ≤ lim inf |E(gk)|.Proof. If m∗
sf(x) = inf

j

(∫
fs dµ∗jx

)1/s and msf(x) = inf
j

(
1

|Bjx|
∫

Bjx
fs

)1/s,

then m∗
sf(x) ≥ msf(x) and hence for every q, 0 < q < ∞, using the Re-

mark 2 above, we obtain

|{x : m∗
sf(x) < 1/y}| ≤ |{x : mfs(x) < 1/y}| ≤ A

yq

∥∥∥ 1
f

∥∥∥
q

q
.

The rest of the proof is the same as that of Theorem 1. �
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4. We examine now the problem of two sequences of measures {µj}j≥1 and
{νj}j≥1 where νj(Rn) = 1 and supp νj ⊂ K, K compact, j = 1, 2, . . . . We
do not assume that the measures µj satisfy these two conditions. This is
different from the hypothesis of Theorem 2. We define

A∗
1(φ) = sup

j,x
φ ⋆ µj(x) · 1

φ
⋆ νj(x),

mf(x) = inf
j

f ⋆ νj(x).

The following theorem is the s = 1 version of Theorem 1. We could have
considered s > 1, but for the application we have in mind s = 1 is sufficient.

Theorem 12. Let 0 ≤ p, r < ∞ and assume that

gk → f0 in Lp,

A∗
1(|gk − f0|) ≤ c < ∞, (7)

mf(x) > 0 on a set of positive measure for every f,
1
f
∈ Lr(Rn). (8)

Then |E(f0)| ≤ lim inf |E(gk)|.Proof. As before, let Mf(x) = sup f ⋆ µj(x). If

Ei = {x : lim sup f0 ⋆ µj(x)− lim inf f0 ⋆ µj(x) > 1/i},

then
Ei ⊂ {x : M(|gk − f0|)(x) > 1/(4i)} ∪ E(gk).

The hypothesis (7) implies

M(|gk − f0|)(x) ≤ c

m(1/|gk − f0|)(x)

and thus
Ei ⊂ {x : m(1/|gk − f0|)(x) < 4ic} ∪ E(gk).

Finally, using the results from Section 2 with µj replaced be νj ,

|Ei| ≤ c(4i)p‖gk − f0‖p
p + |E(gk)|.

Now let k →∞ and then i →∞. �
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For example, if in Theorem 12 the measures {νj} are dνj =
χBj

|Bj |
dx,

where Bj are balls with center 0 and radius rj → 0, then condition (8)
can be omitted. As an application, we consider the differentiability of the
integral with respect to {Ej}. Here, {Ej} is a sequence of sets with Ej ⊂ {x :
|x| ≤ ε}, j ≥ jε and |Ej | > 0. Even if Ej = B(xj , rj) = {x : |x − xj | ≤ rj}
it may happen that the maximal operator Mf(x) = supj f ⋆ µj(x) is not of

weak type (p, p) for any p, 1 ≤ p < ∞ (see [2], [6]), where dµj =
χEj

|Ej |
dx.

5. This remark concerns the size of the weak-type (q, q) constant of ms in
Theorem 8.

If

|{x : msf(x) < 1/y}| ≤ Ap0

yp0

∥∥∥ 1
f

∥∥∥
p0

p0

,

then for 0 < p ≤ p0,

|{x : msf(x) < 1/y}| ≤ Ap0

yp

∥∥∥ 1
f

∥∥∥
p

p
.Proof. Let σ > sp0. Then mσf(x) ≥ msp0f(x) and hence

|{x : mσf(x) < 1/y}| ≤ |{x : msp0f(x) < 1/y}|
= |{x : ms(fp0)(x) < 1/yp0}|

≤ Ap0

yp2
0

∥∥∥ 1
fp0

∥∥∥
p0

p0

.

Hence, since mσf = ms(fσ/s)s/σ,

|{x : ms(fσ/s)(x) < 1/yσ/s}| ≤ Ap0

yp2
0

∥∥∥ 1
fp0

∥∥∥
p0

p0

.

