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OM THE APPROXIMATION OF SOLENOIDAL

AND POTENTIAL VECTOR F IELDS

V. N. Maslennikova snd M. E. Bogovsky

Department of Differential Equations
and Functional Analysis

Friendship of Nations University
Moscow, USSR

1. Introduction

In the present paper we proceed with further treatment of the
questions considered previously in [1-4] o We state here some of ‘
our recent results which turn out to be essentially more genersl
than those stated in our papers [1-4] .

The key question underlying considerations of E-@] is just
as simple as is complicated the answer to it. And the question is
whether the two functional spaces J (-Q.) and J (Q) of solenoidel
vector fields coincide or not. Here J (.Q) is a closure of the
aubspac:l =) = [-v.(x):'-:(x)ea“’ <, aiv V(x) = 0} in Sobolev
space lp(ﬂ) of vector fields V(x) = (Vygeee,vy)y x = (x,,...,xn)
)e S end Ql is a domain (open connected set) in K" , n22 .,
The norm in |.i (€0) is introduced here by the equelity

‘-.Lm.) i lol& ‘ v(x)‘x.‘,(m ’

where 121 is integer and 1<4p< o> , Finally J (Q.) = {?(x):
(Ve Q) , aiv V) = o} .

It is clear that J (Q)C‘_JI(Q) , both being the subspaces
of ¥ (Q_) . The problon is whether the inverse inclusion tekes
‘place or not. In other words, this is the problem of approximation
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ol
of W (.Q.) solenoidal vector fields in the norm of Wp(ﬂ) by
-,
J*° (D.) vector fields.

The question of coincidence of Jp(Q) and J (_Q_) was posed
by J. G. Heywood in [5] . Before the appearance of [51 in 1976,
the coincidence of the two spaces seemed to be out of question.
And the only attempt to prove the coincidence, namely the identity
Jz(.Q) = JZ(Q) , was due to J. -~ L. Lions (see book 6] s Po 67
end p. 100). In [6] the question of coincidence of JZ(Q) end
3;- 1(S)) was reduced to that of their annihilators, which consist of
Wy (.(2) potentiel vector fields. However, at least for unbounded
domains Q , identity of the annihilatora was left, in fact,
without a proof, since the only argument was just a reference to
the footnote on p. 320 of [7] , which for unbounded ﬂ is in-
adequate (for details and complete treatment, using such an ap=

proach, see [81 ) .

. ol N

The first counter example for J, (Q) and Jz(ﬂ), showing
that the speces may not coincide if ﬂ is unbounded, was construec-
tedby J G. Beyvood?in [5] + Further counter exemples, this time
for J Q) end J_({)) with unbounded Q = x=(x ,xn).lx l«(xn).
ngnl N f(xn)z >0 » Wwere constructed by the authors in
[!] (see also [3] ), where 121 and n22 could be any inte-
ger numbers and, what is importent, 1<p<®o .,

There are reasons to believe that regularity of 3&2 has
nothlng to do with the quesuon of coincidence of J (SZ) and
J (Q) if only one defines I (.Q) as closure in Sobolev space
WI(Q) of its subspace ¢~ (Q) o One of the reasona is the.result
obtained by C. J. Amick, who proved the identity JZQ) = J; (Q)
for bounded domains S)_CR2 requiring only finite connectedness
of 3!1 (private communication by C. J. Amick).

The main difficulty one encounters in consideration of the
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l (Q) subsp aces 3 (Q) and J (.Q) is the classiflcation of

domama, according to which one could determine dim J (Q) /
ol

/ J (Q) s i. e. the dimension of a quotient space Jl(n) /

JI(Q) « So far there hes been introduced no such general classi=-
fication.

In publications that followed [5] s, O. A, Ladyzhenskaya,

V. A. Solonnikov, K. J. Piletskas and the authors considered do-
mains with N outlets at infinity, i. e. domains Q that can be
represented in a form Q = Q;} » where QO is a bounded do-
main and each of the donaine y J=1,eee,N, 1is unbounded and
called an outlet at infinity if h ﬂQk QS for Jjtk . Domains
with K outlets at infinity were introduced in [9 10] by O. A.
Ladyzhenskayas and V. A. Solonnikov, who treated the case p=2, 1=1
and n=2 or 3 . Further treatment, including the cases 14 p{ os,
121 and n22 , is due to the authors and is contained in
[1-4,8,121 (see also [17] that followed tz] e

