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EPIMORPHIMS AND COWELLPOWEREDNESS OF EPIREFLECTIVE 121
SUBCATEGORIES OF TOP

D.Dikranjan and E.Giuli *

Abstract. A functor FA: Top — Top induced by a given epireflective subcate-
gory A of the category Top of topological spaces is used to charac-
terize epimorp\Q’isms in some familiar epireflec_t.ive subcategories of
Top and to solve for these subcategories, the problem of the cowell

-poweredness. Furthermore an ordinal number EOA(X), for each XeTop,
is introduced and it is computed in several examples.

As an application it is shown that there is no epirefléctive subca-
tegory of Top which is properly contained in the subcategory Top2 of
all Hausdorff spaces and whose extremal epireflective hull is Topz.

1. In 1975 Salbany ([14)) introduced a closure operation []A:Zx-ozx
defined on subsets of a topological space X by-a class A of topolo-
gical spaces. In 1980 Giuli ([6]) used that closure operation to study epi-
reflections ’ih epireflective subcategories of Top,He pointed out that epi-
morphisms in an epireflective subcategory A of Top are precisely the
continuous maps which are dense with respect to []A .
Recently Dikranjan and Giuli ([4]) characterized []A for some fami-
Liar epireflective subcategories A of Top. They showed that,as in the
classical case of Hausdorff spaces,the closure operation []Acharac-
terizes the spaces X of A in terms of the A-closure of the diagonal
AX for A=Top,, FTZ, Topzﬁ'P(O-dim), (see 1.1 below).

In this paper we will use the previous closure operation to de-
fine, for each epireflective subcategory A of Top,a functor
FA:Top—;Top. Then some sufficient conditions for the cowellpowered-
ness of A are given and they are used to answer the question of the
cowellpoweredness of some epireflective subcategories of Top. Fur-

thermore an ordinal number EOA(X) (called epimorphic order of X with

* Talk %iven by the second named author. The paper is in its
final form and will not be published anywhere else.

This paper is in final form and no version of it will be submitted for publication elsewhere.



122 D. Dikranjan and E. Giuli

respect to A is introduced for each X:TbP and in several examples it is
computed.Iterations of .the functor FA and the relation with the A-re-
flection functor are also studied.

We will use the previous closure operation in a forthcoming paper

for a new approach to the study of A-minimal and A-closed spaces

([s].

1.1. The following subcategories of Top are symbolized as follows

Topi = the subcategory of topological spaces satisfying the Ti-axiom
(i=0,1,2)

FT2 = The subcategory of functionallyHausdorff spaces, i.e., spaces X

such that for any two different points Xqr Xy there exists a

continuous map f:X—R with f(x1) # f(xz).

Top3 = The subcategory of regular Hausdorff spaces.

P(Top3) = The subcategory consisting of spaces whose topology is fi-
ner than a regular Hausdorff topology.

Topzw = The subcategory of Urysohn spaces, i.e.,spaces such that
for any two different points there exist disjoint closed
nbds.

TOPB%, = The subcategory of completely regular Hausdorff spaces.

O-dim = The subcategory of O-dimensional spaces, i.e., Hausdorff

spaces with a base of clopen sets.
P(0-dim)= The subcategory of spaces whose topology is finer than a
O-dimensional topology, i.e.,spaces in which every point

is the intersection of the clopen sets containing itC([12]).

We recall that a full and isomorphism-closed subcategory A of Top
is said to be epireflective (respectively bireflective, extramally
epireflective) in Top if for each topological space X there exist
rA(X) belonging to A and an epimorphism (respectively bimorphism,
extremal epimorphism).rA:X—orA(x) such that, for each A& A and con-
tinuous map f:Xf—bA there exists a(un?que)continuous map f':rA(X)a
~—»A satisfying the condition raof'=f. Ta is called the A-reflection
of X..

A is epireflective in Top iff it is.closea under the formation of

products and subspaces (= extremal subobjects). It is extremally
epireflective iff it is epireflective and contains finer topologies.
It is Bireflective iff it is epireflective and contains (all) indi-
screte spaces. .

Every class B of topological spaces admits an epireflective hull
E(B) (i.e., a smallest epireflective subcategory containing A), an
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extremal epireflective hull P(B) and a bireflective hull I1I(B).

