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a.e. Quasi-Continuous Functions 
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Received 14 April 1993 

It is proved that every cliquish real function of real variable is the limit of a sequence of Darboux 
a.e. quasi-continuous functions, where a.e. denotes an O'Malley's topology. 

Let E denote the set of all reals and let T be a topology in E. A function 
f:E-+E is said to be T-quasi-continuous (T-cliquish) at a point x e E if for 
every e > 0 and for every jT-open neighbourhood U of x there is a nonempty set 
Ve T such that Vd U and | / ( t ) - / ( * ) | < e for every t* V (\f(t)-f(u)\ < e 
for all t, u e V) [6]. 

Let A c E be a measurable set (in the Lebesgue sense). The lower (upper) 
density dt(A, x) (du(A, x)) of the set A at a point x € E is defined as 
lim inf ju(A n (x — r, x + r))/2r ( lim sup p(A r\ (* — r, x + r))/2r), where ju 

r-0 r-0 

denotes the Lebesgue measure in E. The family of all measurable sets A c £ such 
that if x e A then d/(A, x) — 1 is a topology called the density topology Td [2,7]. 
The family Ta^ — {A* Td;ji(A — intA) •• 0} (intA denotes the euclidean in­
terior of A) is also a topology [7]. Moreover, denote by Te the euclidean topology 
in E. In [3] it is proved that every Te-cliquish function f:E^E is the limit of a 
sequence of Darboux .Te-quasi-continuous functions. In this article I show that every 
re-cliquish function f:E-+E is the limit of a sequence of Darboux Tae-quasi-
continuous functions. This new result is stronger, since the family of all Tae -quasi-
continuous functions forms a newhere dense closed subset in the space of all 
re-quasi-continuous functions with the metric g(f, g) — min (1, sup \f(x) — g(x)\). 

If T is a topology in E then let Q(T) (P(T)) denote the family of all r-quasi-
continuous (.T-cliquish) functions/: E -* E. Since intA ¥> 0 for every nonempty 
set A e rfle., we may observe that P(Te) - P(Tae) and Q(Tae) c Q(Te). 
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Remark 1. Q(Tae) is a nowhere dense closed subset of the space Q(Te) with 
the metric g(f, g) - min (1, sup \f(x) - g(x)\). 

X*E 

Proof. Since the convergence in Q is the uniform convergence and the family 
Q(Tae) is uniformly closed [6], we obtain that Q(Tae) is a closed subset of Q(Te). 
Fix e > 0 (e < 1) and / e Q(Tae). There are a point te E and intervals 
/„ •• [an, bn] such that / is continuous at t and at every an, bn,n=* 1,2,..., t — 
— lim «rt — lim &n, tis not in [an, bn] for n — 1,2,... and du(\]ln, t) — 0. Then 
then"ffinctionng(jc) — f(x) + e/2 for x* In, n==l,2,..'., and for x — t, and 
g(jc) = /(JC), otherwise in E, belongs to Q(7;) - Q(Tae) and p(/,g) - c/ 
2 < e. This completes the proof. 

Let D denote the family of all Darboux functions. 
Remark 2. DQ(Tae) is a nowhere dense closed subset of the space DQ(Te) 

with the metric Q. 

Proof. By Remark 1, the set DQ(Tae) is closed in DQ(Te). Fixf*DQ(Tae) 
and e > 0, e < 1. There are a continuity point x of / and a sequence of closed 
intervals I(ri) - [a(n)9 b(ri)]9 n - 1,2,..., such that fl(l) < fe(l) < a(3) < 
< b(3)... < a(2n - 1) < b(2n - 1) < ... - JC, 6(2) > a(2) > b(4) > a(4) > 
> ... > b(2ri) > a(2ri) > ... - JC, oscI(n)f< e/89 and du(\jl(n)9x) - 0. Let 
g((a(n) + b(n)))/2) - /((*(«) + A(«))/2) + e/29 n - 1,2,"..., letg(t) - f(t) 
if t ^ JC is not in (a(ri)9 b(ri))9 n •• 1,2,..., let g(jc) — /(JC) + e/2, and let g be 
linear in the intervals [a(n)9 (a(n) + b(ri))/2] and [(a(ri) + b(ri))/29 b(ri)]9 

n - 1,2,... Then g e .DQ(^) - DQ(Tae) and p(/, g) < e. This completes the 
proof. 

