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ON COMMUTATIVITY OF INTERPOLATION WITH INTERSECTION 

Lech Maligranda. 

The purpose of this note is to present a partial answer to 

a problem of Peetre on commutativity of an interpolation method 

with intersection. We are interested, in particular, in the 

case of the real interpolation method. 

^irst, we recall some notations from the interpolation theory used 

in [2] and [9]. 

A Banach couple A= {A .A-,} is a pair of Banach spaces A and 

A^-both continuously imbedded in some Hausdorff topological vector 

space (thus A + A,. is defined) . F is an interpolation method if, 

for any- Banach couple A={A .A.}, F(A) is a Banach space such that 

A WAyC-F(A) c A + A.., a na for any two Banach couples A=|A ,A.} and 

B= {B ,B.}r every linear operator that maps A boundedly into B 

and A- into B- also maps F(A) boundedly into F(B). 

There exist plenty of interpolation methods, but we will use the 

real interpolation method. For any Banach lattice of measurable funce 

tions $ on (IR+,dt/t) , IR+= (0,«>) containing min(1,t), the real 

interpolation method (or K method) K (A) is defined to consist of 

all a € A + A- such that K(-,a;A) (E $ with the norm ||a|| ,-v = 
o i K$\A> 

= || K( • ,a;A) II , where for a € A + A. and t > 0 
11 " $ o 1 

K ( t , a ; A ) = i n f { | | a j | A + t | | a^\\ A : a = a Q + a i , aQ € AQ, a,- € A.,} . 

Observe t h a t in p a r t i c u l a r i f * * Lp (B , d t / t ) , O < 0 < 1 , 1 < p < « > , 

t-y 

the space K (A) coincides with the familiar space A of Lions — 

Peetre. 

Now, we should return to topic. 

Let A ,A1 and A« be Banach spaces continuously imbedded in 
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some Hausdorff topological vector .space, and let F be an interpola­

tion method.. We consider the Peetre's question: when is it true that 

(1) F(A Q fA 1n A 2) = F(AQ,A1) fl F(A Q fA 2) 

up to equivalence of norm; it is obvious that we have inclusion c. 

There arises the question when in (1) inclusion c can be replaces 

by equality. 

This problem is not yet solved but there are some partial results. 

The purpose of this note ..ds to present a partial, answer to problem (1) 

by giving some general examples,. 

We note that if for a e (AQ+A1)tn (AQ
+A2) the following inequality 

(2) K(t fa;A Q fA 1n A 2) £ C (K(tf a;AQf A,.) + K.(tf a;AQfA2) ) 

holds then so does equality (1) for the real interpolation method-

F = K * -

1. Peetre in [7] proved that if-{A -A-} is a quasi-lineariz-able 

couple , i.e.f there exist linear operators Vi(t) : A n + A* •-> Aj-r-i^=-Qr1 

(depending on t> 0) such that 

V0(t)a+Vt(t)a= a and || VQ(t)a|| A +t|| V1 (t)a||-- -< C^K^t.^A)-
o . • 1 

for a€ A + A- f 

and i f moreover 

II V-jltUH A < C 2 . | | a | | A for aG A2 f 

then inequality (2) holds. 

The couples {C fC
1} f {Lp

 f L
P }, {LpC-Rn), Wk/P(IRn)} are quasi-lineari-

o w1 
p o p1 , • 

zable and the couple {L f L } , p f p1 " is not quasi-linearizable 

(see [6]). 

2. It turns out that even for Hilbert spaces equality (1) need 

not holdf as it was shown in an example by Triebel [8]. 
2 2 ~~ 

Namelyf we consider three spaces: L = L (0f1)f Sobolev space 
w 1' 2 = W 1 / 2 ( 0 f 1) and weighted L 2=L 2(O f1) with weight 
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\ ? ( x ) = m i n ( x , 1 - x ) " 1 / 2 . Then for 06 [ 1 / 2 , 1 ) we have 

(wQ
e'2 0 ?M/2 

< L 2 ' w 1 ' 2 n L 2 ) e , 2 = ( L 2 , w o ' 2 ) e / 2 = j 1 

w^ n L^, 0 = 1 / 2 

and 

( L
2 y ' 2 ) 0 f 2 n ( L 2 , L 2 , 0 f 2 = w ^ 2 n L 2

9 = w ^ 2 , 

where W®' denotes the closure of 0^(0,1) in the space W0' . 

Hence equality (1) does not hold. 

.3. If A = A1 + A2 then inequality (2) holds with C=2. Namely, 

if 0 < t < 1 then from theorem 3 and 2 in [4 J we have 

2"1K(t,a;A1+A2,A1 nA2) <_.K(t,a;A2,A1) + K(t,a;A.1 ,A2) 

= K(t ,a ;A 1 +A 2 ,A . l )+K(t ,a ;A 1 tA 2 ,A 2 ) 

and if t .> 1 then obviously 

2K(t,a;A1+A2,A1 n A2) = 2||a||A + A = K(t,ajA1 +A2,A.|) 4 

+ K(ti,a;A1+A2,A2) 

Hence inequality (2) holds with C=2. 