ALL catedories listed in 1.1. are epireflective in Top. Topi , for
i=0,1,2,2%, and'FTzzare extremally epirefiective in Top. For all
categories A listed in 1.1. the subcategory A = {X € Top : ro(X)eay
(where re is the Topo-reflection) is bireflective in Top. '
T°p3$' FT2 and f333 (subcategory of completely regular spaces): are
respectively the epireflective hull, the extremal epireflective hull
and the bireflective hull of the real line R in Top .
For general results on epireflective subcategories of Top see [7,81
The categorical terminology is that of o] .

In what follows A will denote an epirefléctive subcategory of
Top. For each pair of continuous maps (f,g:X —Y), Eq(f,g) will
denote the equalizer in Top of f and g (i.e., Eq(f,g) ={xeX:f(x)=

= g(x)} ).

1.2. - befinitions. (a) A subset F of a topological space X s

i"said to be closed with respect to A (in short A-closed) in X if

there exist AtA and continuous maps f,g : X— A such that'
Eq(f,g) = Fs
b) We will define A-closure of a subset M of X as follows:

[M]ﬁ = N{FecX : NcF and F is A-closed}
When no confusion is possible we write [M]A or simply {M] instead

of [M]i -
c) If x%M and f,g:X—sA,AE A, are continuous maps such that

McEq(f,g) and f(x) # g(x) then, (f,g) is said to be an A-separa-
ting pair for (x,M).

By definition x #[M]A iff there exists an A-separating pair for
(x,M). The family of all A-closed sets of a topological space X tri
vially contains X and, by the productivity of A , it is closed under
the formation of intersections (i.e., it is a Moore family). Thus the
A-closure is a closure operation in the sense of Birkhoff D.
Furthermore [o]A =p for all epireflective subcategories A different
from the trivial subcategory Sgl consisting -of topological spaces
whose underliyng sets have at mYst one point.

Even if [M]Au [N]AC [MUN]A for each M,NCX, the epireflective hull
of an infinite strongly rigid space (the continuous self-maps are
precisely the constant maps and the identity map ( ﬁO])) provides

an example of a non-additive closure operation ([3,4]).

2. The following Lemma is very useful in the sequel.
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2.1. Lemma. (a) For each X ¢ Top and Mc X, the following holds:

X -1 ra(Xx)
= « A ).
(v], = o Lryem],
Thus A-closure is additive (thus a Kuratowski operation) for each

X £ Top iff it is so for each A g€A.
(b) For each X e€P(A) and Mc X, the following hold

[Jhen = [A1407 = E1 = ol

Thus P(A)-closure 5 a Kuratowski operation iff A-closure is.

Proof. (a) By 1.2. (x) of [4] A ([M] yelr (M)]rA(X)' .

{H]AC(rA)— (["A(M)];A(X) ). On the other hand, if x ’f[wl]); and

(f,q:X—>A, is an A-separating pair for (x,M), then (f', g':rA(X)-'A}

where f'o A f and g'orA = g, is an A-separating pair for (rA(x),rA(M)) » SO
-1 ralx)

x f (rp ([rA(M)]A ) .

b) For each X g P(A), T’ X—sr, (X) is the identity on the under-

lying sets then, it follows from (a) that [M])F(‘(A) []:’(:))()

x)
Furthermore [\‘1];?;))() C [M];A follows from the inclusion AC P(A).

To show thth [M];A(X) [M]P(A) take x ”([M])F(’(A) and a P(A)-separating

A
erf =f'orA and erg = g'orA, is an A-separating pair for (x,M) in

pair (f,g:X—Y) for (x,®) . Then (f',g':r (X).._,rA(Y)), where

X) .
ra, sox f‘MJ A . For the last equality note that rA:X-.rA(X)

s . . N X - FA(X)
is the identity on the underlying sets then (a) gives [M]A —[M]A
for every HMcX .

For each (X,Tv) ¢ Top , T, will denote the topology generated in X
by the A-closure, i.e., the coarsest topology on X for which all

A-closed sets are closed.FA:Top—-»Top will denote the functor which assigns to
(X T)eTop the space (X,ZA). For each continuous map f:(X,Z) —
~(Y, &) in Top the continuity of f = FA(f):<X, ZA)—o(Y, G‘A) follows
from 1.2 (x) of [4] .