Lemma 1. Let Ac E be a nowhere dense Te-closed set and let U 3 A be an 
Te-open set. Let g: E -» [ — r, r], where r ^ 09 be a function. Then there is 
a Darboux function ft Q(Tae) such thatf(E) = [ — r, r], f(x) — g(x)for every 
x e A, /(JC) -• 0 /or every JC W/Z/CA is not in U, f is continuous at each x which is 
not in A, and for every nondegenerate interval I such that I n A 3* 0 we have 
/ ( / - ^ ) - [ - r , r ] . 

Proof. For each n - 1 , 2 , . . . let ®n be the family of all intervals [(k - l ) /2" , fc/2n], 
where k •• 0,1, — 1,2, — 2, . . . Let O — <bx u <E>2

 u ... We may assume, without 
a loss of generality, that A is compact. 

Step 1st. For each JC e A there is an interval 7(1, JC) e <I> containing JC in its in­
terior mt/(l, JC) and contained in £/ or there are two intervals 7(1, JC), K(l, JC) € O 
such that JC is the right endpoint of 7(1, JC) and the left endpoint of K(l, x) and 
7(1, JC) - 7(1, JC) U K(l, JC) C U. There are points JC(1, 1),..., JC(1, k(l)) e A 
such that A c mt/(l, JC(1, 1)) U ... U mt/(l, JC(1, fc(l))). In every open interval 
mt/(l, JC(1, i)), i -• 1,..., fc(l), there are closed intervals 

7(1, i, /), 7(1, /,;) c mt/(l, x(l9 i)) - A - U ' w , 7 - 1, - •.. /(I, 0 
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such that: 

- / ( l , i , / ) c intJ(l,i,j), / S/(1,0; 

- /(I, 4X1)) n /(I, /,/(2)) - 0 for /(l) * /(2),/(l),/(2) £ /(l, 0; 

//((/(l, x(l, 0) n (A u |J /(l, r,;))) u (J /(I, /,;)) 
_ r<*J*/T-,r) J*KW) > J _ g-1 

fl(I(l,X(l,i)) 

Step nth. For each x* A there is an interval I(n,x) e 3> containing x in its 
interior and contained in V — U — (J /(r, /, /) or there are two inter-

r<«,^A:(r),/2:Xr,0 
vals /(/i, JC), K(n, x) € 4> such that JC is the right endpoint of J(n, x) and the left 
endpoint of K(n, x) and I(n, x) « J(n, x) u tf(/j, *) c K There are points 
x(n, 1),..., x(n, k(n)) e A such that A c wt/(/i, JC(/I, 1)) u ... u intl(n, x(n, k(n))). 
In every open interval intl(n, x(n, ij), i £ k(n), we find closed intervals 

/(", h /), J(n, i, /) c intl(n, x(n, i)) - A - (J J(n, r, J), 
r<U*Kn>r) 

(j — 1, ...,/(/i, i)), such that: 

(1) I(n, i,j) c mt/(/i, /,/), / £ /(/i, 0; 

(2) J(n, i,j(l)) n /(/i, i,/(2)) - 0 for /(l) * /(2),/(l),/(2) * /(/i, 0; 
»((I(n,x(n,i))n(Av \J I(n,r,J)))u (J /(„,/,;)) 

( 3 \ r<U*Kn,r) J*Kn,i) > 1 — 8"". 
V(I(n,x(n,i)) 

