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ON GELFAND-ZETLIN MODULES

Yu.A.Drozd, S.A.Ovsienko, V.M.Futorny

1. GELFAND-ZETLIN SUBALGEBRA

Let G=6L(n,cT), ey be the matrix units. Consider the
standard inclusions G1<Go<...<Gp=G Where - Gp=<e, J|i,J=1..k>.
Denote Uk the universal enveloping algebra of gk’ Zk the
center of Uy, U, and put I'=<Zy|k=1..n>, the Gelfand-Zetlin
(GZ-) subalgebra of U. One knows [6]1 that 2y 18 the
polynomial ring 1in R varlables ckj (J=1..R) where
ckfnet1£2e£2t3...etjt1 for all sequences (t,ta...tj) with

tge(1..R}; moreover, I' 1s the polynomial ring in n(n+1)/2
variables ckj (R=1..n, J=1..R). i

Proposition 1. T' {8 a marimal commutat{ve subalgebra {n U.

Proof. Following the known proof of the Harish-Chandra
theorem ((21,2.5.T7), one can show that uel’ 1f and only 1f
p(u)ep(T') for any rinite-dimensional representation p of G.
But the Gelfand-Zetlin formulae [6] 1mply that p(T)
coincides with the set of all diagonal matrices. Hence 1f u
commtes with all ael' then p(u)ep(T') which accomplishes the
proof.

A G-module V will be called a GZ-module provided V=e, V(Y)
where x runs through the space I'* of characters of and
V(x)=(veV| vael' 3m (a-y(a))™w=0}. Denote ® the category of
all GZ-modules (it contains all finite-dimensional
G-modules [6]). For Ve® put suppV=(xel'* | V(x)=0}, Vx=(veV |
vael' av=x(a)v}.

Consider another polynomial ring L in n(n+1)/2 variables
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lpy (R=1..n, {=1..R) and the nomomorphism v:I'sL which maps
Cry to ztlkzj“ ((1- (lm— kg) ) The symmetric group S, acts
on L permuting lkt ({=1..R). Thus the direct product S"ﬂksk
acts on L.

Proposttion 2. o {8 an tnclu.ston and its {image cotnsides
with the ring of tnvartiants 5.

Proof. It is easy to check that (Cpy) 1s a symmetric
polynomial in lkt (t=1..R) of the form Ezlm"*f with degf<J.
As the power sums are algebralcally independent and generate
15, 1t proves the statement.

From now on we identify I' with 1ts 1Image in L. It 1s
convenient to choose new generators Oy ;= J(lm"“'lme) where
0, are the elementary symmetric functions. The inclusion
induces the surjection m:L*-I'* which identifies I'* with S\L".
For any A<L* we shall write V(A) Instead of V(®w(A)) and put
Mgg=h(lpg)s Opg(h)= =0 (hppse e b )=A(Og ).

Denote Xk =€p k1’ Xk =€p41 N Then the set (Xk |
k=1..n-1) generates U. Of course, X, commutes with elements
of Z; 1f {=k. Define the polynomials fkjm (°k1""'°kj) by
the Iormula'

Frs (1)=ny (T, é(usm D= Tl (O (M)« o, (A))TT
where th ({=1..R) are given by the rule: th(lqp)ﬂ it
g=k,p=t{ and O otherwise.

Pr‘oposttton 3 (t) XR‘V(A)cth(MGM) Jor any AeL”.

(tt) o JX *tmok Xk-flejm—(okf’ "'GRJ) =0.

(ttt) If V i3 a simple GZ-module, AeL” and Ay,- Rp“z Jor
all tndeces {=p, then V(A)=V,.

Proof. It V 1is rinite—dimensional. (t) 1s known I[61].
Moreover, in this case V(A)=V,. Thus Fp f(okj)xkimo for any
veV. This means that the left part of the equality (if)
annihilates V. By the Harish-Chandra theorem it proves ({i).
(t) and ({t{t) are easy consequences of (it).

Corollary 1. If V(x)=0 for some yeI'* and the module V {8
simple, then V {8 a GZ-module. ‘

Corollary 2. If V {8 an {ndecomposable GZ-module and
V(A)=0 for s8ome AeL* then 3uppV<:'n:(7\.+A) vhere A {8 the
subgroup of L* generated by all Opy (kR=1..n-1, J=1..R).
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Obviousely, if P and P' are cosets modulo A, then either
%(P)=n(P') or ®(P)(P')=0. For D=n(P) denote G, the complete
subcategory of & consisting of all modules V with suppV<D and
= the equivalence relation on I'*: =)' provided both of them
belong to m(P) for some coset PeL"/A.

Corollary 3. &=Upp-, . Bp-

For AeL* put Opg ¢p=Opy(At0p4~Oyp) and derine the
polynomials & Jm(om,...,oqui by the formula: ”

GRJ(T)mt" (T‘okj'tp)= +t,,,8ij(0R1(7t),....ij(A.))
where E=k(kR-1)/2.