By 2.1 of [4] for every (X, Z)eTop KA is the initial topology on X
induced by the map X-A'F (rAX), uhere "a is the A-reflection of X.
This is why (X, Z,) is 1nd1screte iff r X is a singleton. On the

A A .
other hand, if A#Sgl,then for each (X,%) g Top, (X,'&M)zTop1 iff

rA:X—-v rAX is injective. In particular if A is extremally epireflec-
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tive, then (X, vA)zTop1 iff (X,z)eA. Conditions ensuring (X,t:“)zTop2
are discussed in 2.8.

Till the end of this section, we study the properties of the functor
FA' Set A°=1X&Top:FA(X)=X}. Clearly (x,z)on iff rA(X,t)tAonA and
X has the initial topology with respect to rA:X—orAX.

In the following theorem we give explicitly ;A for various cate-
gories A including those listed in 1.1. First recall the notion of
Pp-closure introduced by Velichko ([17]) For (XZ)€Top and MeX,

CL9M={x£X: for each nbd V of x)\?r\M#O} .

Analogousl;c_ one can introduce ©-interior IntBM=IxsX: thereexists a
na¢ V of x,Vc M}. A subset M of X is said to be B-closed (B-open) if
M=Cl9M (M=InteM)- The ©6-closure is additive but not idempotent in
general. The idempotent hull of Cle is []TOPL% since for each
(X,T)eTopyy and MaX , CL MC [n]Topw and M is 6-closed iff M is
Topgyy ~closed (see 2.5(b) of [4] ). 6-closure was also studied by
Schréder [15] .

2.2. Theorem.(a) If A is bi'reflect'ive (resp. A=Top1l) then 'cA is the
discrete topology for every (X,Z)eTop (resp.(X,Z)e A).

(b) 1f A=Topi, i=2,3,3%, or A=0-dim, then ZA= Z for each (X,T)eA.

(c) If A=P(B) then for each (X,Z)gA, rA=G’B' where (X,¢) is the
B-reflection of (X,Z). Thus the functors FA and FB coincide.

(d) For B=Top3,Top3E and 0-dim and A=P(B), F, coincides on A with the

B-reflection. A

(e) For A=Top° and (X,t)sTopQ';‘A is the topology on X having, as
open base,all locally closed subsets of (X,Z) (finite intersections
of open and closed sets in (X,Z). Thus ;A3zand (X,Z‘A)zo-d‘im.

(f) For A='I’opub and (X,Z)sA, Uzb’A iff U is 6-open. In particu-
Ltar l==cA iff (X,t)sTops.
Proof.(a): By 1.10 (a) of [1.] in this case the A-closure coincides
with the identity operator.

(b); By 2.8 (i) of {4] in this case the A-closure coincides with
the ordinary closure.

(c)iIt follows from 2.1 (b). (d):It follows from (b) and (c).

(e):As pointed out in 2.9 of [4] in this case the Top -closure
coincides with the well-known front-closure ([1],[12]),

fr cl M=fxeX: for each nbd V of x,VA IKi~M20}.

Thus UeX is rA-open iff for each xsU there exists a nbd V such that
VAXNUIAXY =0, i.e. IXtAVE U. Clearly any VAfXL is clopen in (X,cA),

so (X,UA)to-dim.
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(F) Obviously Cly is additive, thus [] be'lnq its idempotent
hull will be a Kuratowski operator (in fact, Cl ([M]U[N])-
= clg(Mvet ([N e {InJ1emvI] = MJvN], so [H]uEN] is 6-closed,thus

Topz”p-closed) The Llast assertion is proved in 2. ln‘[lo]

2.3 Remarks (a). The A-closure is additive in all subicategories A
of Top Llisted in 1.1.We do not know any example of non additive A-
-closure operation different from the case A=epireflective hull of
a class of strongly rigid spaces.

(b) By the explicit form of z oPs it can be seen easily that for

(X,Z)zTop,‘zTop is discrete iff for each xsX there exists a Z-nbd

V such that {x{ = iXiAV.
The subcategory of such spaces of 'I’op° will be denoted by TD'

(c) The functor F preserves embeddings and finite products
(more precisely, for eagh family i(Xi,ti)3 el in ‘I’opo with (X,2)=
=TT (X, ,t ), 'TT (T.) holds iff all but a finite number of the spaces

islI i Top iel i Top
Xi are s1ngletons).
In general the functor FA is submultiplicative, i.e., for each family

{(X.,z.)!i‘I in Top,(_i-l;ri zi)A;i.l:rI(vi)A' The following examples show

\

that in general FA doe; not preserve neiter embeddings nor finite

products.