Moreover, in every component (a, b) of the set U — A with a e A and b* Awe 
find two sequences of closed intervals L(l, /i, a, b) «• [a(l, /i, a, b), b(l, n, a, b)], 

L(2, n, a, b) - [a(2, n, a, b), b(2, n, a, b)] c (a, b) - \J J(n, i, f) 
n-l,2,.~,i*k(n)JSXnti) 

such that: 

a+b 
- >b(l,l,a,b)>a(l,l,a,b)>...>b(l,n,a,b)>a(l,n,a,b) >...-+a, 

.far 

and 

a + b 
<a(2,l,a,b)<b(2,l,a,b)<...<a(2,n,a,b)<b(2,n,a,b)<...-+b, 

If a component (a, b) of the set U — A is such that a or 6 is not in A then 
we find only one corresponding sequence. For each component (a, b) of the 
set U — A there is a continuous function g(ab): (a, b) -* [ T , r] such that 
g(a.6)(L(i, Hi * *)) - [-r, r], / - 1,2 and n - 1,2,... and g^OO - 0 if x is 
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not in any L(i,n,a,b), i— 1,2 and n •• 1,2,... Let w(l), w(2),... be an 
enumeration of all rationals of the interval [ — r, r] and let (u(l), u(2),...) — 
- (w(l), w(l), w(2),..., w(ri), w(l),..., w(n + 1),...). For n fc 1, i 3 *(/i) 
and / 3 /(«, /), by (1), (2), there are continuous functions 

fn,u: ^(^ 4 /) "* T min (0, u(ri)), max (0, «(/i))] 

such that fntitJ(x) — w(/i) for JC € /(n, /,/) and fntUj(x) — 0 on the boundary of 
J(n, i,f). Let f(x) - g(x) for x e A, f(x) - /„,/,(*) for x e /(w , / , /) , n i l , 
/ 3 fc(.n), / 3 j(n, i), /(JC) — g(fl,!,)(̂ ) if (a, &) is a component of the set U — A 
and JC e L(i, n, a, b), i — 1,2, n ^ 1, and /(JC) * 0 otherwise on E. Obviously, 
/ is continuous at each point x e E — A. Fix x s 4 , a set We 7^. containing 
JC and e > 0. Let w(n) be such that |/(JC) — w(ri)\ < e. From the construction 
of /, by (3), it follows that du(A u f~l(w(ri)), x) - 1. If rftt(i4, JC) > 0 then 
wtW n A ¥> 0. From the construction of/it follows that wtW n intf\w(ri)) T* 
^ 0. If du(A, JC) — 0 then ^(/""^^(n)), JC) — 1 and consequently, intW r» 
n wtf~1(vv(.n)) 5̂  0. So, / e Q(Ta,). Since / is continuous at each point 
JC e E — A and for every nondegenerate interval / such that A n / ^ 0 we have 
/ ( / — 4̂) •- [ — r, r], the function / has the Darboux property. Evidently, 
/(JC) — g(jc) for each JC e A and/(jc) — 0 for each JC e £ — U. This completes the 
proof. 

Lemma 2. Let Ac E be a nowhere dense Te-closed set and let Ur -3 A be an 
Te-open set. Let g: E -> E be a function. Then there is a Darboux function 
fe Q(Ta.e) such thatf(x) - g(Jc)/or eachx e A, /(JC) - 0/or eachx* E - U, 
f is continuous at each point JC e £ — A, and for each nondegenerate interval I 
such that I n A ^ 0 we have f(I - A) - £. 

