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ON THE ASYMPTOTIC BEHAVIOR 
OF SOLUTIONS OF NONLINEAR 
ORDINARY DIFFERENTIAL EQUATIONS 
T.KUSANO Section A 
Department of Mathematics, Hiroshima University 
Hiroshima 730, Japan 

We are interested in the asymptotic behavior of so lut ions of the non l inear d i f ­

f e r e n t i a l equation 

(1) y ( n ) + f ( t , y) = 0 , t > a , 

subject to the hypotheses: 

(A,) f : [a,°°) x ]R -> (0,°°) is continuous; 

(A«) f(t, y) is nondecreasing in y for each fixed t e [a,°°); 

(A3) lim f(t, y) = 0 for each fixed t t" [a,°°). 
y+-oo 

A prototype of ( l ) satisfying (A,)- (A~) is 

(2) y ( n ) + '4>(t)ey = 0 , t > a , 

where <P : [a,°°) + (0,°°) is continuous. 

We note that a l l solutions of ( l ) can be indefinitely continued to the right, 
that is, for any (a0,

a- >• •. ,a -j) e l R n , the solution y(t) of (1) satisfying y^'(a) 
= a., 0 < i < n-1, exists throughout [a,°°). Denoting by S the set of a l l solutions 

of (1) existing on [a,°°), we introduce the f o l l o w i n g notation: 

(I) Sin = {y € S : y ^ ^ H > 0} , S?"1 = {y £ S : y ^ M < 0} , 

Sg"1 = {yeS :y(n-1)(»)=0>; 

(II) for k = l,2,...,n-2, 

Sk = {y e S : y(n-1}(») = ••• = y ( k + 1 )H = 0 , y(k)(») > 0} , 

Sk = {y € S : y ^ ^ H = ••• = y ( k + 1 )H = 0 , y(k)(») < 0} , 

sk = {yes : y
( " - 1 ) W = - = y ( k + 1 ) H = y ( k ) H = 0}; 

(III) for k = 1,2,....n-2, 

Sk
b = {y £ S

k : y(k)(») < »} , Sk
u = {y € S

k : y(k)(») = »} , 

S^b = {y € S
k : y ( k ) H > -»> . Sk

y = {y £ S
k : y(k)(») = -»> ; 

(IV) S° = S°u = {y € sj : y(») = »} , S° = S°u = {y 6 sj : y(») = -»} , 

S° = {y e sj : -» < y(») < »} . 
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We then have a classification of S: 

S = (S
n_1
 U S

n
~

2
 U ... U si U s?) U S? U 

+ + + +' D 

,
3)
 u (s

n
"

]
 u s

n
"

2
 u ... u s

1
) for n even ; 

S = (S
n_1
 U S

n
*

2
 U ... U si) U S? U 

+ + + D 

u (s
n _ 1
 u s

n
~

2
 u ... u s

1
 u s°J for n odd . 

Below criteria are given for the existence (or nonexistence) of members of the 

subclasses of S appearing in (3). 

THEOREM 1. S
n _ 1

 * <f> . 

THEOREM 2. S
n _ 1

 * $ if and only if 

( f(t, -ct
n_1
)dt = - for all c > 0. 

•'a 

THEOREM 3. Let 1 < k < n-1. Then, S
k

b
 * <j> if and only if 

t
n
~

k _ 1
f(t, -ct

k
)dt < - for some c > 0 . 

THEOREM 4. Let 1 < k < n-1. Then, S
k

b
 * <|> if and only if 

( t
n
~

k
~

1
f(t, ct

k
)dt < oo for some c > 0 . 

Ja 
THEOREM 5. Let 1 < k < n-2. If S

k

u
 * <|>, then n if k (mod 2) and 

t ^ ^ Ч t t , -ct
k
)dt = - for all c > 0 ; 

a 

t
n
"

k
"

2
f(t, -ct

k + 1
)dt < oo for all c > 0 , 

a 
THEOREM 6. Let 1 < k < n-2. If S

k

u
 * <\>, then n = k (mod 2) and 

t
n
"

k
"

2
f(t, ct

k
)dt < - for all c > 0 ; 

( t
n
'

k _ 1
f(t, ct

k + 1
)dt = oo for all c > 0 . 

J a 

Similar results hold for the subclasses S , S and S,. 

