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FOURTH WINTER SCHOOL (1976

ON CATEGORIES OVER THE CLOSED CATEGORIES OF FUZZY SETS

by
Ales PULTR

Using the ordinary categorial language working with
structured sets and mappings between them requires, rough-
ly speaking, that

(i) it is Jjust one type of mappings we are interest-
ed in, and '

(ii) this type of mapp:'u'aga is closed.under composi-
tion. ‘

Fortunately enough, this is often the case, On the other
hand, it is often not. One structure (e.g. topelogy) may
give rise to various quite natural definitions of well-be-
haved mappings (in our example: continuous, open, closed,
etc.). Worse still, one cannot sometimes solve the situa-
tion by dealing with distinct definitions of suitable map-
pings separately, because the condition (ii) may fail to be
satisfied. Thus, one may be interested in metric spaces and
mappings with amall Lipschitz constmts; but if one allows
for mappings with a Lipschitz constant K>1, one has to ac-
cept 2ll the Lipschitz mappings to satisfy (ii). Similarly,
one does not have a "category of graph homomorph{.sms up to
small defects®, a "category of non-constant mappings®™ etc.

We want to show here that in marny cases the language of



48

4f —categoriea (in particular, with 4 being a closed ca-
tegory of fuzzy aets) is appropriate.

§ 1. Cloaed categories,
1.1. The category of all sets and mappings will be denoted
by Sat, If ( 1is a category, the symbol ( is used almo
far the functor
0P x & —> Set
given by Q(4,B) ={@l @ :A—=>B in O}, Ole,fNg) =
“prgec .
1.2. 4 closed category 1V ie a collection of data
v = (¥, ® ,HEKx,a,bec)
whers 'Vo is a category,
&: Y=V, ~>V, B: TP ¥ —» T,
are functors, E is an cbject of ¥V, and
k = ket Y IQT,Z) T (X, H(1,2)),
axa,: CE@NRZS 1Q (XS 2),
b=by :I@ E& X and
cxcpy :I@IXTIHIX
are natural equivmlences (X&) Y stands for & {(X,Y} ) sa-
tisfying, moreover certain rul s {the ccherence rulss; it is
. 2ot meceasary to formuls te them here).
The object E ia called the unit, the functor & is

‘ususlly called the temsor product (or tensor maltiplicatiom).
If it coincides with the usual categorial product (more
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exactly, if there are natural transformatioms Pixy? X ¥ >
—> X, Poxy: X® Y —> Y such that ‘Pixr’i=1,2 is always a
product of X and Y - of course, in that case we write XxY
instead of ¥® Y), 7 is said to be cartesian closed.

l1.3. Remarks: 1. Originally, in [1] the expression closed
category was used in a more general -sense., The notiom of "clo-
sed" from l,2 coincides with "symmetfic monoidal closed” from
{11. This shorter terminology is widely used ([51,(71). On the
other hand, it.is necessary to stress that the more general
enrichments of categories (just closed, just monoidal) are of
importance, and that e.g, the mtion o a Y ~category we
are going to discuss below can be easily given' sense in the
more -general setting. The reader is therefore advised, if co-
ming across the expression "closed category"™ in the litera-
ture, to check the precise meaning. '

2, If there is no danger of confusion, one uses the sa-
me symbol for the whole collection of data constituting a
closed category, and for its underlying category.

3. The role of the here unspecified coherence rules is,
roughly speaking, to make sure that a tramsit from one ex-
pression to another by means of the natural equivalences a, b,
¢ does not derend on the way chosen. (Thus, e.g. that the com-
position X@ Y—S» Y@ X—S5-X@ Y is the identity, that
XS ®E-2»X® (Y@ E) 228 x@ ¥ coincides with
(@ NN® E-25>XB T ete.) :

4. There is (up to obviows equivalence) at most one way
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to make a category o f;o a cartesian closed one, The unit
is then the single ton,‘ the mtural equivalences a, b, ¢ are
induced in the obvious way by the product properties, Thus
obtained a, b, ¢ are alwaya coherent. fence, the question
whether a categary ( {with products) can be made to a car-
tesian closed categary reduces to the gquestion whether every
-xXs & —>Q '

is a left adjoint.

