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Abstract. Positive and oscillating solutions of delayed equation

ẋ(t) = −c(t)x(t− τ )
with c ∈ C(I,R+), I = [t0,∞), R+ = (0,∞) and 0 < τ = const are
studied.

MSC 2000. 34K15, 34K25

Keywords. Linear differential equations with delay, positive solution, os-
cillating solution

Let us consider the equation

ẋ(t) = −c(t)x(t− τ) (1)

where c ∈ C(I,R+), I = [t0,∞), R+ = (0,∞) and 0 < τ = const.
Define lnk t = ln(lnk−1 t), k ≥ 1 where ln0 t ≡ t for t > expk−2 1 where

expk t ≡ (exp(expk−1 t)), k ≥ 1, exp0 t ≡ t and exp−1 t ≡ 0. (Instead of ex-
pressions ln0 t, ln1 t is only t and ln t written in the sequel.) Moreover, define so
called critical functions for (1)

ck(t) ≡
1
eτ

+
τ

8et2
+

τ

8e(t ln t)2
+

τ

8e(t ln t ln2 t)2
+ · · ·+ τ

8e(t ln t ln2 t . . . lnk t)2

with k ≥ 0.
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Theorem 1. [1]
A) Let us assume that c(t) ≤ ck(t) for t → ∞ and an integer k ≥ 0. Then there
is a positive solution x = x(t) of Eq. (1). Moreover,

x(t) < νk(t) ≡ e−t/τ
√
t ln t ln2 t . . . lnk t

as t→∞.
B) Let us assume that

c(t) > ck−1(t) +
θτ

8e(t ln t ln2 t . . . lnk t)2
(2)

for t → ∞, an integer k ≥ 1 and a constant θ > 1. Then all solutions of Eq. (1)
oscillate.

Theorem 2. [1] Assume that the inequality (2) holds for t→∞, an integer k ≥ 1
and a constant θ > 1. Then each solution of Eq. (1) has at least one zero on each
interval (p− τ, q) for q = expk−2(lnk−2 p)exp(π/ζ), ζ2 < (θ − 1)/4, (ζ is a positive
constant) and p sufficiently large.

Theorem 3. [2] Let there exists a positive solution x̃ of (1) on I. Then there are
positive solutions x1 and x2 of (1) on I satisfying the relation

lim
t→∞

x2(t)
x1(t)

= 0. (3)

Moreover, every solution x of (1) on I is represented by the formula

x(t) = Kx1(t) +O(x2(t))

where K ∈ R depends on x.

Definition 4. [3] Let x1 and x2 be fixed positive solutions of the delayed equation
(1) on I, with the property (3). Then (x1, x2) is called a pair of dominant and
subdominant solutions on I.

Let us consider the equation (1) in the case when the coefficient c is equal to
a critical function, i.e., in the case of equation

ẋ(t) = −ck(t)x(t − τ), k ≥ 0; t ≥ t0 > expp−1 1. (4)

Theorem 5. [3] Let k ≥ 0 be fixed. Then for any fixed constants δ1 > 2 and
δ2 < 0 there are a t0, and a pair (x1, x2) of dominant and subdominant solutions
of (4) on I satisfying the two-sided estimates

e−t/τ
√
t ln t ln2 t · · · lnp t ln2p+1 t < x1(t) < e−t/τ

√
t ln t ln2 t · · · lnp t lnδ1p+1 t

and

e−t/τ
√
t ln t ln2 t · · · lnp t lnδ2p+1 t < x2(t) < e−t/τ

√
t ln t ln2 t · · · lnp t

on I.
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