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ERGODIC THEOREMS IN O-LATTICE CONES

Radu-Nicolae ologan

ABSTRACT. We extend the maximal ergodic theorem of Hopf to the case of
o-lattice cones of Cornea and Licea ([1]). As consequences we prove some abstract

potential theory results of maximal type and an abstract pointwise ergodic theorem.

The concept of J-lattice cone of Cornea and Licea can be
viewed as an abstract setting of the cone of nositive measurable
functions over a measurable space. The aim of this paper is to extend
the pointwise ergodic theorem to this abstract case. The large class
of nontrivial examples of O-lattice cones can be used to obtain
applications of these requltq. ) »

For the beginning let us recall.some facts from [1].

An ordered convex cone (C,<,+) is called a o-lattice cone if
the following conditions are fulfiled:

a) For any xeC we have x>0;

b) For any x,veC such that x<y there exists zeC.such that
xX+z=y;

c) The ordered set C is a ¢-comnlete lattice;

d) Denoting as usual by "A" (resp. "V") the "inf" (resp.
the "sup") operation, for every xeC and any sequepce (xn)nsN in C,
we have:

XV (Ax ) =A(xVx ) ;
XA (Vx )=V (xAX ) i
. x+Axn=A(x+xn);

x+Vxn=V(x+xn) .

If C is a o-lattice cone, an’elementvxsc is called finite if
for every y such that y<x, the element zeC such that x=y+z is unique;
that is equivalent with A (1/n)x=0. The cone of finite elements will
be denoted by Cs. _nZI ' . ’

The set |C| defined formally byv |c|=c-cs has a natural lats
‘tice structure induced from that of C, in such a way that |[C| be= -

comes an upper -o-complete and conditionally lower fo-'complete lat-
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tice. The relations d) hold in |[C| also.
If C and C’' are o-lattice cones, a map T:C + C’ is called a

kernel if T0=0 and if for every sequence (xn)neN from C we have

© ©0 -
T( ) ¥ )=} Tx
n=0 " n=0 "

A kernel T:C - C’ is called proper if for everv xeC there .

. . ’

exists a sequence (xn)neN in C, increasing to x, such that TxngcS
for every nel.

We say that a o-lattice cone is proper if the identitv ker-
nel is proper.

For any xeX we denote by Ix the man IX:C - C defined bv:

Ixy= v [(nx)Av].
nelj
It is easy to see that for any xeC, I, is a kernel with the
following properties:
(1) Ixygy for every veC

2— .
(2) =1,
(3) 1, (vx )=VI x
Ix(/\xn)=VIxxn ;

I, =vIi_ .,
Vxn X,

for every sequence (xn)neN in C.

Ix will be called the‘ihdicator of x.
Moreover, if for Ze]C|=C-Cs we set z'=zV0 and z =-zA0 (in
ICI), we have z=z+-z- and for everv xeC, yeCS :

I (x-v)_=0;
(x-v)t T

I

x2I Y.
(x-,v)+ (x=y) ¥

A measure on Q is a kernel u:C - R+. The set of measures on -
C is a o-lattice cone which is complete.

If T is a kernel on C, an element xeC (respectively,a mea=~
sure B on C) is called T-supermedian if Tx<x (respectively,u(?x)s
su(x) for every xeC).. An element xeC (respectivelv a measure u) will
be called T-invariant if equalities hold,

If XecS is T-supermedian, the Riesz decomposition theorem
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asserts that there exist unique'u,VsCS such that:

x=GTu+v ’

where GT=I+T+ cee +704 ... and v= A_Tnx satisfies Tv=v.

n>0

We also need the following natural construction.

If u is a measure on the o;lattice cone C denote
by Cg the o-complete subcone of C of those elements xéC having zero
pu-measure (i.e. n(x)=0).

Defining in C the equivalence relation ~ bv x~y iff there
exists xoecg such that x5y+xo and y5x+xo_, the set of classes C/Cg
becomes a o-lattice cone. If we denote by x the class of xeC, the
folloWing then hold:

(1) ke(c/ch iff A (1/m)xeCh ;

n>1

(2) ﬁ:C/Cg - R+ defined by L (%) =n(x) is a measure on C/CE

and 11(x)=0 implieé'§=6;

(3) if u is T-supermedian the map T on C/cg defined by Tx=Tx
is a kernel on C/Cg .