At present time it seems that a natural way to approach the
more or less general classification of domains is a way of introdu-
cing the more and more general definitions of an outlet at infinity.
m [3,12] we introduced the following definition. A domsin WC R®
is called an outlet at infinity if QO is congruent to the domain

s{::(:',!n): t SO x:

i—x—T,xn), xn>0 } ’
where F(—X- »Xp) 28}0 satisfies local Lipaschitz condition and

I 'I
there exist positive constants cj, Jj=1,2,3, such that for xn>0
sup F(x’ 1Xy) C inf F(x’ 1Xp) Cpx, + Cy 3

‘x1-l ]x'}-l

otherwise a domain Q) is celled en outlet at infinity if it is
congruent to some special Lipschitz domain &, (i. e., there

exists open come MNa i_x-(x',xn) : “'\‘*n » >0, ¢ >0 }
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such that @, + K= W,) . Aceordingly, we shall cell ) an
outlet of the type W, ,or of the type Q)z .

Our definition is not the most general one, since the most ge-
neral definition is the following one. A domain €D is called an
outlet at infinity if <O is an unbounded domein. But no one cen
operate with such definition as yet, except for the case 1< PSn/
/(n=-1) , vwhere geometrical structure of outlets is of no impor-

tance.

It should be noted that there are two sides of the problem. On
the one hand, it is desirable to obtain eond:.nons on -Q- , suf-
ficient for the coincidence of J’ (ﬂ) and J (Q_) , which is
easier; on the other hand, it is desirablo to obtain conditions on
Q , neceassary for the coincidence of the two spaces, which is
much more difficult, since in the latter case ome has to construct
explicitly counter examples. That explains the restrictions we im-
pose on outlets. And that is why our definitionm of an outlet turns

out to be more or less general as yet.

We shall assume that an outlet of the type CO‘ satisfies or

does not satisfy the following condition
co

axp,
- = o 1
(K) [nes S(xn):l':'.I * ’ R

n

where S(i) is the cross-section of 03‘ with the plane x_ =
= ?,‘{)0, and mes S(?) is a (n-1)-dimensional mesure of S(}).

The ondition (1) was introquced in [11] by V. A. Solonnikov
and K. J. Piletskas for the case p=2, 1=1 ad n=2 or 3 . At
about the same time, the conditiom (1) was introduced independent-
ly by the authors in. D,z] for the cases 1<pl o , 121 mad

n22 ., The same cases were also considered by K. J. Piletskas, who

used the condition (1) 1later in D?]
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One of the most interesting results of the present paper is

ol ol
that JP(Q_) = Jp(.Q) for any domain QC_ R® heving the uniform
(!I - regularity property (see [18] ) for 1<p<n/(n-1), n2?2
and 121 . The case 1< p<n/(n-1) is the only one, where the
answer to the question whether 31(Q) and J (Q_) coincide or not
is independent of geometrical structure of Q And one cannot
leave out the geometrxcal structure of Q trying to answer all the
qQuestions concerning J (V) ana JI(Q) (e. 2., one should assums
that Q is a domain w:.th N outlets at infinity in the sense de-
fined above) if only n/(n-1)<p<<o ,

Another interesting result of the present paper concerns the
approximation of potential vector fields in LP(S)') by c* (ﬁ)
potential vector fields having bounded supports. More precisely,

S. L. Sobolev in [14'1 and later O. V. Besov in EIS] (see also
[16:\ ) posed the quesuon of coincidence of the two L (Q) sub-
spaces G (Q) and G (Q) , Where G (Q) is a closure in L Q
of its subspace cons1st1ng of restnetlons on Q of G“(Rn) =
zv(x)-v(x) —V‘\I) (x) ,"Ve C°°(Rn)} vector fields, and G (Q)t
tb(x) svix) =V'\r (x)G.Lp(Q)l o« It is clear that G (Q)CG (Q)
both consisting of Lp(Q) potential vector fields.

A
m [i4] s. L. sobolev proved that @ (R“) + G (R") . Later,
in ‘:15] 0. V. Besov proved that G (Q) (.Q) for a domain
QCR“ with a unique outlet at 1nf1nity of the type ooz .