2.4, Examples (a) Let (H .z') be the space given in 1.3 of [l.]
Then Fuf0,0)} is discrete in W}, Z'), while Fu {(0,0)} is not discre-
te as a subspace of (H, 'E’ Topsy ) which is compact.

(b) Let A=E §{(X,Z)§, where (X,t) is an infinite strongly rigid
space . Then v, is the cofinite topology on X, so AX is not closed
in (XxX, tA X ZA). On the otherzhand AX is the equalizer of the pro-
jections, so/Ax is closed in (X, (tz)k). Thus (U)(Z)A>7:A X :A'

/

2.5 Proposition. If FA is finitely multiplicative, then for each

(x,Z)e A, (X,ZA)}; Topz .
Proof. Consider AX in (XxX, zA sz); since Ax is always

A-closed in (XxX, TxZ) and (1:xz:)A = tA 3 zA this implies that AX

is closed in (XxX, FA X rA), ) (X,tA) gTopz.

In the following Section we show that there exists (X,c):Top,&
with (X, Zp o o ) § Top,, . (Hence Fropy 8 MOt finitely multiplicati-
ve. ; :

Till the end of this section we study cogd/‘lt‘lons which ensure )
rA=5 or (X,vA) discrete. /

For (X, T) £ Top denote by I(X,T) the set of all isolated points
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of (X,8) .

2.6 Lemma. For any epireflective subcategory A of Top and each
(X,Z)A '

(%) 1(X,Z2) cI(X, Z'A).

Moreover, (*) holds for each (X, Z )egTop iff A is bireflective or
A=Top°.

Proof. Consider first the case when A is neither bireflective -
nor Topo. Then Ac'Top1,so for every (X,Z)e A (X, ?:A)tTop,l holds.
Therefore each isolated point of (X,Z) is Z-clopen, thus also
rA-cLopen by 1.2 (vi) of [4] . This proves (*x). Remark that (*) does
not hold for Sierpinski's two-points space (S,Z) (two points 0,1
with {0f unique proper open set) since I(S,Z )#0 and I(S, ZA)=0 (the
space (S,ZA) is indiscrete since the reflection of (S,Z) in A is
a singleton because of AcTop,')».

It remains to show that (*) holds for every (X,Z)gTop if A is
bireflective or A=Top°. This is obvious in the first case since CA
is always discrete according to 2.2 (a). Assume A=Top0 and take an
arbitrary (X,Z ) € Top. Then for each x& I(X,Z) the characteristic
(continuous) map f:X —»S of the open set {xf and the constant at 1
form an A-separating pair for (x,X~[xf ) so sz(X,CA).

In the following proposition we show that the converse inclusion
of (*x) for any space (X,ZT)gE A implies ACTopZ.

2.7 Proposition. For each epireflective subcategory A of Top the

following conditions are equivalent:

(a) ALTopz;

(b) for each (X, T)&A rA$5 ;

(c) for each (X,T) & Top tAQ z

(d) for each (X, T)EA 1(x,Z)=1(X, CA) H

-(e) every (X,T)EA 1is discrete whenever (X, UA) is discrete.
Proof. The equivalence (a) &> (b) was given in 1.10 (b) from Llo]

The equivalence (b)&(c) follows from 2.1 (a). Clearly (b) implies

(d) and (d) implies (e). To finish the proof we have to show (e)=(a).

We can assume without loss of generality that A is extremal-

Ly epireflective. In fact, if B=P(A) then because of 2.2 (c) the

functors FA and FB coincide. To show that each (X, Z)&B satisfies

(e) ‘consider the reflection (X, ) of (X,¥Z) in A. Then by 2.2 (c)

z’a =c’A. Now if tB is discrete then by (e) (X,G6’) is discrete, thus

(X, T) is discrete too. So we can assume that A is extremally epire-
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flective, i.e., A=B.
If A is bireflective then A=Top and(e) is not verified since

tTop is always discrete. Therefore AcTopo. Now A=To‘po contradicts

(e) since there exists a non-discrete space (X, T) &TD, then t‘l‘opo
is discrete.