5« Partly, the mwtion of a ciosed category was mbtiva-
ted by the task to endow the set (X,f) with a suitabls
structure to make it an object . of 74 ., This makes, of cour-
se, a sense only in a concrete category {(V,U), i.e. a cate=
gory U together with a fixed forgetful functor U: ¥—> Set,
and results in the conditiom

el & V(-,=).
We will show now that this is implicitly contained in the
conditions of 1.2, more exactly, that it either follows ar
cannot hold at all. Really, we have V(XY ¥V (XZ® E, )2
2 Y(x,H(E,Y)), so that H(E,~) = 1, . Consequently, if
UsHE =% , we have UX UH(E,-) & 4 (E,~). On the other
hand, if U € 4 (E,-), we have UH(X,Y) & ’Hi,n(x,z)) f=
o N (E@ X,Y) & (X, Y).
l.4, Examples: In the toilo'ing examples we vm specify
just the functors & , EH and, if necessary, the wnit and
the equivalence k. The other data will be obvious.

1. The category Set is cartesian clmed, with H(X,Y) =
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=YX (x is given by ((K(g))(X))(y) = @(x,3).).

2, The category Ab of abelian groups and their homo-
morphisms, with & the usual tensor product and H = Hom.Ab
cannot be made cartesian closed.

3. The categaxy '1“op of all topological spaces and
their continuous mappings, with X® Y being the eartesian
product of the underlying sets of X; Y endowed by the coar-
sest topology such that f: X@ Y—> Z is continuouws iff all
£(x,-): Y—>Z and f(~-,y): X—>Z are, and H(X,Y) the set of
all continuous mappings X~ Y with the topology of pointwi-
se convergence, | .

4. Top cannot be made cartesian closed but its full
subcategory K-Top of compactly generated spaces can. The
H(X,Y) is endowed here by a modification of the compact-open
topology. '

5. Consider a partially ordered set (X,4& ) understood
as a thin category (i.e., there is exactly one morphism
X~y if x4y, nonme otherwisej The structure of a clesed
category on (X,&) consists of an order preserving operatiom
(let us denote it by + ) making X to a commtative monoid

= semigroup with unit), and a mapping h:'Xv.x—b X anti-
momotone in the first and monhotone in the second variable
such that
x.y4z iff x3h(y,z).
Obviously, if (X, £) is a complete lattice, a necéssary and
sufficient condition of the existence of such em h is that

X.~ preserves suprema.
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6. In particular, (X,& ) is cartesian closed iff there

is =n h such that
_ XAy&z iff x<£h{y,z).

(I.e., it (X,4 ) is a Heyting algebra; one writes often y =
for h{y,z)., In the case of complete lattices one sees immedia-
tely that the necessary and sufficient coniition from 5 trans-
lates to the complete distridbutivity, which 18 the well-kmown
characteristics of Heyting algebras,)

7. Below, we will reproduce a lawvers ‘s example *based
on the following thin closed category 7 = (R', + ,h,0): R'
is the set of all non-negative integers inversely ordered, +
. is the usual additiom, hix,y) = max(0,y - x), (Obviously re-
ally x + y2 z iff x:h(&,z).)

§ 2, Y -categories.

2.1, Throughout this paragraph,
¥ =(¥,® ,H,Ek,a,b,c)

is a fixed closed category. The notion of a 7 -category
(see e.z. [11,[9]) we are going to describe is a matural ge-
neralization of the hotion of = category. Roughly speeking,
it is based on the observation that in the definitiom af ca-
tegory one actually already uses morphisms and their.compasi-
tion - namely those of Set. The point is in replacing the ca-
tegary Set by a more general vV . To stress the point, we
will give the definition of 7 -category in confrontatiom
with repeating the well-known definitiom of category. To avoid
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an unnecessary discussion, we will omit the (otherwise very
important) condition on disjointpess of the morphism sets.
2.2, A category O : l A V —category 4,
consists of the following data:
a class |0 | (the elements of which
are called the objects of o)y
) comeepondeﬂce' M aa’soéiating with .
every (A,B) ¢ 101 1O |
a set M(A,B) (thus, an en object M(A,B) of ¥,
object M(A,B) of Set), l
a correspondénce m associating with
every (4,8,C) € IQIx [QIx 101 the
composition rule which is
a mapping (a morphism in Set) a morphism in V¥
By ot M(B,C)x M(4,B)—> M(A,C), l Bypot u(8,C)® H(4,B)—>
—> M(4,C),
and a correspondence associating
 witheveryAelll
an element 1,& M(A,A) ‘