Two elements x,yeC are called p-almost everywhere (a.e.)
equal if x=y.

For a sequence (Xd)nEN in C we shall define as usual the
upper limit and the lower limit by:

lim sup x_=A V X_ ;
n mZn

lim inf x =V A xX_ .
n m2n

We shall say that the 1limit of the sequence (xn)neN exists
if limsup xn=liminf X and that the 1;mit exists p-a.e. if limsun X =
=liminf in. In particular, if u(limsup xn)<w and u(limsup xn)=
=u(liminf,xn) the limit exists u-a.e.

The results of the maper can now be formulated.

The first one is the ‘natural extension 6f Hopf’s maximal
ergodic lemma. In order to formulate it,let us introduce the-followf'
ing notation: if T is a kernel on the o-lattice cone C satisfyina
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TC,c C_ and xe|c|, let us denote by rn(x,T)=rh(x) the elements defin-
ed'inductively‘by roXx)=0, rn(x)=x+Trn_1(x), n>1.
PROPOSITION. (Maximal ergodic lemma) Let C be a o-lattice

cone, T a kernel on C satisfying TC ¢ C_ and u a proner T-supermedian

measure. If x=x'-x"e|C| (x'eC, x"sC ) and XN- V r (x, T), N21, we have:
) =1

w(I + x")>u(1 + x") for every N1,

X

Proof. We shall use the same trick as in the proof of Garcia
for the classical ergodic lemma ([2]1)..

First, let us suppose that u(x’) and u(x") are finite. From
the fact that Xazrn(x,T) we infer that Txngrn(x,T) for every
n=0,...,N-1 (we put ro=0). Adding x in both sides of the last inequa-

. . + .
lity, we obtain that HXN+X;5ﬁJ for n=0,...,N-1, that is:

Tx;+xsz
Or:.
Tx§+x'+x;zx"+x§

if we apply the kernel I=I 4+ to the last-inequality, we ob-

tain: ) xN

+ + +
+ ’ > " = "
ITXN Ix'>2Ix +IXN Ix +XN

’

and

u(xTx;)w(Ix')Zu(xx")m(xg) .

Usinqg the facts that I<identity and that u is T- suoermedian toqe-
ther with u(X )<=, we obtain the anounced inequality.
If x eC or x"eCs have infinite measﬁre,,it will suffice to

use the fact that u is prooer; standard limit arqguments will conclude
the proof. '

The following consequences of the precedina result can be
viewed as abstract potential theory results.

THEOREM 1. Let C, T and W satisfy the assumptions of the pro;
position and let x,VeG,,y being T-imvariant, The following are then true:
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(i) y= A (l/n)rn(x,T) s implies u(y)Zu(IvX);
: n=1 : : -

(ii) y< v

(l/n)rn(x,T) implies u(Y)Su(va).
n v

1
Proof. We shall apnly the précedinq - proposition for. z=ev-x,

where €>1 is arbitrary. We have:

(T,+ zY)Zu(Iz+ X)
N N

where ZN=
n

<z

rn(z,T). Let N tend to infinity (the sequence Z;
1

being increasing). We obtain:

(*) w(I Ley)2u(l ,x) ,
2t zt

where

I .=I =1

+ " e w

n-1 +

[v rn(z,T)f -[ey— A 1/n(x+Tx+...+T
n=1 " n=1

x)1

the last equality beina an easy conseaquence of the T-invariance of y
and the distributivity laws in |C].

Moreover, the inequalities y= A ((l/n)'rn(x,T)) and e€>1 im-
n=1
ply, as a direct consequence of the definition of the indicator ker-
nel, that I +=Iy' Thus ‘the inequality (*) can be written:
7 -

Su(y)=u(Iyey)2u(Iyx) .

In order to obtain the inequality- (i) it is sufficient to
consider € 1.