We have shown that(e) implies AcTop,'. Assume there exists a
space (X, ¥ )& A such that (X,t)f Topz. Then there exist two distinct
points x and y in X such that for any nbd V of x and any nbd U of y
in (X, ¥) )
(*%x) - vnu # 0.

Now set Y=fpj} wuX~fx,y] and consider the following topology € on Y.

AlLL points different from p are isolated, for nbds system of p take
all intersections (**) added the point p. Clearly & is non discrete
because of (**)., Consider the maps fx and f of Y into X defined by,
fx(u)=fy(u)=u if u#p and fx(p)=x, fy(p)=y. The continuity of fx and
f follows directly from the definition of & . On the other hand
both maps are injective, hence (Y, &)eA because Xg A and A is extre-
mally epireflective. Now the space (Y,& ) does not satisfy (e) since
o, is discrete. In fact by 2.6 I(Y,6)Dd I(Y,e)=Y{p} and (fx,fy)

A
is an A-separating pair for (p,Y~N{pP}), so (p} is G’A-open.

3. It is well known that Tol:a2 is a cowellpowered category, i.e.,the
class of all Topz-epimorphisms (i.e. dense continuous maps) with do-
main a fixed Hausdorff space has a representative set ([7]).

In 1975 Herrlich [9] first produced an example of a non cowellpowe-
red epireflective subcategory of Top: the epireflective hull of a
proper class of strongly rigid spaces such that the continuous maps
between them are precisely the identities or the constant maps.

In 1983 Schrdder showed that Topz‘/& is not cowellpowered ¢ [16]).
He produced for each ordinal number p a Urysohn space Yp of cardi-
nality Noocard (}3) and an embedding e :0—’Y.P , where @ is the
space of rat'iona_L numbers with the usual topology, such that eg is
a Topzw-epimorphism.

In what follows we shall show that all remaining categories Listed
in 1.1 are cowellpowered. The following proposition given in [4]
and [6] will be used.

3.1 Proposition. f:X—Y is an A-epimorphism iff f(X) is A-dense in
Y, dce., [FOO] =Y.

3.2 Lemma. Let A and B be epireflective subcategories of Top and let
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F:A—»B be a functor satisfying the following conditions:

(1) F.preserves epimorphisms, i.e., for each A-epimorphism f:X-»Y
the map F(f):F(X) —>» F(Y) is a B-epimorphism;

(2) F is a concrete functor, i.e.,if U:Top —sSet is the forgetful
functor then WF=U.

Then A is cowellpowered whenever B is cowellpowered.
Proof. Trivial.

3.3 Corollary. Let B be a cowellpowered epireflective subcategory
of Top, then so is P(B).

Proof. For A=P(B) and F=rB-the B-reflection- apply 3.2. Clearly
F satisfies (2), on the other hand,by 2.1 (b) f:X—Y is an epimor-
phism in A iff f=F(f):F(X)—>F(Y) is an epimorphism in B. Thus F sa-
tisfies also (1).

3.4 Corollary. If A is an epireflective subcategory of Top such
that for each (X, T)g A (X,‘KA) € Topz, then A is cowellpovered.

~Proof. For B=Top2 and F=FA we apply 3.2. Obviously (2) holds, on
the other hand for each epimorphism f:X—Y in A fX) is A-dense in Y
by virtue of 3.1. Therefore fiX) is dense in F(Y) hence f:F(X)—»F(Y)
is an epimorphism in B='Top2 and Top2 is cowellpowered.

For all subcategories of Top lis;ed in 1.1 except TOpZﬂJZA is

Hausdorff so all they are cowellpowered.

3.5 Corollary. If A is an epireflective subcategory of Top such that
FA is finitely multiplicative than A is cougllpouered.
Proof. By virtue of 2.5, A satisfies the condition in 3.4, so A
is cowellpowered.
Some familiar extremally epireflective subcategories of Top are
the extremal epireflective hull of a proper epireflective subcate-

gory (e.g. FT2=P(Top3%)). Top2 does not have that property as the follo-
wing proposition shows.