(which can be represented as
a morphism -

‘ i : B—» M(A,A)
& mapping €4 @, €, : E—>M(4,4)

vhere E =10}, €,(0) = 14
recall that E is a unit in ¥ ’
corresponding to the

product x)
' such that



 ByEpCgon(F s fb)y0) =
= By opl A rRypal B 500 ))
{the composition is

associative)

and
for of€M(4,B)
m(lngw) = m(‘,lA) s o,

the diagrams
(M. D) M(B,cn@m%m
M(B,I)@M(A,B
@ _ QA2
n
B DIBMIAL)
1On
N DISUMB,C)EMAB)
commute,
the diagrams
N(B,BI® MA,B

' /.454 \%b
E®M(A,B)
} &

MIAD) M(A,B)
Nae
M(ABY@ E
\%’ v
(A, BY® M(AA)
commute,

2,3. Examples: 1. Thus,the category in the usual sense is

the Set_.—category.

-

2. Consgider the categary Ab = (Ab,& ,Hom, Z ,...) from
l.4.2. In an Ab-category we have, instead of sets of morph-
isms, abelian groups of morphisms. The composition rule is a

homomorphism

M(B,C)® M(A,B)—FMU(A,C).
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But such homomorphisms are in.a natural one-to-om correspon-
dence (given by the unique e;tenqian) with the bilimear map-
pings

M(B,C)x M(A,B) —» M(A,C).

If we write this as a composition, we see thai the bilineari-
ty results in the distributivity lews .

LolfrylacoBrey, (BeyledkaBek+ 9o .
Thys, the notion of e Ab-category coincides with the well-
known notiom of an additive category.

3 (lawvere), Take the 1’ from 1.4.7 and. see what hap-
pens: A 1V -category is a class x together with a correspon-
dence M: Xx X—»> R" ana "morphians® '

M(y,z) + M(x,y)=MK(x,z)
0 Z M{x,x)
‘(and hence M(x,x) = 0), _
Thus the notion of a ?'-category with this particular 7 co-
incides with the .notion of (in general, non-symmetric) quasi=-
metric space.

4. Every closed category U can be viewed in a natu-
ral wey as a U -category.

More examples of ‘U -categories will be givén in § 4.

§ 3. The closed categories (L, @)-Fuzz.
3.1, Throughout this paragraph, L is a lattice with a least
elenment o and a largest element e. Its ordering will be deno-
ted by & . '
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3.2, An L-fuzzy set X (or just fuuy set, if there is no dan-
ger of conf\xgion) is a mapping
X: X——>1,

where 7X is @ set. Ve write

x €.X for X(x)Za.
Let X, Y be fuzzy sets. A morphism (¢f. [43)

L X ¥
is a mapping f£: ?X— 7Y such that for every x £%E, Y(f(x))2
Z X(x). Thus, in the convention atove, £: 7X—>7Y is a mor-
phism X—p X iff
for evéry a€l, x €.X implies f(x) «¥.
The category formed by fuzzy sets and their morphisms will
be denoted by
L~-Fuzz.