Proof. The proof is analogous as the proof of Lemma 1. It suffices only to take 
as (w(ri)) a sequence of all rationals and to assume that gab)(L(i, n, a, b)) 3 

Theorem 1. Let ft P(Te) be a function. There is a sequence of functions 
fn e DQ(Tae), n -• 1,2,..., which pointwise converges to f 

Proof. We may suppose that the set of discontinuity points of / is nonempty. 
Since the set of all continuity points of / is dense, there is a Baire 1 function 
g: E - E such that the set {JC e £; f(x) * g(x)} is of the first category [5], p. 341. 
Let h — / — g. Then h e P(Te) and h(x) •• 0 at each point JC at which it is con­
tinuous. Let An-• cl({x"6 E; \h(x)\ i 1/n}), n*=l,2,..., and cldenotes the closure 
operation in the topology Te. Every set A,., n IS 1, is Te-closed and nowhere dense. 
Consequently, every set.An+1 — An, n i 1, is the union of pairwise disjoint closed 
sets Bnk [8]. Let F(2), F(3),... be the sequence of all nonempty sets B^k such that 
F(ri) * F(m) for H / m, n, m - 2 ,3 , . . . and let F(l) - Ax. For each n > 1 let 
r(«) — 1/fc, where & ^ 1 is such that F(/i) C Ak+X — Ak. Since the sets F(k), 
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k .^ 1, are pairwise disjoint, for every n ^ \ there are pairwise disjoint 7 -̂open 
sets U(n,\),...,U(n,ri) such that F(i) c U(n,i) for i .^ n and such that 
sup {dis/(jt, F(i)) — inf |jt — t|; jt e U(n, i)} < \/(n + i). By Lemmata 1, and 
2, there are Dar6o23- functions fny. E - E and fny. E - [ — r(i), r(i)], 
i *» 2,. . . , n, belonging to Q(Tae) and such that for each j ^ n the reduced 
functions fni/F(i) are the same, /„,,(Jt) •- 0 for Jt e £ — U(n, i), f^ is continu­
ous on E — F(i), for each nondegenerate interval / such that / n F(l) 5* 0, 
/«,i(^) = E> and for e a c^ nondegenerate interval / such that / n F(i) ^ 0, 
i - 2, . . . , n, /„,,(/) - [-/{i)> f(01- Lrt hn(x) - /„,,(*) if x e (7(n, 1), i ^ n, 
and let An(jt) — 0 otherwise. Since hn — /n>1 + ... + /n>n and all functions 
/«,* e Q(Tae), i «£ /*, are continuous at jt e £ — U(n, i), we have hn e Q(!Tae<) 
[4]. Evidently, hn has the Darboux property. If Jt e F(k) for some k ^ 1 then 
/r„(jt) — A(jt) for n > k and lim An(jt) •• h(x). In the contrary case, if jt is not in 

any F(k), k ^ 1, then A(jt) •• 0 and Jt is not in any Ak, k ^ 1. Fix s > 0. Let 
m > 1 be such that \/m < e. Since Jt is not in i4m and -4m is J^-closed, there is 
a positive number 6 such that [jt — 6, x + 6] n >lm -=-- 0. Let A: > m be such that 
1/& < <$. Then, if n > k and F(n) c ylm then Jt is not in U(i, ri) for i ^ n. 
Consequently, \hn(x)\ < \/m < e for n > k and lim hn(x) — h(x) — 0. So, the 

/ I - CO 

sequence (ft„) pointwise converges to h. Since g is of Baire class 1, there is a 
sequence (gn)n of continuous functions gn: E -+ £ which pointwise converges 
to g. Every function /„ — gn + hn, n ^ 1, belongs to Q(7L*) [4] and 
lim /„ — lim gn + lim hn — g + A — /. Fix n ^ 1 and observe that /n is con-
n-*co n - 0 0 n-* 00 

tinuous at each point Jt e £ — [J F(/) and at each point Jt e (J F(i) the sets of all 
i$n iZn 

right-hand sided (left-hand sided) limit points of the function /„ and of the 
reduced function fn/(E — |J F(i)) are the same. This means that every point 

Jt e |J F(i) is a Darboux point of fn [1], and consequently fn has the Darboux 
i$n 

property. This finishes the proof. 
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