3.6 Proposition. If A is an extremally epireflective subcategory of
Top and for every (X, T)eA, 8A = ¥ ,then there does not exist a pro-
per epireflective subcategory BC A such that P(B)=A,

Proof. Since zA=c for each (X,2) & A,by virtue of proposition
2.7'A<:Top2. Assume there exists an epireflective subcategory B of
Top such that A=P(B).

By 2.2 (c), for each (X, Z)sA with Boreflection rB(X,C)=(X,€),
!:A= r’B holds.'since BcAcTop2 . U’Bsc‘, thus we get !:=UA= 6‘Bse'.
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"0On the other hand always Zz2ze¢ holds, so for each (X,z‘)sA,rB(X)‘)’O(;t)-
Therefore B=A. i

3.7 Question. Does there exist such a B as in 3.6 for A=Top2”'? By

virtue of 3.3 such a B will not be cowellpowered.

4., In this section we consider iterations of the functor FA:Top—bTop
defined in section 2. Let A be epireflective subcategory of Top,then
for each ordinal number &« we define a topology rA"' on X in the fol-
Lowing way: UA°= T and &'A‘u =(!"A.¢)A ._for- anyol; if &« is a limit ordi-
naLzA.L= }"‘I Z'A, . It is easy to check that setting FA‘(X,5)=(X,UK,¢)
ug get a functor FAngop—-sTop. By virtue of 2.7 if AcTolefor each
(X,r')sTop’the topologies rA“ form a decreasing chain, so there
will exist an ordinal number o such that rk‘“" = rA"‘ .
4.1 pefinition. Let AcTop2 and (X,TZ)g Top, the smallet ordinal o,
such that rA"" = T.a Will be called epimorphic order of (X,Z) with

A
respect to A and will be denoted by EO _(X,Z)

A .
In particular EOA(X)=0 iff XsAo, otherwise EOA(X)=1+E0A(FA(X))
with easy check .
Epimorphic order can be defined in a similar way also for catego-

ries A such that L‘st for each (X,T)& Top .

4.2 Examples. Let (X, T) be an infinite strongly rigid space and
A=E{(X,Z));then UA is the cofinite topology on X, so rA(X, rA)
is a singleton, therefore (X,UAZ) is indiscrete, so EOA(X,5)=2.

(b) Let BC'.Bo and A=P(B), then EOA(X, T)=0 iff rA(X,t)zB and X
has the initial topology with respect to X —» rA(X,t ), otherwise
EO (¥, T )=1.

(c) Let (Y,, z,) be the Urishon space constructed in [16] for
an ord'inal‘;s satisfying 14gfw+1; then EoTopZ“ (Yf' z;,)=2

while EO (&4 ,U' )=1 . Moreover F 2 (Yo, Zale0-dim for the-
1791 5 pres

Top24

se ordinals.

(d) I1f A is bireflective and XgTop then EOA(X)=0 iff X dis di-
screte, otherwise EOA(X)=1 .

(c) For A=Top, EO_‘X)=0 iff r (X) is discrete and X has the

1 A Top1

initial topology with respect to X-—orTo (X), otherwise EOA(X)=1.

(f) For A=Top° and X € Top,EO0,(X)=0 if r (X) is discrete

A Top

o
and X has the initial topology with respect to x-.r‘l'op xX),

o
= =2
EOA(X) 1 iff r opo(x) is non discrete and belongs to TD, EOA(X)

T
e °
if rmpou)fro

Top
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We have no examples of epimorphic order greater than 2.

In order to calculate easier the epimorphic order we have to know
better the interrelation between the functors FA and rA,In what fol-
Lows wé omit the index A for brevity,A is always contained in ,‘l'op2 and EJAi“u. "Pe

For each X € Top consider the diagram

" id EX )
17T

Sy
12 SETT - rFX

By the definition of r there exists a unique continuous map

Sx:rx —srFX which makes commutative the diagram.

4.3 Lemma. The map Sx:rX —srfFX defined above is continuous when we
consider on rX the topology generated by the A-closure, i.e. Sx‘:FrX-b
—~+ rfX is continuous .

Proof. We have to show that for each closefli set M in rFX,S:1(M)
is A-closed in rX. By the continuity of r, r, ) is closed in FX.
By 2.1 (a)

-1 9x -1 -1 rX, _ -1
[r1 M] =r ([r(r1 M)] ) = r1 no
-1 -1 -1
on the other hand r1=S;r, ) r(r1 M)=sx (M), thus " M=

=r1¢ [s;1n] %. .
Applying r we get S; M= [SI‘M] which proves the conti.uity of
Sx cFrX —srfFX .

