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CRITICAL POINT THEORY 
AND NONLINEAR DIFFERENTIAL 
EQUATIONS 
J.MAWHIN 
lnstitut Mathématique, Université de Louvain 
B-1348 Louvain-la-Neuì>в, Belgium 

1. INTRODUCTION 

The variational approach to boundary value problems for differen­

tial equations consists in writing the problem, whenever it is possi­

ble, as an abstract equation of the form 

( 1) $(u) = 0 

where $ : E - E* is of the form $ = cp' , with cp ' the Gateaux derivative 

of a real function cp defined on a Banach space E. In this way the 

search of solutions for (1) is equivalent to the determination of the 

critical points of $, i.e. of the zeros of cp'. Such a viewpoint can 

be traced at least to Fermat, with his minimal type principle to find 

the law of refraction for the light. 

Since Fermat also, we know that the points at which <p achieves 

its extremums are critical points of (p. Thus, any way which succeeds 

in proving, directly, that cp has a maximum or a minimum provides a 

way of proving the existence of a solution of (1). This is the 

so-called direct method of the calculus of variations which goes 

back to Gauss, Kelvin, Dirichlet, Hilbert, Tonelli and others. More 

recent work deals with proving the existence of critical points at 

which (p does not achieve an extremum (saddle points). This paper 

surveys some of the recent work in this direction. A systematic 

exposition of many aspects of the variational approach to boundary-

-value problems for ordinary differential equations will be given in 

[ 1 1 1 . 

For definiteness, we shall consider a system of ordinary differ­

ential equations of the form 

(2 ) u" + au - VF(x,u) (V = D ) 

a u 
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on a compact interval I •- [a.bl , submitted to homogeneous boundary 

conditions, say, of Dirichlet, Neumann or periodic type. For sim-
N plicity, we assume here that F and VF are continuous on I x R . We 

could as well consider elliptic partial differential equations. It 
2 2 is well known that the spectrum of - d /dt submitted on I to the 

above boundary conditions has the form 

Moreover, (2) is the Euler-Lagrange equation associated to the 

functional 

<l> : H - R, u - O (u) + /T F(,,u(.)) 
" rx I 

where 

Qa(u) = /I(l/2)(|u'|
2 - alul2), 

and H = H J ( I , R N ) , H1(I;RN) or H*(I,RN) = {u e H1(I,RN) : u(a) = 

= u(b)} with their usual norm denoted by 11.11. Solving (2) with one 

of the above boundary condition is thus equivalent to finding a 

cK.lt.ical point of cp on H, i.e. a point u E. H such that 

( 3 ) cp' ( u ) = 0 . 

If c = <p(u) with u a critical point, c is called a critical value, 

for cp. 

The simplest situation for (3) to hold is when cp has a global 

minimum (which requires of course cp to be bounded from below) . 

Since Hammerstein [ 6l in 1930 (in the Dirichlet case) we know 

that cp will have a global minimum whenever 

(4) a < X1 

and 

(5) F(x,u) > -(3/2)lul2 - Y(x) 

for some 3 < X - a, y G L (I) and all (x,u) G I x R . In fact, cp is 

coercive (<p(u) - + °° for Hull -+ °°) because, by (4) and (5), cp is 

bounded from below by a coercive quadratic form. Moreover cp is weakly 

lower semi-continuous so that cp has a global minimum by a classical 

result. We shall discuss now situations where (4) and (5) do not 

hold. 



