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SOMБ APPLICATЮNS OF GENERALIZED ORLICZ SPACES 

IN APPROXIMATЮN THEORY AND FOURIER SERIES 

J. Musielak 
Poznañ, Poland 

1. B a s i c n o t i o n s 

As W. Orlicz introduced and investigated at the beginning of 

1930 spaces, which were later called Orlicz spaces, this was done 

in connection with their applications to orthogonal expansions. Later 

development by H. Nakano (1950, 1951), W. A. I. Luxemburg and A. C. 

Zaanen (1955, 1960), and by M. A. Krasnoselskil and Ya. B. Rutickil 

(1953) was also connected with some applications, mostly in integral 

transforms and integral equations. Here, I should like to point out 

some applications in approximation theory and Fourier series, obtained 

lately. 

First, some auxiliary notions will be recalled, as modular space, 

and generalized Orlicz space (see also [2]). A functional p : X -> R+ 

• ft),*] on a real vector space X is called a pseudomodular, if 

1° P(0) - 0 , 

2° p(-x) - p(x) , 

3° p(ax + 0y) < p(x) + p(y) for x, y € X # a, 3 > 0 , a + 3 - 1. 

If* moreover, p(x) «- 0 implies x = 0 , p is called a modular. If 

in place of 3° there holds the stronger condition 

3°° p(ax + 3y) < ap(x) + 3p(y) for x, y e X , a, 3 > 0 , a + 3 " 1, 

then p is called a convex pseudomodular (modular). The vector space 

X • {x € X : p(Xx) -t- 0 as X -• 0+} 

is called a modular space. The functional 

|x| • inf {u > o : p(x/u) £ u} 

is an F-seminorm in X (F-norm9 if p is a modular). In case p is 

convex, 

l|x|| * inf {u > 0 : p(x/u) < 1} 

is a seminorm in X (norm, if p is a modular), equivalent to 

|•| • Convergence in |•| (or ||•|I ) of a sequence (x ) , 

xR€X to zero is equivalent to the condition p(Xx ) -*• o for every 

X > 0 . If (xn) satisfies the weaker condition pU Qx n) * 0 for a 
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X
Q
 > 0 , then it is called modular convergent (or Q-convergent) to 

zero, which is denoted x •*• 0 . 

n 

Let ф : fa,b) x R
+
 * R

+
 = [þ,«>) satisfy the following conditions: 

(i) Ф(t,u) is a nondecreasing continuous function of u with 

ф(t,0) = o , ф(t,u) > 0 for u > 0 and ф(t,u) -»• » as 

u ->- «> , for all t Є [a,b) , 

(ii) ф(t,u) is Lebesgue measurable with respect to t for all 
u Ł ° • 

If needed, we extend ф (b-a) -periodically to ф : R x R -*• R . If 

we put 

b 

(1) p(f) = | ф(t, |f(t)|) dt 

a 

for every measurable function f , finite almost everywhere, then p 

is a modular in the vector space X of all measurable, finite a.e. 

functions f in the interval þ,b) , with equality a.e. If ф(t,ú) 

is a convex function of u j> 0 for all t ç Þ,b) , then p is a 

convex modular. The modular space X is then called a generalized 

Orlicz space and is denoted by Lмa,b) . If ф(t,u) = ф (u) is in-

dependent of the variable t , then Lмa,b) is called an Orlicz 

space. 

Now, let X be the vector space of all sequences x = (t ) , and 

let (ф ) be a sequence of functions such that Ф
n
(

u
)
 a
*e nondecrea-

sing, continuous functions of u £ 0 with Ф
n
(0) ~ 0 , ф (u) > 0 

for u > 0 and ф (u) -*• «> as u -»• «> , for all n . Let us write T
n 

(2) p(x) = E Ф
n
(|t

n
|) , 

n 

then p is a modular in X (if ф are all convex, it is a convex 

modular). The respective modular space X is called a generalized 
ťb 

Orlicz вequence space and is denoteđ by l . If ф (u) = ф(u) is 

independent of n , then U is called an Orlicz sequence space. 

2. A p p l i c a t i o n i n a p p r o x i m a t i o n t h e o r y 

We shall consider (see [3] ) tjie problem of approximation of ele­

ments f of the generalized Orlicz space LMa,b) by means of integ­

ral transforms T . defined as follows: 
w 
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(3) (Twg(s) - j Kw(t - s, f(t)) dt , 

where w e W , W is a set of indices and K : [a,b) x R+ + R are 
integrable in [a,b) with respect to the first variable, K (t,0) 
• 0 . If needed, all functions under consideration are extended from 
fa,b) to R , (b-a)-periodically. We suppose that there is given a 
filter Vtf of subsets of the set W , and convergence in w will be 
always understood in the sense of this filter. The approximation pro­
blem under consideration is to estimate the error of approximation of 
f by Twf , i.e. the expression p(\(Twf - f)) for sufficiently 
small X > 0 . 