In the present paper we state that the question posed by J. Ge
Heywood in 1976 and the question posed by S. L. Sobolev in 1963
and O, V. Bcaov in 1969 are, in fect, one and the same question.
Nemely, dim J (Q)/J L) = aim p,(Q)/Gp(Q) for any domain

SZC.Rn havmg the uniforn c - regularity property Es] » Where

‘= p/(p-1), 1<p<eo , n22 and 121 . Geometrical structure of

S)_ is here of no importance.
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We also atetelin the present paper some of the properties
pf J (Q) and J (SL) which ere independent of the geometrical

structure of a domam Q .

2. Statement of the results

ol
Instead of Jp(.Q) and J (Q.) it is more convenient to con-
sider the subspaces JP(Q) and J (Q) of Lp (Q) « Here
J (.Q) is defined &s a closure in Lp(Q) of its subspace 3'(9.)
and the other subspace J (Q) -i?(x) ?(x)eL Q), Fxed (Rn)?).

where E is the followmg zero extension operator
F(x) for x eQ ’
H(x) =
o for xer?\Q) .
$
It is clear that 3P(Q)CJP(Q) . The inverse inclusion
may not happen.

- <
Introduction of JP(Q) end JP(Q) is justified by the
easily verifiasble fact that

A
3p(9.) = 8,, QJ ,
>
F - Q"

where p’= p/(p=1). Thus the Lp(Q) subspaces 3p(_0.> and

(Q,) are annihilators of the Lp,(ﬂ) subspaces ap,(_Q) and
,(Sl) , accordingly.

o (2)
pt

Note that one cen rewrite (2) in the form
A )
8,q» =3 Q" ,
“~
L ™
e, Q) =J (V" .
P P
Note also that since in E4] S. L. Sobolev proved the iden-
tity G (R?) = G (R®) for l(p(«: , there is no need to intro-
duce the L (Rn) subspace J (R") (for details see [1] ) .

(3)
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It turns out that some problems concerning Gp(%) end
ap(.Q.) can be solved easier than those concerning Jp(.Q.) ad
a1l
JP(Q.) , vhich mede it possible to establish many of the results
stated below.

[¢] ° 0
To be short, we hereafter let :Ip(ﬂ) = Jp(.Q.) , gp(.ﬁ.) =

% (9]
= 5p(9_) and ;Ip(ﬂ) = Lp(ﬂ) in the cese where 1=0 ., Only for
the sake of shortness, number 1 in the present paper is conside-

red to be integer.

Trying to construct a sequence of J®(f)) vector fields ap-
proximating in v (ﬂ) some given JP(D.) vector field in the
case where ) - is unbounded, one can find out that it is the
boundedness of supports of approximating sequence elements which
sonstitutes the essence of the approximation problem. If one aban-
dons the boundedness. of supports, the approximation problem will
have then the nnanb:tguoua solution. More precisely, denoting

(D_) = {’:(x) v(x)éJ (Q) Vizo , dist(supp]v] 3Q)>0}
we have the following result.

Theorem 1, Let (). CR® be any domein with noncompact boundary

heving the uniform c! z,regulerity property, nz2, 120
end 1<p<o0 , Then J_(£) coincides with the closure in
ol p"oo ’
ip(ﬂ) of its subapace 3p ) .

1 [} §
The enswer to the question whether sp(_Q) end Jp(SI) coin-
cide or not may be embiguous if ’aﬂ is noncompact (i. ., un=-
bounded) . As to the case where ‘aﬂ is compact (i. e., bounded),

the following theorem holds.

Theorem 2, I.et.Q. CR" be any domain with compact boundary

hav:mg the cone property, 1>O, n22 and 1<p <0 , Then
(Q) = 31(_(2) end 0 (Q) = 0 ) .

llote that a domain ﬂ is said to have the cone property if
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there -exists a fixed finite open cone C such thet each point x
is the vertex of some cone contained in {2 and congruent to C

(see [18] ) .

Thus domains 2 with compact boundaries are now out of Ques-
tion, and we proceed with treatment of domains having noncompact

boundaries.

It is clesr that the closure in L, (£2) of its subspece 31(_0)
with 121 coincides with 3 ) . Similarly, due to Theorem 1,
the closure in Lp(.Q) of ita subspace 3 () with 121 coinci-
des with J (£)) . The following result makee it possible to roduco
by means of (2),(3) the problems eoncerning Jl(.Q) and 3 «)
to the probiems concerning 0 (fl) ena G (Q) .