Equation (1) is said to be superlinear [resp. sublinear] for y > 0 if f(t, y)/y 

is nondecreasing [resp. nonincreasing] in y > 0 for each fixed t e [a,°°). 

THEOREM 7. Let (1) be superlinear for y > 0. 

(i) sjb = . . . - s ; - 1 = * if 

t
n
"

2
f(t, ct)dt = ~ for all c > 0 . 
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(ІІ) S° Ф ф, s }
b
 * Ф , . . . , S ^

1
 * ф if 

f(t, ct )dt < °° for some c > 0 . 

or if 

(iii) S^
u
 = 4> for 0 < k < n-2 with n = k (mod 2) if 

f°° n 2 
t " f(t, c)dt = oo for some c > 0 in case n is even , 

J a 

t
n
" f(t, ct)dt = oo for some c > 0 in case n is odd , 

J a 

[ tf (t, ct
n _ 1

)dt < * for some c - 0 . 
J a 

THEOREM 8 . Let (1) be s u b l i n e a r for y > 0 . 

(i) slb = ... = s;-1 = * i f 

( f(t, ct
n _ 1

)dt = ~ for all c > 0. 
•"a 

(ii) s° * <f>, s|
b
 #*,..., S^"

1
 * <)> if 

foo 

t f(t, c)dt < oo for some c > 0 . 
a 

(iii) S^ = <j> for 0 ^ k < n-2 with n = k (mod 2) if 

f°° 9 
f(t, ct " )dt = °o for some c > 0 , 

Ja 
or if 

t f(t, ct)dt < oo for some c > 0 in case n is even , 

r\ 9 9 
t " f(t, ct )dt < oo for some c > 0 in case n is odd . 

•'a 

Stronger results can be obtained for equations of the form 

(4) y <
n )
 +<p(t)g(y) = 0 , t > a, 

where cp : [a,oo) -+ (0,°°) and g : IR ->• (0,°°) are continuous, g(y) is nondecreasing and 
lim g(y) = 0. 

y-^-oo 

THEOREM 9. Suppose in addition that 

—r^y < oo for some 6CJR. 

Then, a l l solutions y(t) of (4) have the property lim y(t) = -°o if and on ly if 

f ^"^(tjdt 
J a 

THEOREM lO. Suppose in addition that g(y)/y is nonincreasing for y > 0, h(z) = 

inf g(xz)/g(x) > 0 and 
x>0 
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, , я < oo for some 6 > 0 . 
J

0
 ҺГZT 

Then, all solutions y(t) of (4) have the property Tim y(t) = -«> if and only if 
t-H» 

[ cp(t)g(ct
n
"

]
)dt = - for all c > 0. 

J a 

EXAMPLE. Consider the elliptic partial differential equation 

(5) Amu + ip(|x|)e u = 0 , x e fia , m > 2 , 

3 
where ft = (x e 1R : Ixl > a } , a > 0. A r a d i a l f u n c t i o n u(x) = y(|x|) is a s o l u t i o n 

a ' ' ' 

of (5) if and only if 

( t y )
( 2 m )

 + t « t ) e
y
 = 0 , t > a, 

which is equivalent to 

(6) z
( 2 m )

 + t*Kt)e
z / t

 = 0, t > a. 

Applying any of the above theorems to (6), we have a corresponding result on the 

existence and asymptotic behavior of radial solutions of (5) in exterior domains. 

For example, we see that e\/ery radial solution u(x) of the equation 

(7) A
m
u + e

u
 = 0 , x e ft , 

a 

has the property lim u(x) = -«>, and for each k, 1 < k < 2m-2, (7) has a solution 

u
b
(x) such that lim u.(x)/|x| = const < 0; we also see that all radial solutions 
k
 |xj->oo

 k 

u(x) of the equation 

Amu + Aexp ( y | x | v ) e u = 0 , x <E fta , 

w i t h A > 0, u > 0 and v > 2m-2, are such t h a t l i m u(x)/|x| = -<». 
|x|-x» 

REMARKS. For the proofs of the above-mentioned theorems the reader is referred 

to the paper [1]. Generalizations of the above theory to perturbed general disconju-

gate equations of the form L y + f(t,y) = 0 will be published elsewhere. Closely 

related results are found in the papers [2,3]. 
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