First, some auxiliary notions. Let 

l V u ) •- V v > l h( 
Lw(t) -= sup —Z % , L(w) = L <t) dt . 
w u?-v |u - v| a

 w 

K =- (K
w)W6w

 is called a semisingular kernel, if it satisfies the 
following two conditions: 

1° o < I = inf L(w) < sup L(w) « L < » , 
W € W W ^ 

2° there exist a tQ e (a,b) of the form tQ = n(b - a) , n is an 
integer, and a 6 > 0 such that 

v-6 b 
J Lw(t)dt •»• 0 arid J Lw(t)dt -*• 0 in w . 
a t0+6 

A semisingular kernel is called singular3 if 
b 

r(w) - sup - K(t,u)dt - 1 -»- 0 in w . 
U*0 'U i ' 

v;e need still the notion of T-boundedness of <f> . Namely, <(> is 
called T-boundedj if there exist constants k-, k2 > 1 and a function 
F : R x R ->• R measurable and (b-a)-periodic with respect to the 
first variable such that 

({> (t - v, u) £ k..({> (t,k2u) + F(t,v) for all t, v e: R» u <- R+, 
where 

b 
h(v) - | F(t,v) dt 

a 
is bounded in R and h(v) -*• 0 as v •* 0 and v •*• b - a . We write 
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H * sup h(v) .If <f> is convex, then we may take always k1 * 1 . 
v€R 

If 4>(t,u) « 0(u) does not depend on t , then it is always x-boun­
ded, with k- * k2 * 1 and F « 0 . 

Finally, the Q-modulus of continuity of f is defined by 
b 

u> (f.6) « sup f <J>(t,|f (t+v) - f(t)|).dt 
9 |v|<6 a 

for 6 > 0 • If f e L^(a,b) , then there exists a A > 0 such that 
u> (XQf,6) + 0 as 6 •*» 0+ . 

There holds the following approximation theorem. 

b 

THEOREM 2.1. Let $ be convex and t-bounded, <J>(t,u)dt < "° for 
a 

all u > 0 , and let K • (K ) w g W be a singular kernel* Then T 

given by (3) are such that Tw : L*(a,b) •* L*(a,b) for all w 6 0/ 

and T £ + f in w . Moreover, p from (1) satisfies the following 

inequality 

p(MTwf - f)) < 1 W(()(2XLf,6) + ijr |jp(4XLk2f) 

V 6 b 

• HJ{ Í V t ) d t + | Lw(t)dt} + \ p(2Xr(w)f) 
tQ+6 

/ o r all f 6 L*(a,b) and w € W . 

Let us remark that the right-hand side of this inequality can be 
laade arbitrarily small taking w "large" according to the filter 73?. 

Similar problem may be put and solved in the space l* (see [4]), 
Only an outline will be given here. Namely, let K » (K ^^Q , 
w € W , where K . i R+ -* R+ . The transforms T are now defined 

by V - (<V°i)±-o for x " (ti)i»o • w h e r e 

i 
(4) (Twx)± - £ K

w;i-j
(|tj|) '' w e W • 

Let 
lKw i(u) " Kw i(v)l ~ 

Lw ± = sup — ^ W^= , L(w) - E L . 
w > 1 uj-v |u - v| i-=0 W*X 

The kernel K * (K ) ^ is called semisingular, if 
L 

1° sup L(w) - L < «» , 2° -r-W •*• 0 in w for j * 1,2,3 
w €W

 M ' 
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A semisingular kernel is called singular* if 
i 

-" K_ n (c) - 1 -> o in w for every c > 0 . 
»̂. w, u 

The sequence ((J).) . is called T , -bounded* if there exist constants 

k-, k9 £ 1 and an infinite matrix (e. .) , e. .. >. 0 for i, j 

= 0,1,2 e = o , e. = E e± . -»• 0 as j -> « , e = sup e. 1,u D i=o >3 j>0 -1 

< <» , such that 

4>_+j (u) _. ki^i^k2u^ + ei i for u -= ° a n d i» -• = °>1>2>---

If 4>. are convex, one can take k.. = 1 . If <f>. (u) = $ (u) do not 
depend on i , the sequence is always x -bounded with k- = k^ = 1 , 

ei.j = ° • 
Let us still write 

xw j ) ( c ) = (p,o»^,o,-vt1(c),-v>2
(c)'"' ) 

j+1 times 

for any c > 0 . Then there holds 

THEOREM 2.2. Let all $. be convex and let (<}>..) .=n be T -bounded. 

Let K = (Kw)W£fi/ be a singular kernel. Moreover* let 

pUx., (c)) -* 0 in w /OP a H A > 0 * c > o , 
W 4 

j = 0,1,2 

Then T : ^ -»• I* for all w e W and T x -*• x in w fo r every 
w w 

x e -c > where T are given by (4) . 

Let us remark, that similarly as in Theorem 2.1, an estimation of 

the error of approximation may be also given. 