The proof of (ii) goes along- the same way if we.apply the
ergodic lemma to x-ey, where 0<e<l. '

The following is an immediate consequence of theorem 1.
COROLIARY 1. Let C, T and W satisfy the preceding assumptions and let XeCq have
finite u-measure. Then every T-invariant finite element yeC satisfy-

ing xsys V ﬂ/ﬂrn(x,T) equals x u-a.e. Sitmilarly, every T-invariant
n=1 i ’
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element yeC having the same support as X u-a.e. (that is u(IVx)=

=u(x)) and satisfying A (l/n)rn(x,T)sst, equals x u-a.e.
n=1

Proof. For the first mart we have from Theorem 1 (i) that
u(y)Su(Iyx). But u(Iyx)Su(x) so u(x)=u(yj, which combined with v>x
and u(x)<e concludes the proof.

Similarly the proof of the second nart makes use of Theorem
1 (ii).

It is interesting to adplvthis corollarv in the case when
C is a cone of positive measurable functions -on a c—finite measure
épace, (X,X,u) and T restricted to Ll(X,X,u)r\C is a nositive con-=

traction. For example if feL,n C and sun(l/n)(f+Tf+...+Tn-l-f)=m

n>1
u-a.e., our results aserts that there exists no T-invariant finite
positive measurable function qreater than f u-a.e. Also if f#0 is in

L.NC and inf(l/n)(f+Tf+...+Tn_;f)=0 u-a.e., than there exists no

1 n>1
T-invariant measurable positive function less than:f u-a.e. and hav-
ing u-a.e. the same support as £,
The second corollary can be viewed as a disjointness result
in the Riesz decomposition.
COROLLARY 2. Let C, T and w be as above. Sunpose that xaCS

18 T-supermedian and X=G_u+v <s the Riesz decomposition. Then:

T

u(v) =u(IVx) .

In particular if w(x)<e we have u(IvﬂTu)=0, that 78 the invariant
part and the potential part have w-a.e. disioint supnorts.

Proof. From theorem 1 (i) we have that u(v)zu(IVx) because

o oo
v is invariant and v= A Tnx=_A (l/n)rn(T,x). The opposite inequality
n>1 n=1

is obvious. For the second pmart anplv the kernel I, and the measure
U to x=Gpu+v. -

Our generalisation of the pointwise ergodic theorem is also
a consequence of theorem 1. However the abstract setting and the ab-
sence of units- involves some more assumptions.

THEOREM 2. (Ergodic theorem). Let C, T be as above and let u

t
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be a T-invariant proper measure.’Let XeC and sunpose that
W(lim sup (l/n)rn(T,x))<w..Then the following are equivalent:
n—e : '
a) lim sup(l/n)rn(T,x) and lim inf(l/n)rn(T,x) have u-a.e.
the same support;
~ b) the limit of (;/n?rn(T,x) exists u-a.e;vMoreover in every
case we have:

U (Lim inf(1/n)r  (T,x))=p(lim susn(l/n)rn(T,x))=u(Ilim inf(1/1_‘)]_,n(x'.1.)X)

Proof. Let us use the following notations:
x*=1im sup(l/n)rn(T,x)
X,=1lim inf(l/n)rn(T,x)

By standard arguments we have .Tx,<x, and Tx*>x*, which imp=<
lies, by the T-invariance of the measure u and the supposition that
x* has u~-finite meésure that x* and i* are T-invariant in (C/Cg)s .

The implication b) =) a) being obvious, in order to prove
the opposite one, let us remark that x*< ;ltl/n)rn(T,x) and

n=

(l/n)rn(T,x), so by Theorem 1 used in C/ norove have:
1 . : c .
o

n> s

X2
n

ﬁ(i*)zﬁu;{*i)

and
B(x*) <n(I, %)
x*

As, by usual arguments, it is easily seen that u(I' x)—u(I x) and
u(I-*x) =u(I *x), the last two ineaqualities conclude the oroof

Finally, let us remark that in the- clasglcal Ll—case_dis-
cussed above, Theorem 2 gives necessarv and sufficient conditions
that, for feL1 , £20, the ergodic average converges u-a.e., in the case
that lim sup 1/n(f+Tf+...+Tn_1f) is ihtegrable; without knowing the

n-o

L_-behaviour of T.
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