. . n .
4.4 Proposition. For each natural number n and each X 2ivp, rF rx is
. n
naturally isomorphic to rF X .

Proof. For any natural k<n the above lemma applied to the

k k+1
space Y=FkX provides a natural continuous map Skv:FrF X —rf X
which make~ commutative the following diagram
k+1
F

X
/rk\:m
K Sk

k+
FrfF X ——— rFk 1X

where rk and rk”

functor FN-k=1 we get the commutative diagram

are the corresponding reflections. Applying the
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where T is the A-reflection. By the definition of the reflection the-
. . . n n
re exists a unique continuous map Sn:rF rX —> rfF X such that Sﬁr=s.
Let us see that 8 1is an isomorphism. Again by the properties of the
reflection there exists a unique continuous map T:rF X —»rF rX
such that gr =RAr . Consider now the composition = S ofor ; b
0 P - §= ¢ n®rorr Y
the definition of § and ¢ we get ¥= eSer = gor =%r Thus the
N . n - n . o . n o’
restriction of ?csn on nro(F X) is the identity .
Since Fro is an epimorphism this gives Y'Sn=id on anrX . In the

. s s ] n
same way one proves$ that sn°T is the identity on rfF X .

4.5 Remark. Consider the semigroup & of all functors Top —» Top ge-
nerated by r and F . By the definition of r, r=r holds. On the
other hand 4.4 shows that for any n , there is an equivalence bet-
ween nFQr and nFn. Let 2} be the quotient of X with respect to
the equivalence of functors. Then the functors " and Fant with m,n
and t non-negaive integers (F° is the identity functor) represent
all elements of 1'(*). The multiplication is given by

+ + ' ' +n'4t’
G Em= e ™ e D= ™ enrt,  Fnr S (FMent ) = Foert"

It was mentioned in section 2 that for any X gTop FrX— FrX is

initial. Proposition 4.4 enables us to show it for any natural n.

4.6 Corollary. For any X ¢eTop and for any positive integer n,
F'X —sF"rX it initial.
s saes n n f n-1 . e sas
Proof; By the definition of F X, F X —= Frf X is initial.
-1 ) . -1
By A.L,an X is naturally isomorphic to an rX.
Consider the commutative diagram

L ST L ¥

r Sn-1

-1 -1
Fn rX _.__'J__. an rX

where ﬂn_1 is the natural isomorphism given in 4.4, r and ry are re-
flections.
Applying the functor F we get the commutative diagram

n-1

F% ——— Frf" X

Flex —l Fan-1 rX

(*) 2, is finie for all categories Listed in 1.1 except may be Top24, (See 4.2)
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with the sam underlying sets and maps. Now ror=Sn_-f is initial,

1 1
therefore r is initial too.

4.7 Remark. (a) The assertion of the above corollary is no valid for
n=0 (see (4.12 (b)). '

(b) We do not know whether 4.6 is true for infinite ordinals. A
‘positive answer would imply the validity of the following corollary
for arbitrary non-zero ordinals. '

4.8 Corollary. Let n be a positive integer and X g Top with rXt.A0

Then EO, (X)=n iff EO, (rX)=n .
A A o _n+1 n
Proof. By 4.6 EOA(X)sEOA(rX) since F rX=F rX would imply
n+1 .

F X = an . Since X —srX is surjective,different topologies on

. +
rX give rise to different initial topologies on X, 1'.e.,l=n 1X=an
n+1 n
i = s .
would imply F rX=F rX, thus EoA(rX) EOA(X)

It may happen rX z'Ao, i.e., EOA(rX)=0 and EOA(X)=1 if X —=>rX

isnot initial. The above corollary permits easier calculation of

the epimorphic order.

4.9 Example. Let (Y,,.?:P) denotes the Urishon space constructed for
the ordinal p in [15] . If po>w+1 one can see that Z=FTop2u&(Yf’zP)
is not even Hausdorff. However for every p>w+1 the Hausdorff re-

flection of Z is already Urisohn, i.e. rTopZ%Z=rTop2 Z. Moreover

there exist a continuous bijection F ( T ) X rz such

-1 Top24 Y«»\»1’ w+1
that rz X5F 2 (Y T ) is continuous and not open.