Associating with a fuzzy set X the set ?X and with a morph-
imﬁ XY the corresponding mapping ?X—>%Y we obtain a
faithful functer

? 3 L-Fuzz—> Set.
3.3. In(87 there was shown that the closedness structures
(® ,H,...) on L~Fuzs such that

7H(X,Y) = 7Y°X and H(X,Y)(f) = e for £: X—> Y

(i.e. such that all the mappings ¥X—> ?Y are in some extent
members of H(X,Y), the morphisms having the strongest mem-
bership possible) are in a one-to-ome correspondencs with the
tensor products on L (see 1.4.5) having e for the unit. This
correspondence is given as follows: if O is the tensor

rroduct on L, for the corresponding ® , H holds
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TX@D Y) = A=V, (X@ Y)(x,y) = X(x) a X(y),

f € H(L,Y) iff for avery b e‘L, x €, X implies f(x) e 1.
the slosed miegory with the closedness structure induced by
2 will be denoted Yy

(L, o )-Fuzz.
3.4. Remark: The condition that the largest element e of L
is the unit of a is equivalent with
X0 Y < XAY .
Really, if e is the unit, we have xay<£ xfe = x and similar-
¥ xOy<&y, so that xo0y<xAy. On the other hand ?.et xay £
£xAy and let j be the unit of g . We have

e =enjceAj = j.

§ 4., (L,T)-Fuzz-categories,
4.1, a) By the definitions above, we see that an (L,O)-
Fuzz-category b consists of a clas Q. of objects, fuzsy
sets M(A,B) associated with coupks A, B of objects, an asso~
ciative composition (from now on, we will denote it by o )

o : ?M(B,C)<T™(A,B) —3>» TM(A,C)

such that

if pe M(B,C) and e € M(2,B), Peocce, N4,C),
and the units 1, € M(A,A) such that loec. =cc, el = &
whenever defined. .

Let us call the oc €.M(A,B) the a-morphiams from A to
B, and write o :,A—p B, The rule above sgys that a compo-

sition of en a-morphism with a b-morphism gives an &pb-morph-
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ism.

b) Obviously, we can view an (L, @ )-Fuzz-category as
follows: A categary ?Qv {this is the (1G1,%M, A2y 0}
together with mappings €,p5: 7H{(4,B)—» L (in the notation
above, 6€(cc) = M(A,B){eC) ) such that

Slece) 2 €(x)n € (B) and &(1,) = e,

"4.,2, In particular we are interestec in those (L, B )-Fuzz-
categoﬁes where the 6bjects are sets endowed by structures
of some common type, TM(A,B) are some of {possibly allj the
mappings betwe@n the’nndérl,ying sets, and 6 says how far
the mapping in question preserves the structure {the mapp-
ings which "really preéerve the structure® having 6(f) =
= e). _

4.3, Let L be a lattice. Consider a system of refinements
in the sense of [2]

’ r
h— T g,

a

for b&a in L. By the definition of a refinement, obviously
Tpe® Ta = Tgee Yo see imediz;tely that the system can be
described as an (L, A)-Fuza-category with e M(A,B) iff
e ﬁ'a(A’B)' (Thus, the basic situation of one refinement
ié governed by the smallest non-trivial boolean algebra 2 .)
On the other hand, every (L, A)-Fuzz-category can be viewed
as such.a system of refinements, The case with a general ten-
soring R is finer than that, being sble to desl with esti-
mates of well-behaving of mappings which are not categorial,
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4.4, Remark: It is worth noting that A is the only ten-
sor product with which the situation is reduced to a: systex
of refinements, In fact, it is the only tensor product with
unit ®» which is idempotent. Really, we know already that for
such @ O , x0Dy£xAy. If a is idempotent, we have, on

the other hand,
XAy = (xA¥Y) o0 (xAy)£xay,

so that @ = A ,
4.5, Let us describe now two patterns for constructing
{L, u )~-Fuzz-categories associated with concretely Elescribed
structures.