2. THE CASE OF a = A AND / F COERCIVE ON THE KERNEL 

The situation is already more complicated when a = A ( l i e ionance 

at tke lowest eigenvalue.) and condition (5) is no more sufficient 

for the existence of a critical points as shown by a linear equation 

violating the Fredholm alternative condition. To motivate the 

introduction of a new-sufficient condition, let us first consider 

the case where VF is bounded. 

a^ Tt.!.. !r§i?lf_w_!rr__YE_____2yD___ 

Writing u(x) = u(x) + u(x) with u £ H the eigenspace of A and 

u £ H1 = H^, we have cp(u) = QA (u) + /I[F(.,u(.)) + F(.,u(.)) -

_ 1 

- F(.,u(.))] > Q̂  (u) + /_. F(.,u(.)) -

- Mllull 2 > c1Huir - c2Hull + ; I F ( . , U ( . ) ) , 

where M is an upper bound for IVFI on I x R , and we shall recover 

coercivity for cp if we assume that 

(6) ; F(.,v(.)) •* +°° as Hvll -• °o in H1 

( c o e i c t v t t y o£ tke averaged F on tke kernel). Such a condition was 

first introduced by Ahmad, Lazer and Paul [ ll and it generalizes 

the classical Landesman-Lazer conditions. As cp is again w.l.s.c, 

the existence of a minimum is insured. 

b) The_case_where_F_is_cgnvex 

The boundedness of VF can be replaced by the convexity of 

F(x,.) for each x G I. In this case, if (6) also holds, there 

(7) ; VF(.,ïï (.))v = 0 for all v Є П . 

Moreover, by c o n v e x i t y and u s i n g ( 7 ) we have 

Ф ( u ) > Qл (u) + Jҡ [ F ( . , Ï Ï Q ( . ) ) + ( V F ( . , ï ï 0 ( . ) ) , u - ïï0)l 

(8) = Qл (ïï) + ; F ( . , Ï Ï Q ( . ) ) + / I ( v ғ ( . f ӣ 0 ( . ) ) 9 ï ï ) 

> c j l u l l 2 - c2llull - c 3 
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Thus each minimizing sequence (u
k
) for <p has (u, ) bounded in the 

norms 11.11 and II . II
 oo
. On the other hand, by convexity again 

L 

F(x,u
k
/2) < (l/2)F(x,u

k
) + ( l/V. )F(x,-u

k
) 

and hence, 

Ф
(u

k
) > 2/j. F(.,u

k
/2) - fz F(.,-u

k
) > 

> 2/j. F(.,u
k
/2) - c

4
, 

which, by (6), implies that (u ) is bounded and q> has a minimum. 

Let us remark that when F(x,.) is strictly convex for each x € I 

= X , it can be shown that 

the existence of a solution I 10l 
and a = X , it can be shown that (6) is necessary and sufficient for 

c) The case where - / F is coercive on the kernel 

Let us assume now that 

(9) Jj F(.,N(.)) -»-» as llvll -• °° in H*1. 

As this situation only holds in trivial situations when F(x,.) is 

convex, let us assume again that VF is bounded. By (9), we have 

<p(v) = Sj F(.,v(.)) -* -°° as llvll -> °° 

in Hlf so that cp is no more bounded from below and has no global 

minimum. On the other hand, on H , 

cp(w) = Qx (w) + Sx [F(.,0) + (F(.,w(.)) - F ( . , 0 ) ) l > 

and hence cp|~ is bounded from below (even coercive). Consequently, |H1 
there exists R > 0 such that 

__ sup cp < inf (p 
H1H9B(R) H 1 
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This suggests the use of the following saddle type or minimax theorem 

of Rabinowitz [ 15] , introduced to give a variational proof of the 

Ahmad-Lazer-Paul results [ 1] . 

LEMMA 1. Let E be a Banach space and cp e c (B,R). Assume that theJie 

exists a decomposition E = E ® E with dim E < °° and R > 0 such 

that 

Uit 

sup Ф < inf 
E

1
H3B(R) E

2 

I = {a E C(E,E) I a(u) = u on 3B(R)} 

and 

(10) c = inf max cp(a(s)) (> inf cp) 

aeZ SGB(R)OE E
2 

Assume that i£ thexe is a (u ) such that <p(u ) - c and <p' ( u ) - 0, 
K K K 

then c is a critical value. [Valais-Smale type condition PS* at c). 

Then cp has a critical point with critical value c. 

This theorem can be proved by deformation techniques [ 12] or 

Ekeland's variational lemma [4]. 

