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THEORY OF COMPLETELY INTEGRABLE EQUATIONS

REIZINSH L., RIGA, USSR

Let us consider a completely integrable equation

de = Px) dt, (0
whers P: G —> &nx";éis an open domain in R",' pé‘C’and satisfies
the condition of complete integrability:

DB, &) P) = DR () R.(%).

If we regard the solution of the equation (1) as a function

\P(.,J):Q - G, g/J{O).x)=J(’ Qe R™
then we can prove the local existence theorem, the local uniqueness
theorem, and the continuity with respect to the initial values, 1. e.
the continuity of the function Y (Z,-) at #€ & , but not the
existence of maximal domain of definition [1] Therefore alredy in
[2], it was suggested to regard the solution of the equation (1) as

a function
$(%): QW =G,
where \f{o,*);x, Qe z(ZQ M), (?J//'Z”)is many-sheeted . space

multiply covering the Euclidean space Rm, o is the multiplicity of
covering p:! % (R”) —> Rm, 1L L + o=,

Thanks to such definition it is very simple to prove the exis-
tence and the uniqueness of maximal domain of definition Q (x) of a
solution ¢ (. R X).

In the standard way one can prove that every orbit f(@(x),x)
of the equation (1) is a smooth manifold of a dimension k, 05(5 m,
One can prove several theorems, analogous to those in the general
theory of ordinary differential equations, for instance:

1. If the rank r~ (/2 (X)) of the matrix P (Xo) is equal £,
r(P() = k< k,,and x€ 3¢ (Q (xo),¥), then ¢ (¥ x,)=x
implies {im [¢] = + ==,

2. If there is a compact set S CGXRM, Xo€ 8B | then
there is a compact set Ac @(Xo)such that ¢ ¢‘ A implies

(¢ (¢,0),%) ¢ 8.

In the considered theory there arises naturally the question of
branching sets of definition domains of solutions. They can be defi-
ned analogously as in the theory of functions of complex variables.
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The solutions of the system of equations
dJ(' = d{,
dx: = d!z
3 2 2
- 45 (X, dé + X2 d{z) for (Jt,zd J(z)x, <4
_ 2, 2y-2 2 2
dxs= -(%+%3) (((-h*\Xz*s)(-"f +Xe Yxztdy) dYy +
+ (X 2 2 2 2, 2
(%2 + %o x5) (340 0+0,) ol ) tor (4 20a2) ) 2 1
2, 2
with orbits in the domain (‘,!‘2412 )X5 >/ have the definition do-
main :ithz oni branching point. If the orbits are in the domain
(J(, +xz)x3 < 4 , the corresponding solutions are dezfinezd %1:1
and the branching set is empty. Indeed, in the domain (th +J(,_)J(,$4
the orbits are
2 2 2 -2 -1
Uy = (X, + %0 + Ly = Lyo = Xz20)
2 2 2
but in the domain (J(‘ +J4> )‘){3 > 4 » they are

[} 2 2 -2 -
K8 (e sl (052~ %20) @55 (4, 1)
where Y, = Are ;‘y {J‘z /11 ), x’o’,xzo).)goand ﬂ are initial values.
The system
2 2\ 4~ ’ - . R -
du,=X2+x )’ "(Re (x,—c.xz)" d{q +]m(.x,-¢.x2)" 'a{fz)
daz= (U +u4)"" (I (a, = Cty) "'l +RE (%, (kp) Telea)
d“; =0
has solutions with ~n -sheeted domains of definition with one branch-

ing point., Here, the orbits are Lz = X350, J(f.f- ,x:' > O , the solu-
tions are

n '] n -
Y, (¢50)= Re Va2, +iE T 0 44,0, ofy (o) dmbt r E (T2 oty
It is not necessary that all sheets have the same branching set.
For instance, the system

