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RENDICONTI DEL CIRCOLO MATEMAT1CO DI PALERMO 
Scric II, Suppl. 63 (2000) pp. 141-148 

ON DEFORMATIONS OF FINITE OPERATOR CALCULUS 
OF ROTA 

A. K. KWASNIEWSKI 

ABSTRACT. Finite Operator q-Calculus Extension of Gian-Carlo Rota Finite Oper­
ator Calculus is proposed. The extension relies among others on the notion of shift 
in the limit invariance of q-delta operators. 

1. INTRODUCTION 

The algebras to be q-deformed here are the algebras F of formal series which are 
in their turn isomorphic to the corresponding algebras ]T) °f s m ^ invariant operators. 
These algebras are introduced and basic facts about them are derived by Gian-Carlo 
Rota in [Rota 1] where the author develops formal aspects of the calculus of finite 
differences. The calculus is then treated as an algebraization of the reduced incidence 
algebra of Boolean algebra. "Upon replacing Boolean algebra by some other incidence 
algebra, other similar" calculi "are obtained" [Rota.l]. 

We make here the first characteristic step towards the complete development of 
"q-incidence algebras environment" for enumerative problems. 

For the beginning we start with oscillator-like algebras generators corresponding to 
enumerative problems i.e. we start with delta operators and their duals. 

2. DELTA - OPERATOR; THE NOTION AND EXAMPLES 

Starting at first with motivating examples we are going to define a so called delta 
operator 5 : P —> P\ where P denotes the algebra of polynomials over a field F; char 
K-0. 

Examples 

J (dEPn) (X) ~ Tipn-x 
\ po (X) = 1, Pn (0) = 0; n > 0 . 

The solution is unique. pn(x) ~ xn\ n > 0 

The paper is in final form and no version of it will be submitted elsewhere. 
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2. A:=E-id; (EQ<p) (x) = <p(x + a); El = E\ 

( A (pn) (x) - npn_x (x) = 0; 
\ p o ( : r ) = l . pn(0) = 0; n > 0 . 

p n (x) = x~] n > 0; where x - := x (x — 1)... (x - n -F 1). The solution is unique. 

3. V : = z d - £ - 1 = £ - 1 A ; 

f V (pn) (x) - np^ (x) = 0; 
\ p o ( x ) = l, p n ( 0 ) = 0 ; n > 0 . 

p n (x) = xn] n > 0; where xn := x (x -F 1 ) . . . (x + n ~ 1). The solution is unique. 

4 / {dqPn) (?) - rcgpn_i (-r) = 0; np = p n = (x + c)n 

\ po (aO = l, p n (0) = 0; n > 0 . 

pn(x) = xn; n > 0. The solution is unique, where: (dqtp) (z) = f{I ẑ ; -is 

Hahn derivative [Hahn.l] and nq = ^_^; g ^ 1. dq - is not a delta operator as 

it lacks shift invariance. d := ^ , A, V? ^~ these are examples of the so called delta 

operators [Rota.l]. 

Definition 2 .1 . Let T : P ~> P\ be a linear operator; T is shift invariant iff 

V a G F ; [ T ; S a ] = 0 . 

Definition 2.2. 
a) Let 5 : P -> P ; the linear operator 5 is a delta operator iff <5 is shift invariant and 
5 (id) = const ^ 0. 
b) Let 5q : P -> F ; the linear operator (5g is a q-delta operator iff limo*g = 5 is shift 

invariant and ô  (id) = const ^ 0 

{p n } n > 0 from examples [1-3] are examples of basic polynomials for delta operators 
Sq = ~ , A, V. while {p n } n > 0 from the examples 4 is an example of q-basic polynomial 
sequence for q-delta operafor Sq. 

Definition 2.3. A polynomial sequence {p n } n > 0 ; deg pn = n; such that 
1) Po (x) = 1, 2) pn (x) = 0; n > 0, 3) 5qp~(x) = nxpn_i; n > 0 
is called the q-x-basic polynomial sequence of the q-delta operator Sq. 