3. A p p l i c a t i o n i n F o u r i e r s e r i e s 

Let a(f) = (an(f))n==2 and b(f) = (bn(f))n_2 be the Fourier 
coefficients of a 2TT-periodic function f , integrable in (0,2TT) . 
Starting with the famous results of S. Bernstein, 1914, and of A. 
Zygmund, 1928, one can find a series of theorems on absolute conver­
gence of the Fourier series and their generalizations under assump­
tions on moduli of continuity and variation of the function f (see 
e-9- [6])• Among else, there is considered convergence: 

CO 

(5) E n3(|an(f) |
Y + |b(f) | Y ] < c o , 3 > 0 , y > 0 . 

n=2 n n 
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If we put <J>n(
u) = n^|u|Y , the condition (5) becomes equivalent to 

the following one: a(f) € l^ and b(f) e £* , where <j> = ($ )°° 0 . 
Tn n=s2 

Denoting by w (f,6) the p-th modulus of continuity of a function 

f € L!^ , 1 < p < 2 , i + 5 = 1 » t h e following result is obtained 

(see [5]), applying the Hausdorff-Young inequality: 

u > 0 and let the functions <f> (u) = <f> (u '**) 2>e c?oncaue. f € L? . 

max 

THEOREM 3.1. Let ^n^
u^n-s2 ^e a nonc^eorea8^n9 sequence for every 

u > C 

Then 

[p(a(f)),p(b(f))] < 1 £ Pk(f) , 

Pk(f) = - N ^ " " ^ Up(£. I.-)} . 
00 

In particular, if £ P^(Xf) < °° for a X > 0 , then a(f), b(f)e£^. 
k=1 K 

From this theorem follows a number of known results from the theory 

of Fourier series, e.g. taking f <= Lip (a,p) we obtain that if 

Y <, q , <*Yp > Y + p ( 1 + p - Y ) , then (5) holds. However, one may 

write the theorem also in the setting of a continuity statement. Na-
00 

mely, p'(x) = £ p. (x) is a pseudomodular in the space of all se-
k=1 K 

quences. Thus, from Theorem 3.1 follows 

COROLLARY 3.1. Under the assumptions of Theorem 3.1, a : f -*• a(f) 

and b : f ->• b(f) are linear3 continuous operators from the modular 

space X , to the generalized Orlicz sequence space l^ , both pro-

vided with modular convergence. 

b 
Now, let V (f) be the r-th variation on the sense of L.C. Young 

a 
of a continuous function f in fa,b] , and let It be the space of 

2ir r 

all continuous, 2ir-periodic functions f with V (f) < « . Denoting 
0 1 1 

by w(f,S) the modulus of continuity of f, 1 < P ! < 2 , n + a = 1 * 
the following result is obtained (see [1]): 

THEOREM 3.2. Let (<$> (u) ) _0 be a nondecreasing sequence for every n n-•/. .1 i 
u > 0 and let the functions <J>n(

u) = ^n^
u ' ^e aonoave •» f ^ CO-T • 

Then 
Г I 1 °° 

max p(a(f)),p(b(f)) < i £ p Kíf)- , 
L J -• -« k = 1 к 



where 
. . 4TT r/p * 

pk(f) « 2 % k{2"
k( Vr(f)) u^/Ptf,!--)} . 

2
 -2TT

 2 

CO 

In particular, if £ pv(Xf) < «> for a X > 0 , then a(f), b(f) 
A
 kss1 

Taking f € Lip a , f e V with some 1 < r <t p in the above 
theorem one obtains that if Y <• q , ory (p - r) > p(1 + 3 - Y) » then 
(5) holds, which again includes known results. 

In order to obtain from Theorem 3.2 a continuity result, one must 
still introduce the notion of two-modular convergence (generalizing 
that of two-norm convergence by A. Alexiewicz), because p. is not 

(D ,„„ „<-) k 
a pseudomodular. If two pseudomodulars p and p are given 
in a real vector space X , then a sequence of f e X is called 
(p , p ) - convergen t to zero3 if it is p* '-bounded (i.e. 
p te

n
f
n) "*" 0 f° r every e -• o ) and p* '-convergent to zero. Now, 

let X j2» be the modular space of functions f € it generated by 
P 

the pseudomodular 

p ( 2 ) ( f ) m * 2k ̂  {2-k wr/p(£fir )]t 

k=1 2* 2* 
and let 

M \
 47r r/P 

P n ,(f) = ( V (f)) 
r 

-2ÏÏ 
Then we have 

COROLLARY 3.2. Under the assumptions of Theorem 3.2, a : f •+• a(f) 
and b : f -* b(f) are linear, continuous operators from the space 
X #2v with (p ,p )-convergence to the generalized Orlicz sequence 

space t with modular convergence* 

Let us still remark that all the above results may be transferred 
also to the case of the Haar orthonormal system. Also, r-th variation 
may be replaced by ̂ -variation with an increasing, continuous function, 
*(0) = 0 , such that u p < C0(u)y(u) for all u > 0 , V - an incre­
asing function* C > 0 . 
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