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Hau doгff mea ures in Minkowskian geometгy 

U. Fei te 

1« Basic concepts 

Let Q : Rn
* R

n
—*R be a metric on R

n
 having following 

properties: 

1) (7 is invariant under translations, i.e. 

g(x,y) • £(x+z, y+z) for all x,y.zSRn 

2) ^ is linear euklidian,- i.e. 

g(x,y) : £(x',y') • ge(x,y) : fe(x',y') holds 

for all points x,y,x*,y' belonging to a straight li­

ne, where (? denotes the euklidian distance in Rn • 

(It is obvious that every metric on Rn fulfilling 1) and 2) 

inducee a norm || \\n on Rn) • 

For such jnetrization on Rn we obtain 

ce(x*y) 
(1) e(x,y) - 2 ge(x',y') 

where [x ' , y ' J is the diameter of the unit, bal l 

Ug - {uGRn/ g (0 ,u)< l } 

parallel to [ x , y ] through 0 . 

The formula (1) is the starting point in the paper of 

H. Busemann (JLJ • 

Let M be a Lebesgue measurable subset of Rn and V a 
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p-flat containing M (1-3 p£n) . We denote by U(V ) the 

set In which the p-flat parallel to V through 0 inter­

sects the unit ball U • 

IV « л 

u(vP)*Ш. 
In analogy to property 2) for g Bussmann desired for a p-di­

mensional measure m
p 

mP(M) s m
p
(U(V

p
)) « *P(M) I ^

P
(U(V

p
)) 

and he defined 

n»P(U(V
p
)) = A

P
(UJ ) . 

where 7P denotee the p-dimensional Lebesgus measure and 

*
P
(u5 ) the p-dimensional Lebesgue measure of tho p-dimensi-

e 

onal euclidian unit ball u£ - This means 

(2) иp ( м, - ^ W S Î L . дp(н) . 
*

P
(U(V

p
)) 

m
p
 is called the p-dimensional Busemanri measure of M (with 

respect to £ )• It is clear, that mp(M) depends on the po­

sition of M in (R n,g) . mp is invariant under transla­

tion but in general it is not invariant under rotation. 

2. Relation between Busemann measures and Haosdorff 

measures 

Let us denote by hp the p-dimensional Hausdorff measu­

re, i.e. .* 

hp(M) - sup inf (23 tfP(A,)/ VJ A, DM A (T{A±) £ €. } , 
£>0 . ki»l x i-1 x x . 
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For p-dimensional Hausdorff measures holds;-

Theorem (Rogers [2J). If M C R n is a Lebqsgue measurable sub­

set of the n-dimensional euclidian space (Rn, || II) t then 

* *U|| || ' 

A conclusion of this theorem is the following: 

If M C R n is a Lebesgue measurable subset of Rn and || || an 

arbitrary norm on Rn
 f then . 

II. II . An(U||, |> , -

Let us now consider a p-flat V in (Rn9 g) through 0 € R n 

• t P * -

( l ^ p ^ n , ) . The set . 

-^ .. u(vp) « v p n u e ' . ' m ' + 

induces a norm | | | v having U(V ) ' as unit balL By the abo-

? ' '. 
ve conclusion. I t holds f bjr.\ (V«# | l v ) : 

" " ' • : ' " p 

II H v p AP(U(V p)). 

Now we obtain the following 

Theorem. If M is a Lebesgue measurable subset of (Rn, \ \) 

and V a p-flat containing M f then 

• ' nP(M) « . AP(UP ) hP (M) . 

•• : B 'I « Vp ' 
The proof is given by the equality above.and the equality (2). 

It is easy to prove that •;'.•-

i i<H> • i ivp
tM>.. 

for every subset M . of (R*\ | ||)' « This implies together 

with the Theorem above. * l . . 

Theorem, For every Lebesgue measurable subset M of (R , || |) 
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Ҷм) - Л
p
(uP

e
) hPц .(M) . 
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