Definition 2.4. Let { p n } n > 0 be the q-basic polynomial sequence of the q-delta op­
erator Sq\ we define then a "dual to (5-operator a liner map x\ x : P -> P;xpn = 
Pn+i; n > 0. 

3. E L E M E N T S OF THE F I N I T E O P E R A T O R Q-CALCULUS 

The objective of [Rota.l] was a unified theory of special polynomials. We extend 
this objective to encompass also correspondent q-deformed families of polynomials. 
The way to achieve this goal in [Rota.l] was exploiting the duality between the x & 
~ the predecessors of the delta operator notion and its dual. The technique used 
and co-invented mostly by [Rota.l] is of the past century origin and it is the so called 
symbolic calculus. 

In this section we shell refer all the time to [Rota.l] where a systematic development 
of formal aspect of the calculus of finite differences has been provided. Let as start 
with recalling notations and definitions. 
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Definition 3.1. With P we denote the algebra of all polynomials in x G F\ char F = 
0. 

Definition 3.2. A polynomial sequences {pk}™ is such a sequence that degpk = k. 
Definition 3.3. With Ylq we denote the algebra of F-linear and "in the limit q -» 1" 
shift invariant operators i.e. Tq G £ iff lim [Tq, E

a] = 0 Va € F, where (Eatp) (z) = 

<p(z + a). 

Observation 3.1. Let 5q G ]Tg, then for every constant polynomial a G P we have 

lim 5Qa = 0. 
q->\ v 

Proof obvious - by linearity D 

Observation 3.2. If p G P; degp = n then 5qpn G P; deg (Sqpn) = n - 1. 
Proof goes like in [Rota.l]; "just replace" shift invariance by "limit shift invariance" 
and note that Sq - as a linear operator is "coefficient blind operator". D 

Proposition 3.1. Every q-delta operator 5q has the unique sequences of q — x-ba$ic 
polynomials. 
Proof. For n = 0 put p0 (z) = 1, for n = 1 put p\ (z) = j-fey. Then inducing on 
n assume that {Pk(z)} have been defined for k < n. From this inductive assumption 
we infer that pn is defined uniquely For that to see it is enough to notice that for 

n - l 

any p G P degp = n; i.e. p(z) = azn + J_ ckPk (z) & a 7- 0; we have (5gp(2;) = 
k=Q 

n - l 

a5gz
n + ]T Ckkqpk-i (z) & deg6"9 (z

n) = n — 1. Hence there exist a unique choice of 

constants c i , . . . , cn_i for which (x = q - here) ^ p = nxpn_i. This determines p = pn 

uniquely except for the constant term c0 which is however determined uniquely by the 
condition pn(0) = 0; n > 0. D 

Let it denote any analytic or rational function such that R (qn) —> n. We may 

introduce an infinite family or P-basic polynomial sequences according to: 
Definition 2.3'. A polynomial sequence {pn}n>0; degpn = n; such that 

1) pQ(x) = 1, 
2) pn(0) = 0 ; n > 0 , 
3) Sqpn = R(qn)pn-i 

is called the P-basic polynomial sequence of the q-delta operator un­

inspired by the predecessors x & ~ of the notions developed in [Rota.l] we introduce: 

Definition 3.4. A polynomial sequences {pn}™ is of q-binomial type if it satisfies the 

recurrence 

Pn (x + y) = Y, [Ij Pk (x)Pn-k (y); where (n J = ^ . 
ib>o \ ' q ^ / <t q' 

Theorem 3.1. {Pn}™ ^s a Q-basic sequence of some q-delta operator 5q iff it is a 
sequence of q-binomial type. 
Proof. See [Rota.l] - and use limit shift invariance instead of shift invariance. D 
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Theorem 3.2. Let Tq be - in the limit - a shift invariant operator. Let 6q be a q-delta 
operator with q-basic sequence {pn}™ of its polynomials. Then Tq = ]T ^5q; where 

n>o n<>' 
ak = [Tqpk(z)]z=Q. 
Proof goes like in [Rota.l] as no new explicit use of shift (limit shift) invariance is 
used. ' • 

Theorem 3.3. Let 5q be a q-delta operator and let Fq be the algebra of formal expg 

series of the same field F for which Sq is defined. Then there exists an isomorphism 
ip : if : Fq -* Ylq °f the algebra Fq onto the algebra £ \ of in the limit shift invariant 
operators which carriers 

k>0 K<J' fc>0 Kq' 

Proof. With obvious changes goes like in [Rota.l]. D 

The generalization to R-labeled [Odzi.l], [Kwa.l] deformations is readily at hand 
(see the Definition (2.3') above). The extension towards incidence algebras also seams 
to be natural as stated by the main observation (see - next section). This observation 
constitutes the link with incident algebras. 

