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HAMILTONIAN SYSTEMS WITH PERIODIC 
NONLINEARITIES 

S Z U L K I N A;, S T O C K H O L M , Sweden 

1. Abs trac t result 

Let M = E x Tk, where E is a real Hilbert space with an inner product (,) and Tk 

is the fc-torus. We will be concerned with a class of functionals $ G Cl(M, R ) of the form 

$(x,v) = \(Lx,x) — xp(x,v), where L and t/) satisfy the following hypotheses: 

(i) L : E —:• E is a bounded, linear and selfadjoint operator to which there corresponds 

an orthogonal decomposition E = E+ 0 E~ into L-invariant subspaces such that (Lx, x) is 

positive definite on F+ and negative definite on E~. 

(ii) The gradient of ifr, denoted VV>, is compact (in the sense that it maps bounded sets 

into compact ones). 

(iii) ~7%/>(M) is bounded, i.e., there exists a constant C such that | |V^(x , v)\\ < C 

V(x,v) G M. 

Recall that a differentiable functional $ is said to satisfy the Palais-Smale condition (PS) 

if each sequence (zn) such that $ ( z n ) is bounded and V $ ( z n ) —> 0 possesses a convergent 

subsequence. Note that it is an easy consequence of hypotheses (i)-(iii) that our functional 

$ satisfies (PS). Recall also that a set A C M is said to be of category k in M (denoted 

catjvf(A) = k) if k is the smallest integer such that A can be covered by k closed sets which 

are contractible to a point in M. If A = M, we will write cat (M) = catjw(M). Properties of 

the category may be found e.g. in [4, 9, 11, 12]. 

T h e o r e m 1. Suppose that the functional $ satisfies hypotheses (i)-(iii). Then $ possesses 

at least k + 1 distinct critical points. 

If E~ = {0}, $ is bounded below. So in this case Theorem 1 follows from a result by 

Palais [9] (because c a t ( M ) = ca t (T*) = k + 1 [11]). For finite dimensional E~ Theorem 

1 was first proved by Chang [1, 2], A different argument, which we sketch below, has been 

proposed by Fournier and Willem [8]. The proof for d i r n E " < oo is due to the author [13]. 

Remark 1. (i) The conclusion of Theorem 1 remains valid if Tk is replaced by a compact 

manifold Vd such that cuplength(V d ) = k [1, 2, 8, 13]. 

(ii) The conclusion remains valid if L has a finite dimensional kernel E° and ip(x°, v) —> 

- o o (or ip(x°,v) -> -foo) as ||a:0|| -> oo, x° G E° [1, 2, 13]. 

If E~ = {0}, the proof of Theorem 1 is easy to obtain directly (without invoking Palais' 

theorem [9]) by using a standard argument [4, 12] based on the minimax characterization of 

critical values of $ as 

bj = inf sup $(x,v), 1 < j < k -f 1 
catM(.4)>> (X|t,)eA 
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and the deformation lemma. Note that catjvf ({0} xTk) = cat (Tk) = k -f 1, so all bj are well 
defined and finite. If dim E~ > 0, the functional $ becomes unbounded below and the values 
bj defined above are equal to — oo. It is therefore necessary to employ a different argument . 

We will introduce two notions of relative category and indicate how they enter into the 
proof of Theorem 1 . A continuous mapping 77 : [0,1] x M —> M such that 77(0, z) — zVz G M 

will be called a deformation of M. Let A,N be two closed subsets of M. The set A is said 
to be of category k in M relative to jV, denoted catjv/,N(A) -= k, if k is the smallest integer 
such that A = Ao U Ai U ... U A*, where all Aj are closed, all Aj with j > 1 are contractible 
in M , and there exists a deformation 770 of M satisfying 770(1, Ao) C N and r}0(t,N) C JV 
Wt G [0,1]. If such k does not exist, catjVf,N(A) = 00. 

The above notion of relative category is due to Fournier and Willem [7, 8]. Our definition 
is a slight modification of theirs and may be found in [13]. 

Let D be a given class of deformations of M such tha t the trivial deformation rj(t, z) — z 

V(t,z) is in X>, and whenever 771,772 are in D, so is the deformation obtained by letting rji 

be followed by 772. The set A is said to be of category k in M relative to N and V, denoted 
c a*M N ( ^ ) — k/\i k is the smallest integer such that A — AQ U A\ U ... U At, where Aj and 
770 are as in the preceding definition and 770 G V. If such k does not exist, cat j^ x(A) = 00. 

The above definition may be found in [13]. 
Suppose d i m E " < 00. Denote $ a = {z G M : $ ( z ) < a } , Tj = {A C M : 

A is closed and catjif $a(.<4) > j} and 

Cj = inf sup $ ( z ) , 1 < j < k -f 1. 