In the above case with E = H, E = H , E = H , the PS*-condition 

holds for each c and cp has a critical point. 

The above results are summarized in the following. 

THEOREM 1. Assume that 

/ F(. ,v( .))-»+ °° as llvll -* °° in H 

[the eigenspacc o£ X ) and that either VF is bounded on. F is convex in 

u . Then (2 ) with the suitable boundary conditions has at least a 
i 

solution which minimizes cp. Assume that 

I F ( . , v ( . )) - - ° ° as llvll -* °° in ff 

and that VF is bounded. Then (2 ) with the suitable boundary condi-
Ai 

tions has at least a solution u with cp(u) = c given by [10) with 
E = H the eigenspace o£ X . 



3. THE CASE OF a = X1 AND F PERIODIC 

An interesting situation in which (6) does not hold occurs 

when 

F(x,u + T.e.) = F(x,u) (1 < i < N) 
' l i 

for all x e I, u e R
N and some T. > 0. (1 < i < N ) . 

i N 

This implies that F and VF are bounded on I x R . Therefore 

<p(u) = Q. (u) + ; F( . ,u(.)) 

(.11) l 

> cjlull2 - c 2 , 

so tp is bounded from below and any minimizing sequence (u, ) is such 

that (u, ) is bounded in the norms 11.11 and 11.11 
k T°° L 

a) The_case_of_N_u_iann_or__>e_'_2^____2__-___Y_22_-_-___2*__ 

N 
Then, A = 0 and H" * R is the space of constant mappings from 

[a,bl into RN. Moreover, 

(12) cp(u + Tj_ei) = <p(u) (1 < i < N) 

for all u G H, so that any minimizing sequence can be supposed, 

without loss of generality, such that 

I V < ( v T2)1/2. 
K i = l X 

Thus cp has a bounded minimizing sequence and hence a miniraura. This 

result is due to Willera [ 18] and (independently and in special cases) 

Hamel [ 5 l and Dancer [ 3] . The existence of a second solution was 

proved by Mawhin-Willem [8,9] using the mountain pass lemma, a variant 

of Lemma 1. Their approach was extended to systems of the form 

d 9L ( .N 3L , .. 

dt -sE (u'u) - a_ (u'u) = ° 

by Capozzi, Fortunato and Salvatore [2]. See also Pucci-Serrin [13, 

14] for abstract critical point theorems motivated by this situation. 

b) __e_case_o__Qiric_let__ouD3__¥_SQQ_4__Qns 

The Dirichlet case strongly differs from the other ones because 



A = — -j- > o and H, = span(sin gtr̂ ) which imply that we loose the 
(b-ar 

periodicity property (1?) of cp. The problem has been studied by Ward 

I 17] for N = 1 and 

(13) F(x,u) = G(u + E(x)) 

where G is continuous and T-periodic and E : I — R is continuous. 

Indeed, Ward considered explicitely the problem 

v" + A v = q(v) + e(t) 

v(a) = v(b) = 0 

T ~ 
when g(v + T) = g(v), / g = 0 and e E H , which reduces to the above 

case by a trivial change of variables. 

A possible way of approach, slightly different from Ward's one, 

makes use of the following lemma which can be proved by a deformation 

technique or Ekeland variational lemma. 

LEMMA 2. lit E be a Banack bpacd and <p E C (E,R) be bounded i^om bzlow 

and 6att^{sy PS* at c = inf <p. Tkzn <p kah a mtntmum. 

Using an extension of the Riemann-Lebesgue lemma, one can prove 

that cp associated to F given in ( 13) satisfies the PS*-condition at 

each b * 0 and that cplg satisfies PS* at each b E R. Thus the 

existence of a critical point is insured by Lemma 2 except when 

0 = inf <p < inf cp 
H H l 

The above mentioned Riemann-Lebesgue type lemma also implies that, on 

H- s <p(v) -* 0 as llvll •* °°. Thus, there exists some R > 0 such that 

max <p < inf cp 
H1HdB(R) H 

and then c given by the Rabinowitz lemma is greater or equal to inf cp 

and hence nonzero. Consequently, this c is a critical value for (p. 