4. INCIDENCE ALGEBRAS - POSSIBILITY OF Q-EXTENSIONS 

Apart from Gian-Carlo Rota [Rota.l] the incidence algebras were independently 
discovered by H. Scheid [Sche.l] and D.A. Smith [Smith.1]; see also [Rota.2]. 

Definition 4.1. Let 

I(P, F) = {/; f:PxP-> F; /(x, y) = 0; unless x-<y;x,yG P} 

where F is a field; charF = 0 and (P, •<) is locally finite partially ordered set. Then 
(I(P, F),F;+;*;o) is called the incidence algebra, where "+" k "o" denote the sum 
of functions and usual multiplication by scalars, while for /*g € I(P, F) 

(f*g)(xiy)^f(xiz)g(z1y) (4-1) 
z£P 

Recall that a partially order set is locally finite iff its every segment [x,y] = 
{z € P\x < z < y} is finite, hence the summation in (4.1) ranges over the finite seg­
ment [x,y]. 

The following examples are taken from [Rota.l]. 

Example 4.1. Let P be the set of nonnegative integers P = {0,1,2,3,4,5,6,7,...} 
k -<=< then I(P,F) = { ( a ^ . a ^ O , i < j} £ Mo0(F) i.e. (I(P,F),F;+; *;o) is 
represented by the algebra of upper triangular infinite matrices over field F. 

Example 4.2. The algebra of formal power series is isomorphic to incidence algebra 
R (P); (P; •<) = (P; <) ; P = N U {0}. This isomorphism is given by the bijective 
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correspondence <D 

~lanznj^f={fij;fii = { M-3 i<j'.ij€P 
0 otherwise 

where for f,g,h G R(P) h = / * g corresponds to convolution of <p~l (/) k <p~l (g) 
i.e. h(i,j) = E.<fc<;7(*,*)ff(*,j) = Y,i<k<jak-ih-k = E r - o f l r t r after setting 
r = k — ikn = j~i. 

Example 4.3. The algebra of formal exponential power series is isomorphic to in­
cidence algebra R(L(S)); where L(S) = {A, A C S; \A\ < co}; S is countable and 
(L(S); C) is partially ordered set. As a matter of fact R(L(S)) is the so called reduced 
incidence algebra of the poset L(S) [Rota.l]. The isomorphism is given by the bijective 
correspondence <p: 

, w = E £ , J U / _ {,<„,_,. { y - * £ s » .ABeL(s)} 
n>0 v ^ J 

where note for / , g,h E R(L(S)) h = f * g corresponds to binomial convolution of 
F = if'1 (/) & y-1 (g) = G i.e. (H = ^ (h)) for H (z) = £ ^ n & G(~) = 

E ^ n ; c„ = E (>*&»-*• 
n>0 *>0 

Using the incidence algebra technique - apart from new ones - one may arrive very 
simply at previously know result [Rota.l]. As a matter of fact these are the so called 
reduced incidence algebra technique that we have in mind. With "at the point" con­
vergence one makes I(P;F) to be a topological algebra [Rota.l]. Incident algebras 
characterize p.o. sets as: 
Theorem 4.1. Let P &Q be locally finite partially ordered sets. Let I(P; F) k I(Q\ F) 
algebras be isomorphic. Then P & Q are isomorphic. 

Of the more frequent use are reduced incidence algebras and incidence coefficients-
Reduced incidence algebras are obtained as quotients of incident algebras segments' 
families and an order compatible equivalence relation. They corresponds to formal 
series of various kind. The incident coefficients are generalization of the binomial 
coefficients [Rota.l]. 