Proposttion 4. Fo_r' ariy ael’ tmhe _elerrient

Y, J(°)=°k jKXR Xy O A ax,, gkjm(°R1""+' ry’ _
belongs to ' and the same is true {f we permute and .
The proof 1s quite analogous to that of proposttion 3.

29. GELPAND-ZETLIN CATEGORIES

For yeI'* denote I,=Kery, PX the I,-adique completion of T'.
Cconsider for any pair yx,el'* the I'- %odnle U(p,x)=tuel | vm
an I,"u<UI,™}. The adique topologies of I' induce a topology
on U(¢,x), so we can form its completion $(¢,x).»Now we can
define a category $; for Del'“/= whose objJects are characters
xeD and sets of morphisms are g(¢,%). Surely, the category Gp
i1s equivalent to the category $p-mod of $p-modules, 1.e.
continuous linear functors from $p to the category of vector
spaces over € with discrete topologles. The following result
1s a simple corollary of the abstract nonsence.

Proposttion 5. Denote ¥,=$(%,%) and ¥ =sx/radgx. Then:

(t) IfV is a simple gz—module wtth&’(x)ato, then V(x) ts
a simple #,-module.

(tt) For any simple ¥, -module M there erists the unique
(up to tsomorphism) simple GZ-module V with V(x)~N.

Denote v(D) (resp. v(x) ) the number of non-isomorphic
simple GZ-modules V with suppV<D (resp. V(x)=0). Define two
open dense subsets n,,02 of I'* in the following way:

0,={x=1c(7\.) | A'Rt‘*'kp‘z Jor all i{=p and R=2..n-1)}
nz=n1n{x=x(k) | Akt""k—hp‘z Jor all {,p and R=2..n}
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Remark that both 0, and Q, are stable under the relation =.

THEOREM 1. (t) If Xefly, then v(x)=1 and dimV(y)=1 for the
unique stmple GZ-module V with V())=O.

(t1) If DQ,, then v(D)=1.

Proof. et y=t(h) and xeD. Denote Zp,* the morphism from
s(x.'lt(MG 1)) generated by Xk . Of course, :H X runs through
D, the 1mages of I', and all possible Z,” generate §,. If
X<fl;, proposttion 3¥£tt) implies that the image of I, in ¥
consists only of scalars: the class of el coinsicés wité
that of x(a) Let ym(a) for any ael’ be the image in #, of
!:tzm a‘”k . We know then from proposition 4 7%hﬁt
GkJ(OkJ(A.))y J(a) 1s also a scalar, namely, the 1image of
YM(a) If xeQd;, then ij(o j(x))#o hence yk_,(a) is also a
scalar. Putting a=1, ckz""'okk we obtain R linear equations
for k products Iy, :zr:M and one can check that their
determinant 1s not O provided ’“Rt”‘kp for t{=p. Thus these
products are scalars too. The same 1is true for Ty .z‘m . But
it 1s easy to see that all these products generate &
(together with I' ). Hence #, 1s either O or € and v(%) 1s
respectively either Oor 1. )%ut using GZ-formulae as in [6]
one can construct a GZ-module W with W(y)=0 for all yeD which
proves ({). The same formulae show that 1if D25, then W 1s
simple and hence it 18 the only simple GZz-module in ®; which
proves (tt).

Remark. It follows from proposttion 3 that 1f V 18 a
simple GZ-module and veV(y) then in any case Op V=X (Opq U,
(o] Jv-x(o J)v and (okj x(okj)) Ry=0 1n other cases.

Conjectures. (i) O<v(y)<e for any x<I'* and v(D)<~ for any
Del'*.

(tt) dtmv(y)sn for any simple GZ-module and any xeI'“.

(itt) The image of I' in End.V(X) t{8 a marimal commutative
subalgebra and coinstides with the subalgebra generated by a
Jordan cell (where V and % are as {n (i) ).

These conjectures are true 1f ns3. Really, 1f n=2, 1t
follows from [3] that v(y)=17 and dimV(x)=1 for all V and ¥;
v(D) can equals 1,2 or 3; 1f v(D)=3, then one of the simple
modules 1n G, 1s finite-dimensional and all finite-
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dimensional simple G-modules are of this type (cf. alsn [?1,
7.0.9).

If n=3, the following statlemenis noid (ctf. (41]).

THEOREM 2. For any xeI'* and any Del''/=

(1) O<v(y)<2 and v(D)<w.

(tt) Iy Vv {s a simple GZ-module with V(x)=0, then
aimv(y)<2 and {f dimv(y)=2, then v(x)=1.

(tit) If dimV(x)=2, then 0o, acts on V(X) as a Jordan
cell.

Proof. A straitforward calculation using the results of
(1] shows that ¥, equals either € or CeC or ¥,(C). According
to proposition é it proves ({t{). If all obJects of the
category %) are isomorphic, then 1t 1implies also ({).
Otherwise, if V 1s a simple module from ®p, then V(x)=0 for
some YeD. But "1t follows from [5]1 that there exist only
finitely many such modules in ®, which accomplishes the proof
of ({). The statement ({{{) can be easily checked.
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