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CHARACTERISTIC FUNCTIONS THAT ARE PRODUCTS OF DERIVATIVES

Let D Dbe the system of all (finite) derivatives on the real line R.
For each set A ¢ R let Ca, be its characteristic function. Let d be the
system of all sets A ¢ R such thaf Cp = fg - for some f,g € D. (It is not
difficﬁlt to prove that every closed set belongs to G;) Since each derivative
ijs a Baire 1 function and since A = {x; Ca(x) 2 1} = {x; Ca(x) > 0}, we see
that every set in Q@ is ambiguous (i.e. at the same time an Fs—set and a

Gg—set). Now 'iet A € R, f,g € D, Cpa =fg, PyXpnpsyn € R, P < xpn < yp

. y X .
(n=1,2,...) and 1lim inf —; > 0. Let f=F', g=G'. It is easy to
F(y,)-F(x) o |
prove that T—- — F'(p) (= f(p)); similarly for G. Write Jp =
n'n

(%n,¥yn) and suppose that J, € A for each n. Using the Cauchy inequality
and the Darboux property of derivatives we get (yn — %p)2 = (J J vig)? <

n 2
fJn f - IJn g = (F(yn) — F(%p)) * (G(yn) — G(xp)) for each n. Dividing by

(yn — %xn)? and passing to the limit we obtain 1 ¢ f(p) - g(p) = Ca(p) so
that p e A. Hence: If A e @ B=R\A and p € B, then such intervals Jp

_do not exist. (Intuitively: There are no essential holes in B close to p.)

This (and a "symmetrical"” argument) shows that B is nonporous (i.e. nonporous
at p for each p € B). Since A is ambiguous. if and only if B 1is, we
have the following simple result: If Aed, then B is ambiguous and non-

porous.

It can be proved that these two properties of B imply that A e Q.

Actually, we have a more precise statement:

Theorem 1. Let. A < R, B = R\A. Then the following three conditions 1),
2) and 3) are equivalent to each other: ‘
1) There is a natural number m and functions f,,..,f € D -such that
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~2) B is ambiguous and nonporous.

3) There are functions f,8 ¢ D such that f = g =1 on A and
fg =0 on B.

Let us compare Theorem 1 with an earlier result (see [1], pp. 33-34):

Theorem 2. Let A c< R, B = R\A. Then the following three conditions 4),
5) and 6) are equivalent to each other:

4) There is a natura} number m and nonnegative funct‘ions f1j00fp € D
such that Cp = f, - £,

5) B is ambiguous and each point of B is a point of density of B.

6) There are functions f,g e D such that f=g=1 on A, O L <2,
0§g<2 on R and fg =0 on B. ‘

Theorem 2 suggests that it is probably possible to improve or modify
Theorem 1 izjl various ways. (Can we require f to be bounded [nonnegative]
in 3)? Can we say more about f and g, if we drop the requirement

f=g=1 on A? I was not able to find any reasonable answers to similar
questions.) -
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