The above results can be summarized in the following. 

THEOREM 2. A^4ame that 



F ( x , u + T . e . ) = F ( x , u ) (1 < i < N) 
' 1 1 

u)4 tk N = 1 and F o& tke ficim (7 3) in tke Vixicklet c a - i e . Tkcn ( 2 >v ) 

UR f/i f/te - ia / .Tab^c boundary condition ha& at least one. i o lut-lon. 

4 . THE CASE OF X. 1 < a < X ( i > 2 ) 

In this case, cp is neither bounded from below nor from above, as 

Q (v) - - °° on H. . = span of eigenf unctions of X.,,..., X . . and 
a 1-1 ^ 1 ' 1-1 

Q (v) - + °° on H. , = span of eiqenf unctions of X ,.... 
a 1+1 ~ i+1 

a^ T___2a____'_________-?__2un_?_^ 

Then one can use the Rabinowitz Lemma in a way similar to the 

case where a = X and /_. F ( . , v( . ) ) - - °° as II vll -*• °° if the extra 

condition 

( 14 ) /_ F( . ,v( . ))dx - + °° or - °° as II vll -> °° in the 

eigenspace of X. 

holds when a = X.. One choose in this case E = H., E^ = H. or E^ = 
i 1 I 2 i -

= H\ . E - H, ri accordinq to the sign of °° in (14).Under these l+l l l+l * 

conditions (2 ) has at least one solution. This is essentially a 

result of Ahmad-Lazer-Paul I ll and Rabinowitz I 15] . 

k) T____a____'!}_:_'__F_____2nYe_: 

Then, sharper results can be obtained without boundedness 

assumption of VF through the use of the Clarke-Ekeland dual least 

action principle which reduce the study of the critical points of cp 

to that of an associate dual function <\> involving the (possibly 
d2 

generalized) inverse of — j + X.I and the Legendre-Fenchel transform 
dt: 1 

of F(x,.). Under reasonable conditions on F, 4> is bounded from below 

and, in this way the existence of a solution is in particular insured 

w h e n 

s X - X. 
l i m s u p £ l £ f f i < 6 < ~m~ C u n i f . i n x G I ) 
l u l - " > l u l 

a n d ( i f X. = a ) , 
l 

/ F ( x , f ( x ) ) d x - + °° as IIv'l -+ °° i n t h e e i g e n s p a c e of \^. 
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See [ 10] for. general results in this direction. 

c) The case where F is periodic and a = X 
'_ 1 

Results are known only when N = 1 and F has the form (13). The 

proof, due to Lupo and Solimini [ 16,7] is such more delicate because 

the PS" is not satisfied at c = 0. This requires, in addition to the 

classical Rabinowitz saddle point theorem, other saddle point 

theorems of the same type and some topoloqical arquments (together 

with the Riemann-Lebesgue-type lemma mentioned above). 

The above results can be summarized in the following 

THEOREM 3. A**ume. that X._ < a < X. (i > 2) and that one. o & the, 

following condition* holdi>: 

i) VF i* bounded and, whe.ne.ve.ti a = X., 

/ T F ( . , v ( . ) ) - + °° 01 - °° a* Hvll -+ °° in the. cige.n*pace. o & x i 

X - X . 
ii) F ( x , . ) i* convex, l im sup F ( x ^ u } < 3 < 1 +

 2 ~ ^unli* ^n x G T \ 
I u | - °° |u l 

and, whe.ne.vch. a = X^, 

(14 ) / F( . , v ( . ) ) — + °° a* II vll -• °° in the, e.igcn*pace. ofa X . 

Hi) a = X. , N = 1 and F ha* the, &oim (7 3) with G T-pe./iiodic. 

Then the. ph.oble.rn (2 ) with any o & the. boundary condition* ha* at 

le.a*t one. *olution. 

One can show that (14) is necessary and sufficient when F(x,.) is 

strictly convex [ 10l . 
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