Let φ = fσ/s and t = yσ/s. Then, if we choose σ > sp0 so that p = p2
0s/σ,

we get

|{x : msφ(x) < 1/t}| ≤ Ap0

tp

∥∥∥ 1
φ

∥∥∥
p

p
.

�
As an application, let for 0 < p < ∞

dp(g, f) =
{ ‖g − f‖p

p, 0 < p < 1

‖g − f‖p, p ≥ 1

be the standard metric on Lp(Rn). We have the following variant of Theo-
rem 1.
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Assume that 0 < r < ∞ and 0 < pk < ∞, k = 1, 2, . . . . If

dpk
(gk, f0) → 0 as k →∞,

A∗
1(|gk − f0|) ≤ c < ∞, k = 1, 2, . . . ,

|{x : mf(x) > 0}| > 0 for every f,
1
f
∈ Lr,

then |E(f0)| ≤ lim inf |E(gk)|.Proof. Let BN = {x : |x| ≤ N} and let N ′ > N so that BN ′ ⊃ BN + K.
We claim

∣∣∣
{

x ∈ BN : m
( 1
|gk − f0|

)
(x) < 4ci

}∣∣∣ ≤ A1 4ci dpk
(gk, f0)τk,

where A1 is the constant above for p = 1 and τk = 1 if 0 < pk < 1 and equals
|BN ′ |1/p′k , if 1 ≤ pk < ∞. We only need to consider the case 1 ≤ pk < ∞. If
gN ′

k = gkχBN′ , fN ′
0 = fχBN′ , then

∣∣∣
{

x ∈ BN : m
( 1
|gk − f0|

)
(x) < 4ci

}∣∣∣

=
∣∣∣
{

x ∈ BN : m
( 1
|gN ′

k − fN ′
0 |

)
(x) < 4ci

}∣∣∣

≤ A1 4ci
∥∥gN ′

k − fN ′
0

∥∥
1

≤ A1 4ci dpk
(gk, f0)|BN ′ |1/p′k .

Hence
|EiN | ≡ |Ei ∩BN | ≤ |E(gk)|+ A1 4ci dpk

(gk, f0)τk.

Finally, let k, N and i go to ∞ in this order. �

6. This remark deals with the limiting case (s → 0) of Theorem 1. Let

lim
s→0

(fs ⋆ µj(x))1/s = Lj(f, x), m0f(x) = lim
s→0

msf(x).

Since µj(Rn) = 1 it is known that Lj(f, x0) = exp[(log f) ⋆ µj(x0)], if
fs0 ⋆ µj(x0) < ∞ for some s0, 0 < s0 < ∞. Further, if this finiteness
restriction is valid for every j, then m0f(x0) = infj exp{(log f) ⋆ µj(x0)}.
To see this, let m∗f(x0) be the right-hand side and note that by Jensen’s
inequality

exp[(log f) ⋆ µj(x0)] ≤
(
fs ⋆ µj(x0)

)1/s
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from which m∗f(x0) ≤ m0f(x0). For the reverse inequality, let λ < m0f(x0).
Then for j ∈ N and 0 < s ≤ s0 we have λ < (fs ⋆ µj(x0))1/s. Hence
λ ≤ exp[(log f) ⋆ µj(x0)] and λ ≤ m∗f(x0).

We denote by

A∗
0(φ) = sup

j,x
φ ⋆ µj(x) · Lj(1/φ, x)

Note that in the special case, where dµ =
χQ

|Q| dx, A∗
0 corresponds to the

Muckenhoupt weight class A∞.
Since m0(1/φ)(x) ≤ infj Lj(1/φ, x), we have, if A∗

0(φ) = c < ∞, that

Mφ(x) ≤ c

m0(1/φ)(x)
.