Definition 4.2. Let ~ denote an equivalence relation defined on the family S(P) of 
segments of P; with P - locally finite partially ordered set. Let / , g G I(P; F) be such 
that for [x,y],[ti,i/] <E S(P) k[x,y) ~ [u,v]\ f(x,y) = f(u,v)k g(x,y) = g(u,v). If 
(/ * g) (x, y) = (f * g) (u, v) V[x, y], [u, v}; [x, y] ~ [u, v] then the relation "~" is said 
to be order compactible. 

Definition 4.3. Let P be a locally finite partially ordered set equipped with a com­
patible equivalence relation ~ on S(P). The set of all functions defined on S(P)/~ 
with the product defined below in Definition (4.3) - is called the reduced incidence 
algebra I?(p;~). 
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In order to define the product of / : S(P)/ ~-> F and g : S(P)/~-± F function 
referred to in the definition above let us consider denote by a, 0... the nonempty 
equivalence classes of segments of P i.e. a,(5--- 6 S(P)/ ~ and let us call them 
[Rota.l] types. 

Definition 4.4. (Map(S(P)/ ~;F),F;-f; *;o) = R(P\~) is an algebra under the 
multiplication "*" defined as follows: 

(Map(S(P)/ ~ ;F)эf,g-*h:=f*g; 

S(P)/ ~ Э a ^ / г ( « ) : = £ 
(...) L ß,l î(ß)9(l): 

where the sum ]T ranges over all ordered pairs (/3,7) of all types and the brackets 
(...) 

a 
A 7 

Definition 4.5. 

are defined below. 

:= the number of distinct elements z in a segment [x,y] of a 

type a and such elements z that [x, z] is of type (5 while [z, y] is of type 7. 

One may prove [Rota.l] that the reduced incidence algebra R(P\~) { i.e. the 
incidence algebra modulo ~} is isomorphic to a subalgebra of incidence algebra of P. 

It is our actual aim to study q-deformations of these reduced incidence algebras with 
the first step being done by: 

The main observation. Algebra Yq ~ Fq ls a n example of the algebra of formal q-
exponential power series which is isomorphic to the reduced incidence algebra R(L(S))] 
the isomorphism (p is given by the bijective correspondence: 

F. (., = £ i * . -% / - {/ (A, B> - { 1 * ^ ;A,B.L{S)} 
n > 0 V V V ; 

where for f,g,h £ R(L(S))] h := / * g corresponds to q-binomial convolution i.e. for 

n>0 ^ n>0 UV 

[n] PV (z) = [n](f*g)(z) = Cn\ cn = ] £ ( J **&--.-*. 
lfc>0 w < ? 

Proof goes like in the non-deformed case [Rota.l] • 

The generalizations to jR-labeled [Odzi.l], [Kwa.l] deformations is readily at hand as 
It-exponential power series - {Ii-rational function} are easily to invent due to obvious 
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generalization: 
00

 yn °° ^n -, 

E Z \r~^ Z 1 — x 

— : — • . ) _, p / \ n / 9 \—rw „ \ -> which under the choice R (x) = 
n = 0 nq\ generalize ^R(q)R (q2) . . . i t (qn) J l - q 

00 

becomes exp9 {z} = ]T ^ hence the crucial definition: 
n=0 q' 

Definition 4.6. 
^ zk 

eXPR{z}tQR(q)R(qi).-.R(q«) 
Due to this - one arrives immediately to 
The main generalized observation. 

Algebra YIR ~ F R is an example of the algebra of formal I?-exponential power 
series which is isomorphic to the it-deformed reduced incidence algebra R(L(S)); the 
isomorphism </? is given by the bijective correspondence: 

n>0 v ' 

where for / , g, h £ R(L(S)); h := / * g corresponds to R-binomial convolution i.e. 
for 

n>0 W ; n>0 W ; 

[n] W (z) = [n] (f * g) (z) = cn\ Cn = J2 U J akbn.k. 

w h e r e G)H = w f r for sample with fl(s) = 1=|; Q R = £ 

Proof goes like in the non-deformed case [Rota.l] D 

This is the good starting point for further investigations. 
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