4. J.Peetre posed in [7] the problem of equality (1) for F=K 
0#P 

if we replace arbitrary Banach spaces by symmetric spaces. We prove 
here that not only (1) but also inequality (2) is true even for Banach 
lattices of measurable functions. 

Theorem 1 (see [5]). If A
0'

Ai and A2 are Banach lattices on 

(n,I,u) then inequality (2) holds with C=2. 
** 

P r o o f . For each e > 0 there e x i s t decomposit ions a= a +a.= 
o 1 

=a'+a 0 such t h a t o 2 

a 0 l l A .+ t | | a-,|| A < d + e ) K ( t , a ; A o , A 1 ) and 
o 

l l a ò " A + t | l a 2 І І A - 0 + e ) K ( t , a ; A 0 , A 2 ) 
o 2 
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Put U={sGíl: |a1 (s) | <_ |a2(s) | u-a.e.} and define b -b- by 

f a Q ( s ) , s є U 

b o ( s ) Ч 

f a . ( s ) s Є Ü 

Ь . ( s ) = ^ 

a Q ( s ) , sGfiv.U a 2 (s) , s e n \ U , 

Then b Q

+ b 1 = a and | b Q | <_ \ a Q | + | a Q | , \b^\ <_min(\a^\ , \a2\) y - a . e . 

Hence . . 

K < t , a ; A o , A l П A 2 ) < , | | Ь 0 | | + t | | Ь 1 

A o A l ПA ? 

i U a ol l A + II aoH A * - t m a x ( | | . a 1 | | . , ! ! a 2 | | ) 
o o 1 2 

< 2 ( 1 + e ) K ( t f a ; A Q f A l ) + 2 ( 1 + e ) K ( t , a ; A 0 , A 2 ) 

and the proof is finished. 

5. The following result is an impor^ '~nt application of the 

Theorem 1. 

Theorem 2. If all spaces A ,A
1
 and A

2
 can be obtained by 

the K-method from a fixed Banach couple B = {B .B.}, i.e.
f 

A
±
= K

$
 (B) , i = 0

f
1

f
2 then inequality (2) holds. 

P r o o f-.- By the Brudnyi-Krugljak theorem ([3]
f
 Th.8.1) 

there exists a constant ^
 =
 Y (B) < 14 such that 

(3) K(t
f
a;K

$
 (B) , K

$ p $
 (B) ) < Y-<(t

f
K( • ,a;B) ;7QfT^ 0 T

2
) , 

o 1 2 

where T
±
 = {f : f € fl^ , || f || ~ = || T\\ $ and F:= inf {g:g^ | f | a.e. 

and g concave}. 

The same argument as in the previous theorem shows that 

inequality 

(4) K(t fb;? Q f? 1 D T2) < 2(K(tfa;rof?'1) + K (tf a;?^,?^) ) 

holds. 

Since to. are Banach lattices we have 
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K(t,K( ,a;B);Ф
0
,*

±
) * inf{||x

0
||

 ф
 + t|| x

±
||

 ф
 :K( • ,a;B) < x^+x^} 

o i 
ì 

< infíłl K(.,ao;B)|| +t||к(-,a
i
;B)|| :a=a+a.} 

o i 

= K(t,a;K. (B) ,K_ (B)) , i= 1,2. 
o

 Ф
i 

Hence 

K(t,a;A ,A.n A
2
) =K(t,a;K

$
 (B, , K

$ n $
 (B)) 

o 1 2 

[by inequality (3)] 

< ytXt.Ki* ,aLiB);V ,9*^ n T^) 

[by inequality (4)] 

< 2Y(K(t,K(.,a;B")
;
r

Q
,^) + K(t,K( • ,a;B) ;*^,*^) " 

[by the above inequalities] 

< 2Y(K(t,a;K (B),K, (B)) + K(t,a;K. (B),K. (B))) 

*o -1 *o
 92 

= 2Y(K(t,a;A
0
,A

1
) + K(t,a;A

Q
,A

2
)) • 

and the inequality (2) holds. 

Immediately from Theorem 2 follows that if A =A-+A
2
 or 

A =A-, or A = A
2
 then inequality (2) holds. 

In the special case when $
i
 are weighted L°°-spaces with some 

concave weights, Theorem 2 was proved by Asekritova [1] in her 

dissertation by a quite different approach. 

The problem what is the necessary and sufficient condition for 

the validity of (1)# is still open. 

I am grateful to V.I.Ovchinnikov who made accessible for me 

paper [1] at the time when I was in Woronez in December 1984. 
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