Theorem 13. Let 0 < p, r < ∞. If

either
1
gk
→ 1

f0
in Lp or gk → f0 in Lp,

A∗
0(|gk − f0|) ≤ c < ∞,

m0f(x) > 0 on a set of positive measure for every f,
1
f
∈ Lr(Rn), (9)

then |E(f0)| ≤ lim inf |E(gk)|.Proof. Replace ms by m0 in Lemmas 4, 5, 6, and 7 to prove that m0 is of
weak type (q, q) on Rn. The rest of the proof requires only minor changes.
In particular, in the case when 1/gk → 1/f0 in Lp, let Aj(x, s) = Aj(x) (note
that in Theorem 1, Aj(x) depends on s) and let Aj(x, 0) = lims→0 Aj(x, s).
Then

Aj(x, 0) ≤ f0 ⋆ µj(x) · gk ⋆ µj(x) · Lj

(
1

|f0 − gk|
, x

)
.

Hence |f0 ⋆ µj(x)− gk ⋆ µj(x)|Aj(x, 0) ≤ cf0 ⋆ µj(x) · gk ⋆ µj(x) and thus

∣∣∣∣
1

f0 ⋆ µj(x)
− 1

gk ⋆ µj(x)

∣∣∣∣ ≤ cAj(x, 0)−1 ≤
[
m0

(
f0gk

|gk − f0|

)
(x)

]−1

.

The rest of the proof is the same as before. �
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We do not know whether m0 in the hypothesis (9) of Theorem 13 can be
replaced by m∞ as in Theorem 1.

7. There is a variant of Theorem 1 in which the A∗
s-assumption is replaced

by a pointwise condition. Let

A0
s(φ)(x) = sup

j
φ ⋆ µj(x) ·

(
1
φs

⋆ µj(x)
)1/s

.

Theorem 14. Assume that 0 < p, r, s < ∞. If

gk → f0 in Lp,

S = {x : sup
k

A0
s(|gk − f0|)(x) < ∞},

m∞f(x) > 0 on a set of positive measure for every f,
1
f
∈ Lr(Rn),

then |E(f0) ∩ S| ≤ lim inf |E(gk) ∩ S|.Proof. As before let Ei = {x : lim sup f ⋆ µj(x)− lim inf f ⋆ µj(x) > 1/i}.
If SN = {x ∈ S : supk A0

s(|gk − f0|)(x) ≤ N} and EiN = Ei ∩ SN , then

|EiN | ≤ |{x ∈ SN : M(|gk − f0|)(x) > 1/(4i)}|+ |E(gk) ∩ S|.

Since for x ∈ SN ,

M(|gk − f0|)(x) ≤ N

[
ms

(
1

|gk − f0|

)
(x)

]−1

,

we see that by Theorem 8,

|EiN | ≤
∣∣∣∣
{

x ∈ SN : ms

(
1

|gk − f0|

)
(x) < 4Ni

}∣∣∣∣ + |E(gk) ∩ S|

≤ c(4Ni)p‖gk − f0‖p
p + |E(gk) ∩ S|.

To complete the proof, let k, N and i go to ∞ in this order. �
There is, of course, a similar point-wise version of Theorem 2.

8. We examine now a generalization of the distributional inequality for the
minimal operator. Our analysis will be on R = R1. Let µ, ν be two positive
Borel measures on R, and let mf(x) = inf

x∈I

1
|I|

∫
I
f , where I is an interval

in R (see [2], [3]). We consider the following three conditions.
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I. There exist constants c1, c2 such that 0 < c1 < 1 < c2 < ∞ and for
every interval I and A ⊂ I with |A| ≤ c1|I| we have µ(I) ≤ c2ν(I \A).
II. There exist constants 0 < c < ∞, 1 < σ < ∞ such that for every
f : R → R+, and for every r, 0 < r < ∞, we have the distributional
inequality

µ{x : mf(x) < r} ≤ c ν{x : f(x) < σr}.
III. There exist constants 0 < c < ∞, 1 < σ < ∞ such that for every
φ : R+ → R+ and every f : R → R+ we have

∫

R
Φ

( 1
mf

)
dµ ≤ c

∫

R
Φ

(σ

f

)
dν,

where Φ(t) =
∫ t

0
φ.

