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NTH WINTER SCHOOL {1979)

ON SETS ALWAYS OF THE FIRST CATEGCHY :
by : .
E. GRZEGOREK

-+
H

ie obtain topologloal analogies of some results from [2]
and’ [3] oonocerning measures. We work in ZFC sét theory.
13[ denotes the cardinality of a set S. If £ 1s
a funotion from-a set S5 into a.set T and ¥ 1s.a family
of subsets of S then by - £(¥ ) we denote the family
{f(F): Fé¥} of subsets of T. Let & be a separable
¢-field on 5. (1.6, C 1s a oountably additive algebra of
subsets of S_such that T 1is i:ouni;ably_genei-ated and
{s} G-C fq::r every 86 S)..We will write C €N  1iff there
is no continuous probab':l.l:l.ty 65';. .12 T 1 and € 2 are
€ -fields on S then 'G(C.l, € ,) denotes the € -field
on S pgenerated by c,u¢,. e will write CeQ 1r¢
there 13 .no metriza‘bla separable without 1solated points
topology "T on- 8 " suoh that 3T) SC ana 3¢ I('J'),
where @ ‘.T) 13s the uaunl Borel s'-ﬁ.eld on 3 w.r.t.
\7itk raspect to) '-T and -\‘.T) denctes the -G —ideal of the
first cutego".y subssts of S w.r.t. T. Py 3 wva will denote'
t’ne usual 'aorel e -field on R \= the zeal line) w.r.t. the

.naual topolozy on ' R.

. REARK. If 1n the above dofinition of the olass Q vie
a111 weplzoe I(T) by I*(T), vhere I*(T) denotes the
6 ~143+1 of subsets of S which ore always of the first

gatarcry w_.r.t. T s then we ohtaln the es2me class Q « It
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can be also observed that if XC S, ¥ is a separable € -field
on S and TE€Q then AN X 1is a separable & ~field on X
such that T €Q

Recall that a subset X of C 1is always of the first
category w.r.t. metrizable separable topology. 7 on S iff
" esach dense in itself subset Y of X- 1s of the first category
on itself w.r.t.. the topology on Y dinduced by 7’ .

It is Inown the .following

THEOREX. 1 ([3]). Tﬁbere exist a HSeparable ¢-field & on
a oet S such that: th and a permutation 79 of S such
that & (T, ;ant))eN °
If all subsets q" R of cardinality ¢ 2 0 are Lebesgue

measurable then we can additionally have S = R and T-3.

we glve sketch of the proof of the following topological

analogue of Theorem 1.

TLECREM 2, There exist a separable s‘-fieJ.d T cua cet
3 such that er and a nermutdtion sp of L sush *Tit
6T, PiCeq - | |
If all metrizable separabla spaces withcut isolated points of
cardinallty < 2’% are of the first categnry _then we can
acditlonally have S =R and € =3.

Proof. Our proof is a modification of Prikry’s method

from [4]. Let m = nin {n: there exists a separable 6 -fleld
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T ona set T such that [T =n and ?ff Q}. Hence
there exists a set T with lTl =m and a metrizable sepa-
rable without isolated points -topology To on T such that
Té¢ I(T).

It can be easily observed the following

IZiMA. Let T be a metrizable separable without 1solated
points topolosgy on a set T such that ’Tl = m, Then T’¢& T
and "1‘"<m imply T’e i(")’).

Let {t}- g em} be. an one-to-one en'umeraj:ion of T.
Let for every }'e m, Fs, be en Ty (WeretosT ) ‘subset of T
such that T, ¢ I(T) and F;:) {tj’ : g‘gf} . Put 2z =
= U{ tr}x Fj“ ie have Z C m=T, It can be proved (compare
Yen
{41, [1] and ([2]) that there exists a separable §-field
T on i such that Z belongs to the product 6 ~field
T @@(‘T) . o claim TC€Q . If not, let ‘71 be a me-
tricable separable without isolated polnts topology on m such
that ‘P L ‘T,I) >5C and n ¢ I{ ‘3’1). Applyirg Kuratowski-Ulan
cateuocry version of Fubini’é theorem and our Lemma to "T;), ‘3'1
22l 5 one con easily obtuln 2 contradiction (compare [4]
and [3]). 50 VeQ. _
Zet 5 %o a set such that [3] = m and let § =8 ,0 5,
5, =8 and ';‘;1] = ,S__,]. Since |S1| =m and |52| =mn
14 follows thint tlere exlist o sen roble 6 -Tleld C,] or
<, Sucn that C,] €Q and a seyarakle 6 -=field fh, on
cush tlat U, $Q . Lot T by the ©-field on S ge-
neratel vy € N 7:_’:. Jincge TN 5, = f__, and f.‘:‘ FQ

ae have, by Zepaxv, t* Q o Let ('0 ce g persutation of O



such that (((81) = Sz. It can be chacked that our ¥ and ﬁﬂ
have the required properties.

We omit the easy proof of the additional claim of Theorem 2.

If } is a -ideal on R then we put }"’ = {A C R:
for every B C R such that there exists 1 -1 @—'measurable
function £: B > A we have B¢ }}

Observe that 3"’ is a 6-ideal on Ram,e,}*c}-

Denote by DCO the 6§ -ideal of su.bsets’of R of the Lebesgue
measure zcro, by I the 6-ideal of the first category sub-
sets of R w.r.t. usual topology on R and by I® the
r-ideal.of subsets of R which are always of the first cate-
gory w.r.t. usual topology on R.
Let m, = min {n: (¥ € r)([¥]
4 = min {n: Jir e r)([2)

m, = min {n: Jiztc R)(li’] .

n and Y f:ﬁo},
n and Y ¢- I} , and
n and Y ¢ T}

m

Ve omit the proof of the following

THECREM 3. There exist Aic R (1 € 3) such that lAil = my

1 g2), 'A3,~= min{mo, m_l}, A€ OCO+, A€ 1t, 4, € (1Mt and
+ ot
Ay e o('onl .

If is kunown that the @ -ideal £0+ ic equal to the
&-il2al of so called universal null subsets of R [5].

The part of Theorem 3 concerning AO was proved in fect

in [ZJ.



CCO(LLARY. There exists A,Bc R such that [i] = |B|,
161" and B¢ I¥.
4 similar result for universal null subsets of R ocan be

found in  [2]. In commection ui{hl'“i.t 8 worth fo wmention fhat MWjM“
nas proves [3a] thad theee exishia Gintar sef eveny hoveomomlic rage of

Aich s im Ty bl which isme€ in T*
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