Theorem 3. Let_QC R® be any domein with noncompact boundary
having the uniform ¢ - regularity property, n22, 121 eand

1
1<p< oo . Then 3p(.Q.) = 3 () ir and only it § (Q) =

= J ) , and dim .x (.Q.)/J () = ain J (.Q)/J (f2) in the case
where J Q) 5‘ J 2 .

The complete proof of all stated here results is to be publish-
ed in Vol.23 of the Siberean Mathematioc@l Journal.

Due to Theorem 3 and (2),(3) the following three identities

are equivalent to each other:
(a) 311,(5).) = 3:,(9) with 12 1;
® S0 = @ | 4)
(c) Gp,(.D.) = ap,(ﬂ) with p’= p/(p-1);

'here_D.C R® is eny domein with noncompact boundary heving the
uniform ¢l - regularity property, n22 end 1< p<od . Accor-
dingly, if for instance 3p(..(2) % Jp(.Q), then we have

2 )
dim gld).)/.?;(m = dim 3,,(12)/.:,, (=aim Gy, (2)/Gp, ().
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Thus the value ofh 1 has nothing to do with the question

wh ether 3;([2) and 3;(!2) coincide or not. Meanwhile, the va-
lues of p and n are of great importence. For asny given domain
.QCRn with noncompact boundary and any given n22 the answer
to the question whether 3:(_0) and J:(_Q) coincide or not, if
it happens to embiguous, depends only on the value of p ,except
for the case where 1< p€n/(n-1) . In the latter case the fol-
lowing theorem holds,

Theorem 1,-Let_D_C R® be any domein with noncompact bounda-
ry heving the uniform C‘ - regularity property, nz2 and
1<p£n/(n-l). Then J () = 3 (_Q), which implies that
1(.0_) = J () with 1>| and a .(_Q)-G »(£2) with p’=
= p(p-lf‘ :l. e. n€p<oco .

As to dependance of the approximation problem on the value
of p in the case where n/(n=1)p<oQ , it may be described in
terms of the following statement.

Theorem 5, Let Dcr® ve aﬁy domain with noncompact bounda-
ry baving the uniform c' - regulsrity property, n22 and
n/(n-l)<9<°0 . Then J (.Q) = J (£2) implies that 3q(.Q)=
= J (,Q) in the case morc n/(n-1)<Q<P .

One can easily geduco from Theorem 5 ell coneeivable corol-
larioa concerning J (.Q) and 3 (,Q) with 121 and Gp.(.Q).

pr(Q) wWith p’s p/(p-l). e. & o U2) = c () with 1<p<n
iupliu that Gq(.Q.) = Oq(ﬂ.) in the case where p<qa<n . Note
that due to Theorem 4 we have G’(ﬂ}:é’m)in the cese where n<p<ed

it .Q satisfies the requirements of Theorem 4.

By virtue of Theorem 5 in the case where J ) = J’ D) to
answer to the question whether 3 () eana 3 (.Q) coineida or
not is unambiguous if q<p . Contru_-y to that., there can be no
unsmbiguous answer to the question if q>p , which is confirmed
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by counter examples constructed by the authors in [ 3] .

It should be noted thet J. G. Heywood was the first to suggest
in [5] that J,(f) = J,(S2) for eny domein £2 € R® (cf. with
our Theorem 4 end note thet n/(n-1) =2 if n=2) .,

Thus solution of the approximation problem for any given
n22 depends only on two varisbles: p and L) . The dependence
on _D_ is mch more compliceted then that on p. It is the depen-
dence on geometrical structure of L2 . The following theorem con-
tains a condition on _Q which is sufficient for the identity
° 3
Jp(_Q) = Jp(Q) to take place.

Theorem 6. Let {) € R® be eny domain with noncompect boundary
having the uniform Cl- regularity property, nz2 and

A
t<p<oo , Then 3p(SZ) = ‘?pd)) if the following condition

is satisfied

mes..Q. R .

lim .
= RP

where..n_R ={x: xe 2, \x\{R} with R>0 and mes.QR

is the measure of set J').R ( lim stends for the limit infe-

< + 00 with p’= p/(p-1),

rior).

One can easily verify that Theorem 4 is just a consequence of
Theorem 6, since mes "O'R is bounded by the measure of the
ball {x: x€R? lx|<R}, and p2n in the case where
1<p<n/(n-1).