Topz.,’ w1’ w1

Since EO = is i 1 = -

Topqu(vwn’vwn) 2 this implies EoTopzy,(rZ) 1. By corolla
ri 4.8 EOTOPzVL(Z)ﬂ' so by the definitions of epimorphic order
EoTopzq‘(Yp’ Tap)=2 for pow+l,

The above example justifies the following definition.

4.10 pDefinition . Let P be an ordinal number, denote by A(P) the ca
tegory of all spaces X egA such that FY¥ (X)g A for each Ysp-
A
(e0) (o9)

Set A =/}}A(P),i.'e.,h is the category of all spaces X&A

such that F¥ (X)E€ A for each y<EO, (X). (o)
For example in 4.9 Y’,#Topéa‘) ., for A as in 4.2 (b) A =A .

4.11 Theorem. Let A be an epireflective subcategory of Top, then:
(a) Ao is bireflective in Top. (-
(b) Ar\Ao is bireflective in A, thus Af\AocA c P(AnAo).
(¢) If A is extremally epireflective then,for each ordinal p,
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»

(€] R : . . (o)
A and A are extremally epireflective; in particular A =P(AnA°).

Proof. (a) For any X £ Top define rA(x) =FA“ x), uhere.(=E0A(X).
Now for every YcA0 and any map f:X —»Y ° applying FA"‘ we get

f=F & (F):F o (X)—sF o (Y)=Y. Thus r is a bireflection of Top in
A A A 2 TR,

A .

o
(b) Follows from (a).

(c) Let Yeg A(P), then FP(Y) g A. For any subspace X of Y applying
to the embedding i:X —sY the functor FP we get i=FP(x) —» FP(y).
Since A is extrema[}yvepirefLe‘ctive this implies FP (X)2 A. For any
family ixii of spaces in A( , FP(X.De A, therefore F?(T"x ), having
a(;t))pology finer than that of TTF?(X ) belongs to A. Therefore
A

The rest is obvious.

is extremally epireflective.

4.12 Remark. Analogous theorem can be proved for categories A which

satisfy ;'gyA
flective subcategory of A and the coreflection is given by
F(X) —» X where oL=EOA(X).
(b) In 4.9 7Z—r (Z)is not initial (this shows that in gene-
Topo 4
ral- FX =~ rfX is not initial).

for each (X, Z) g Top. In such a case Ao is a core-

(c) Since Ao is a bireflective subcategory of Top ,Top=P(Ao) holds.
On vhe other hand always AO#Top. In fact, assume ACAO, then by 2.7
ACTopz. Since X& Ao iff rAX £A° and X——vrAX is initial, it suffi-
ces to find X g Top such that X-—»rAX is not initial. Now Ac:Top2

provides the following commutative diagram

X —————r X

N4

Topz

this is why a space X such that X =—srX is not initial,uill do (ta-
kelfor example,the' space Z from (b)).
The following theorem characterizes the categories A satisfying

(*)

A =A.

4.13 Theorem. For an extremally epireflective subcategory A of Top

the following conditions are equivalent:
(a) there exists an epireflective subcategory B of Top such
that BcBo and A=P(B).

) A =,
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Proof. (a) = (b) is obvious since, for any (X, Z)g A,(X, CA) BcA.
On the other hand (b) =» (a) follows from 4.11 with BaAMA,,

4.14 RemarkS. (a) By 4.2 (b) both conditions in 4.13 imply EOA(X)é 1
for any X g Top. We do not know whether the converse is also true.
Observe that if EOA(X)s 1 for every X&g A,lthah by 4.8 EOA(X)51 for
every X g Top.

(b)In general for any extremally epireflective subcategory A of
Top,A(‘q=P(Af\A°) according to 4.11 (¢), thds for Xg A ’EOAc.q(X)=1
iff X # Ao . On the other hand it may happen EOA(X) >'EOA‘.;§X)
(take for e¥:3ple X=Y, as in 4.2 (c); then for A=Top?% ,Ar\A°=Top3,
therefore A =PFTop3) and X EA, EOA(X)=2 >E0A‘,$X)=1) .
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