G{Jl, = df’
oy, = dt,
ﬁw (X)df, *+ Aoa (%) o, for )U(x)s (o]
da={h,, &) de, + A, (x) dt, for O£ ¢ (N <7
h, () dt, + h,, () d, for ¥ (x)3 7

where
d,(s = /204 (-“) d‘é, + hoz (-X)d'éz <> D+ (J() (%(1)~1)d\!: 0)
Y&)=- Jl;z-r (<3 -4)24-.}(:,
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ds=h, OV, + A o2 ()t @240 Dy (x) + Y1) () )D (x)b=0)
£, () = Arc ¢g (x2 /(x,+4)),

dlixy = Al s Oty < (123 00-)Dy b Dgb Dyt =
¥, () = Arcdg (12 / (x,-1))

on the sheets for which the values of the solution are in the set

{ x: 0« \f/(.\t) < 4} has one branching point, but on the sheets
for which the values of the solution are in the set {J(,' YJ (.x) >4]
have two branching points. In the domain \P(x) < 0 , orbits are

\P(x)(of.(x)-l) = @ (%) (s/a(xo)—l)

in the domain O< y (x) € / , they are

¥ @) (¢ (0)-1) exp (¢, () - P, (%) W) (p(x)-1)

and in the domain \P(J() > 4 , they are

¥ () () -1) exp () + . ()= o) ()-1)esp( ¥, (%) + Yol&)

Por 12=3 m=2, ot = == there are orbits, which are
dense in some domain. For instance, orbits of the system
dx, = d+,
dxg =d{2

Aty = - (20308, + FOLONSRE ~(ar f R, G4
where ]l‘(x) == (((,)(,2 —4)21-.)(:)\)(:-4) + I((J(: ‘4)2f JtzQ)J(:JI)/‘/a
£ 0= (- 402 ) " (20407 4 %3) " xats,

- 2, .- -2
£ 00 = (32 -2 22) (5~ D+ (34023 ) (#1045
in the domain ((xf -)*+ .x:)é‘: -4 >0 are everywhere dense if

o is irrational. In the domain ((xf-l)z-f-.x;'),x: >4 orbits are
8y = (OG-0l + x5y ~ (0,0 =) ~030)e30 (RO -FPARE) -6

The theorem of Kronecker involves that at constant X, and X, the
exponent has arbitrary value from an everywhere dense set.

The existence of branching set of a solution shows that for
completely integrable equations there is no theorem of reparametri-
zation and therefore one can not associate a dymamical system with
the group ﬂm to such equation. Nevertheless, thanks to the theorem
of the existence and the uniqueness of the maximal domain of defini-
tion one cen define several concepts of dynamical systems.
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The limit set of the solution o (-,o) is the set

L (%) = ﬂ (Q (xo)\ K (o), X5) \ 2G
where /( (.!,) is a compact, k (x,)c K,_.H(J(o) (/K (%)= Q(Xa)
The prolongation of the orbit cp/Q(x,) Xo) i% the set

D(x.) =d_f7° Uy (Q(),x): xE U (x0,07)} NG
Analogously one can>define the prolongational limit set:

J () = /) 1 U{p(QEINK, (), x):x€ U (0,77 \DE,

If one considers, ‘instea.d of the equation (1), the equation

dx= P(x,¢)d¢ (2)
ha can reduce it to the system
dy= P(x¢)dr, dt-ar (3

which has the same form (1). Orbits of the system (3) are naturally
to call simple integral manifolds of the equation (2).

References
I. Mumxuc A.Jl. O yenpopommimaix pemeHuAx cucremu [ipadda. Tesucu
moxx. III Bcecows. xoHp. no kawecTBeHHON TeOpUM AUPDEPEHIMANBHHX ypaB—
HeHmit ¥ ee nmpuMeHeHusM. Camapkaum, 1973, c.ISI-I52.
2. Pettaynn A.H., Peitaunp J.D. EcrecTBeHHHe 06XacTH OImpeleXeHUs
pemenuit ypasHenuit [kpagpa. Tesucw moxn. Y BcecowsH. koup. mo xauecr-
BeHHORt Teopun auppepeHUManbHEX ypaBHeruit. Hummies, 1979, c.I46-147.

8 Kurzweil, Equadiff 7 113



		webmaster@dml.cz
	2012-09-13T03:46:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