Then Cj > a (because catA.f,*„(A) = 0 whenever A C $a)- Denote MR = {(x, v) G M : \\x\\ < 
R}. It can be shown that if a is sufficiently small and R sufficiently large, then 

(*) catAf,*a(M/*) > c a t B x T f c | S x T f c ( B x Tk) > k + 1, 

where B = {x G E~ : \\x\\ < R} and S = dB (more precisely, (*) holds for a certain modified 
functional $ which has the same critical points as $ , cf. [8]). So Tj ^ 0 for 1 < j < k + 1 
and the numbers Cj are well defined and finite. Now a s tandard argument shows that $ has 
at least k + 1 critical points. 

If dim E~ = 00, then B is contractible to 5 , so ca t# x T f c ) 5 x T f c (B x Tk) = 0 and the above 
argument fails (because all Tj may be empty). Therefore a further modification is needed in 
order to prove Theorem 1 in the most general case. Let V be the class of deformations which 
consists, roughly speaking, of solutions for 0 < t < 1 of initial value problems of the form 

^ = -u;(T7)V(77), 77(0, x, v) = (x, v), 

where V is a certain pseudo-gradient vector field for $ , u? : M —* [0,1] is locally Lipschitz 

continuous, and u> = 0 in a neighbourhood of the set of critical points of $ ( the class V is 

in fact somewhat larger, see [13]). Then it can be shown that for R sufficiently large and a 

sufficiently small, 

ca t M ,* a (Mi j ) > c a t B x T f c j 5 x T f c ( B x Tk) > k + 1, 

where B = {x G E~ : \\x\\ < R} is a ball in a finite dimensional subspace E~ of E~. So 

replacing cat by c a t p in the definition of Cj we obtain the conclusion. 
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2 . H a m i l t o n i a n s y s t e m s 

Consider the Hamiltonian system of differential equations 

(HS) z = JHz(z,t), 

where z = (pyq) G R " x RN, H G C X ( R 2 N x R , R ) and 

(? o ) 
is the standard symplectic matrix. Assume H is 27r-periodic in t. Let H1/2(S1

11H.2N) = IT1/2 

be the Sobolev space of 27r-periodic R 2 ^-valued functions 

z = 2^ ckelkt, where Ck G C2N and c-k = c*, 
ibez 

such that 

y>+ifci)|Ct|
2<oo. 

kez 

Define 
Ф(z)=l [ (-JŻ-z)dt- [ H(z,t)dt. 

2 Уo Jo 

It is known [10] that $ 6 C 1 ( H 1 / 2 , R ) , critical points of $ correspond to 27r-periodic solutions 

of (HS) and the gradient of / 0 H(z, t) dt is compact. 

Suppose H is 27r-periodic in all variables. Note that if z is a 27r-periodic solution of 

(HS), so are all functions z such that z — z G 27r Z2N (by periodicity of H). Two solutions z 

and z will be called geometrically distinct if z - z £2nZ2N. Let H1/2 = H+ 0 H° 0 H' be 

the decomposition corresponding to the positive, zero and negative part of the spectrum of 

—Jz. Denote E = H+ 0 H~. Then to each z £ H1/2 there corresponds a unique pair (x,v) 

such tha t x G E and v is the mean value of z modulo 27T. Clearly, v may be considered as an 

element of the torus T2N\ so (x, v) G E x T 2 N = M . Define 

$(x>v) = 7; [ (-Jx-x)dt- [ H(zyt)dt. 
2 Jo Jo 

It is easy to see that $ G C1(M, R ) , critical points of $ correspond to 27r-periodic solutions of 

(HS) and, unlike for $ , distinct critical points correspond to solutions which are geometrically 

distinct . Since $ satisfies hypotheses (i)-(iii) of Section 1, we have the following 

T h e o r e m 2 [13]. Suppose that H is 2n-periodic in all variables. Then (HS) possesses at 

least 2N -f 1 geometrically distinct 2ir-periodic solutions. 

This result, which is known to imply an affirmative answer to one of Arnold's conjectures, 

has been first t ime proved by Conley and Zehnder for H G C2(K2N x R , R ) [5]. A different 

proof, also for H G C 2 , may be found in Chang [1, 2]. 

Using Remark 1 and a variant of the above argument, one can easily prove 
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T h e o r e m 3 [13]. Suppose that H € C*(R2N x R , R ) is 2iz-periodic in q and t, H(z,t) = 

|Bp-p-\-G(z, t), where B is a symmetric N x N-matrix and the derivative Gz is bounded. If the 

null space of B, N(B), is nontrivial, suppose also that G(p,q,t) —• -fco (or G(p,q,t) —• —oo) 

uniformly in t as \p\ —• oo, p £ N(B). Then (HS) possesses at least N + 1 geometrically 

distinct 2n-periodic solutions. 

Similar results, for nonlinearities of class C2, may be found in [3, 6]. 

R e m a r k 2. The proofs in [1-3, 5, 6] employ a finite dimensional reduction which requires 

that H € C2 (and Hxx be bounded) . On the other hand, our Theorem 1 allows one to avoid 

this reduction and therefore have H G C1. 
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