Theorem 15. The conditions I, II and III are equivalent.Proof. I ⇒ II. Choose σ so that 2/σ ≤ c1, and write the open set
{x : mf(x) < r}=

⋃
Ij , where the Ij are disjoint open intervals. Since n = 1,

we have for each j,
∫

Ij
f ≤ 2r|Ij | (see [5]). If Aj = {x ∈ Ij : f(x) ≥ σr},

then

|Aj | ≤
1
σr

∫

Ij

f ≤ 2|Ij |r
σr

=
2|Ij |
σ

.

From this we obtain

µ{x : mf(x) < r} =
∑

j

µ(Ij) ≤ c2

∑

j

ν(Ij \Aj) ≤ c2ν{x : f(x) < σr}.

II ⇒ III. Replace r in II by 1/y and multiply by φ(y) to get

φ(y)µ{x : mf(x) < 1/y} ≤ cφ(y)ν{x : f(x) < σ/y}.

Integrate this inequality in y from 0 to ∞. In the first term let E = {(x, y) :
mf(x) < 1/y} and note that

∫
χE(x, y) dµ(x) dx = µ{x : mf(x) < 1/y}.

Substitute this into the integral and interchange the order of integration
to obtain the left-hand side of III. The right-hand side is handled in exactly
the same way.
III ⇒ I. Let τ > 2 and let c1 = 1/(τσ− 1). Let I be an interval and A ⊂ I
with |A| ≤ c1|I|. Define

f(x) =





1/2, x ∈ I \A

σ, x ∈ A

∞, x /∈ I.
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Then
1
|I|

∫

I

f =
1
|I| (σ|A|+ |I \A|/2) ≡ β.

We observe that (σ − 1/2)|A| = (β − 1/2)|I|. Since |A| ≤ c1|I|, we get

β − 1/2
σ − 1/2

≤ c1 =
1

τσ − 1
.

From this we see that β ≤ σ−1/2
τσ−1 + 1

2 ≡ α and α < 1 since σ− 1
2 < 1

2 (τσ−1).
We also observe that mf(x) ≤ α for x ∈ I and mf(x) = ∞ if x /∈ I.

If φ : R+ → R+ is φ(t) = χ[1,1/α](t), then

Φ(t) =





0, 0 ≤ t ≤ 1
t− 1, 1 < t ≤ 1/α

1/α− 1, t > 1/α.

We substitute this into III and get

µ(I)Φ(1/α) ≤ c[ν(A)Φ(σ/σ) + ν(I \A)Φ(2σ)].

Since Φ(1) = 0, we obtain µ(I)Φ(1/α) ≤ cΦ(2σ)ν(I \A), and this is condi-
tion I. �Remarks. (i) The measure µ = ν satisfies condition I if and only if µλdx
and dµ/dx ∈ A∞ (see [4]).

(ii) If (u, v) ∈ Ap and dµ = u dx, dν = v dx, then the pair µ, ν satisfies
condition I (see Lemma 5 in [1]). The converse, however, is not true. The
pair (e|x|, e2|x|) satisfies I but is not in any Ap.

(iii) A double weight distributional inequality for the maximal operator

Mf(x) = sup
x∈I

1
|I|

∫

I

f

has the form µ{x : Mf(x) > y} ≤ c ν{x : f(x) > σy}. Unless µ, ν are
trivial, this inequality cannot hold. For if 0 < µ(I), ν(I) < ∞ for some
interval I = [a, b], then the function fN = χIN

, IN = [a, a + 1/N ], satisfies
for every N

lim
y→0

µ{x : MfN (x) > y} ≥ µ(I), lim
y→0

ν{x : fN (x) > σy} = ν(IN ),

and ν(IN ) → 0 as N →∞.
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