As it wes mentioned in the Introductio:x the conditions on .2
necessary for coincidence of 3p(_Q) end 3p(_Q_) need explicit
counter examples to be constructed, which is not an easy problem.

Nevertheless, we have the following result.

Theorem 7. Let _O_, ,.QzCRn be eny two domains with noncom-
250 pect boundaries heving the uniform C‘-— régularity property,



n22 and 1< p<oc0 . Let also d) :_Q‘-—>_D_2 be a differentiable
mapping such that _Q.z = 43 (£2,) with Jacobien Jg . If

there exist positive constants Cl and 02 such that for

xé_Q‘
°1<L’§>l<c2 ’
° ° . o
then we have Jp 2, = Jp(,) if end only if JP(QZ) =
A
° . o - e o
=9, , and dia I QA () = din J,(02,)/5(Q,)
in the case J (N0 # J () with j=t or 2 .
P~ P53
1 From {heorem 7 one can deduce all corollaries concerning
o 4 A
. . i 2 . . ith
Jp(QJ), JP(QJ) with 121, end G (Qj), Gp'(_QJ) with
p=p/lp=1), j=1,2 .
As to the dependance on geomgtrical construction of _Q_ , We

have the following results.

Theorem 8, Let {LC R® be a domain with unique outlet st
infinity having the cone property, n22 and n/(n-1){p<e0 .
A el
Then 3p(ﬂ) = J.p(_Q) , accordingly J () =3 (f2) with
A ) P
121 end G, () = G,,(f) with p’= p/(p-1) .

=2

Theorem 9. Let ) < R™ be a domain with N22 outlets at in-
finity having the cone property, n22 sand n/(n-1)<p<co .,
Letalso k of the outlets be of the tyre w, satisfying
condition (1) , where O£Lk<N-2; and let the N-k of the
outlets be of the type &)2 , or of the type (.v.)I » in the
latter case not satisfying condition (1) . Then

] °
din Jp(.Q)/Jp(_Q) = Nek-1 .

Note that in the case where N=k+1 or k we have fp(_Q) =
¢ .
= JP(Q.) « Note also that Theorems 8, 9 concern only domains
with outlets of the type (U, or of the type 602 and only the
case where n/(n-1)<p . The case p<n/(n-1) 4is conteined in

Theoren 4.
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From Theorems 8, 9 one can easily deduce all conceivable corol-
laries concerning 3p(.Q), 3;(.(2) with 121 and Gp.(_Q) ’
6p,(ﬂ) with p’= p/(p-1) . Note that in the speciel case where
1=1 , Theorems 8, 9 were stated in [12] and proved in £33l .

For domains with only two outlets at infinity Theorem 9 was previo-
usly stated in [2] . A theorem similer to our Theorem 9 was also
stated by K. J. Piletskes in [17} , who used another definition

of outlets.

It should be noted that the proof of almost all stated here
results is based on the explicitly constructed in L—l 3-] solution
J(x)€E ﬁ;(.ﬂ) of the equation div ¥ = £(x) for bounded domains
flcrn , n22 , having the cone property, with any given f(x)€

Lp(.Q.) satisfying the necessary compatibility condition

é-f(x) dx = 0.

This solution satisfies the inequality

y-:”&;(.o.) = H’”me)

with positive constant C depending only on n, p and £ (for
proof end further details see [ 8] ).

Thus the approximation problem under consideration has been

solved in the following three cases;
(a) _Q is a domain with compect boundary having the cone
property and 1< p<oQ, n22;
(v) _Q. is a domain with noncompact boundary having the

uniform C’- regularity property and 1<pén/(n-1) , n?z,

(¢) J1 is & domain with N21 outlets at infinity (in the
sense defined above) and n/(n-1)<{p<oo , n22,

All other cases represent problems which are open as yet.
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The ways of mathematical progress are inscrutable. Indeed, the

8l
approximation problem concerning 3p(J2) and Jp(JI) was posed

in 1976 and seemed to be a new problem. But the problem turned out,
in fact, to be an old one, posed already in 1963 for Gp(Rn) md
A ’ A

op(n“) , md in 1969 for cp(.Q.) end cp(jl) . Notwithstending

that it was posed later, the new approximastion problem concerning

solenoidal vector fields has added & variety of new facts and par-

ticular examples to the o0ld approximation problem concerning po-

tential vector fields.

!

(2]

[3]

[4]

C5]

Cs]

The two problems are now to be treated as the only one.
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