In a reasonable g?nerali'gy (see [6]), structures on sets
can be described as follows: A functor

F: Set —>» Set

is given; an F-structure on a set X is a subset r of F(X)
(in concrete cases the structures are often subjected, more-
over, to special conditiors , but we do not need to go into
it here). A mapping £: X—>» Y behaves well with respect to
structures r, s on X, Y resp., if F(f)(r)cs (or F(f)(s)cr,
in the con&avariant case), Thus, e.g. n-ary relatiors are
Q,-structures, where Qn sends X to X%, the well-behaved map-
pings are the relation preserving ones; topology is a (spe-
cial) P -structure, where P~ is the contravariant power-set

functor, the well-behaving mappings coinciding with the con-
tinuous ones; etc,

I. Let us have given mappings 9 : exp F(X) ~» L such
that < (AuB) = » () g » (B), P(#) = e, and that for
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£: X—> Y DI{P(LIA)) = Y (A) (e.g., L may b the invar-
8ely ordered set of natural numbers plus co,ﬂ:-t;,-;s (A} the
rumber of elements of &), For s mapping £: X —>»Y and P-
structures r, 8 on £, Y put

‘ D gi{f) = F(f)(r)~s,

We have
Drt(go £) = Flge L) ()Nt = F(g)(F(LYI(r)INtcPF(g)(s v
V(R (r)>8)) t = (F(g)(s)v F(g)(DIf)))NteD (81 v
VF(g)(D, (1)), .
Thus, putting

8(f) = » (Dir))

_one obtains, using the‘point of view of 4.1 b), an (L, Q)=
Fuzz-category in which the failure to preserve a structure
is measured according to the extent of the damaged part in
£(X).

II. Let us have given for every F-structure r on X we
are interested in (thus, not necessarily for every rc F(X) )
an I-fuzzy set § such that

7= F(X) md F M) = 1
and such that, moreover, if uer implies F(f)(u)e,¥, then
ue,F implies F(£)(u) cm,;‘i'. Then put

€ (£) = B(F,¥) (F(£))
where H is associated with @ (see 3.3).
Here, roughly speaking,.ons measures not how large the dama-
ged part is, but how large is the damage (everything msy be
damaged a bit, nothing too badly; in such & case, in I the

-
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mapping would be valuated as hopelessly bad, here only mo-
derately so), See 4.6.4 »

4,6, Examples: In the following eiamples, if the pattern
from 4.5.I is used, L is the inversely ordered set of natu-
ral numbers plus 00/0z4,»(A) is the number of elementa o A.

1) “ne-to-one mappings and in what extent a mapping
is not such: Consider the contravariant power-set functor P~
and put ry ={AcX |card A&13}. Obviously, £: X—> Y is
one-to-one iff P~ (£)(ry)ery.

a) The procedure I asgigns to a mapping f the numbe »
of elements of Y into which more than one element of X is
mapped. , ”

b) Let L be the set of all positive natural numbers
plus @ , again inversely ordered. Put

'i"'x(A) =1 if card A£1, ?’x(A) = card A otherwise,
Obviously, we can use for @ the usual multiplication of
rumbers .

Compare the valuation of mappings f, g: Hx2—> N defi-
ned by f(n,i) = n end g(n,0) = 0, g(n,1) =n, In a), g is
preferred to £, in b), £ to g.

2) Using I for the structure of bimmry relations one
obtains a description of the system of graphs and what is
called their homomorphisms with defects. It would not be
much use to try to describe it as a category in the ordina-
ry sense (in particular in the finite case, one gets any

mapping after sufficiently many compositiors _of homomorph-
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isms with small defect ),
3) Teke, again, the structure of hinary relatiors

(reX»X), L 1ike in 4,6.1 D). Put (x,y) & iff (x,y) &
Ervrvru ... u%. hpuin, we see that in the proce-
dure 1I we cnn uce the ordinary multiplicotion.

4) Sinilarly, sc in 2), if we use I for homomorphisms
of algebras, aamy, with one binary operation, the defect of
o mapping ic obtained eaxpressed as the number of the instan-~

ces of the inequality f(x).f(y)dL(x.y).
Conaider the cntepgory of metric spaces. The proper

5)
choice of morphisma are the contractions. Considering the
lLipachitz mappings we obtain again a category, but a lot is
lost: e.g. en isomorphism is not necessarily an isometry any
more, We can, however, consider the system as an (L, )-Fuzz-
category where L is the inversely ordered set of real num-
bers 2 1, and f:ax-» Y iff its Lipschitz constant is less
or equal to a, This fits into the pattern II above and the
reader is invited to show how (Hint: the contractions pre-
serve a system of bimary relations.).
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