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Examples. (A) The relation J x J coincides with J restricted to the class of 
all pairs. — (B) Let a denote the addition on N. If <p e NN, then a 0 (q> x cp) = 
= cp o a if and only if cp = {x -»• a . x} for some a e N. 

5 C.2. Definition. If {ga | a e A} is a family of (comprisable) relations, then the 
relation consisting of all pairs <{xa | a e A), {ya | a e A}}, where <xa, ya> e ga for 
every a e A, is called the relational cartesian product of {ga} and will be denoted by 
nrei{ea | a e A} or Hi-eî o etc. As a rule, we write instead of Hre^a* etc-> ar>d 

a a a 
simply the product of the family {§„} of relations (thus, if ga are relations, ITea 

a 

always means the relational product unless it is clear from the context or stated expli-
citly that the product in the sense of 5 A.4 is considered). 

Remark. Clearly DIIea = nDga, EIIga = nEj?a. 
Example. Let {Xa | a e A} be a family of sets. For every a e A let ga consist 

of all <Xa, x), x e X„. Then Ylga is the relation consisting of all <{-Ya}, z>, z eHXa. 

5 C.3. Definition. If g is a relation, A is a set, then the relation consisting of all 
<{xa}, {y„}> such that xagya is called the relational power of g (with the exponent A) 
and is denoted by gA (unless it is clear from the context or stated explicitly that gA 

is taken in the sense of 1 E.8). 
Remark. If g is comprisable, then, of course, gA = nreI{a -» g | a e A}. Clearly, 

D(gA) = (Dg)"4, E(^) = ( E ^ . 
Besides the products of relations described above, another kind of a product 

will be of use later. 

5 C.4. Definition. If g, a are relations, Dg = Da, then the relation consisting of 
all (x, (y, z>> such that <x, e g, <x, z) e a will be called the reduced relational 
pair-product (or simply the reduced product) of the relations g, a. (No special 
notation is introduced here for this product.) 

5 C.5. Definition. If {ga | a e A) is a family of relations such that all Dga are 
equal to a set X, then the relation consisting of all <x, {ya}> such that <x, ya} e ga 

will be called the reduced relational product (or simply the reduced product) of {ga}. 
Remark. Clearly, the reduced product of {ga | a e A}, if it exists, is equal to 

(IIga o <p) where cp is the relation {x ->• A x (x)}. 
Finally, the relational sum of an indexed class of relations may be defined. 

5 C.6. Definition. Let {ga | a e A} be an indexed class of (comprisable) relations. 
The relation consisting of all « a , x), <a, y)) such that a e A, <x, y} e ga will 
be called the relational sum (or simply sum) of {ga} and will be denoted by Erelga 

or, if it is clear that the relational sum and not the sum in the sense of 5 B.1 is con-
sidered, simply by £ga. Clearly, D Iga = EDga, E I.ga = EEga. 

The relation consisting of all « a , x), such that a e A, <x, y) e ga will be called 
the reduced relational sum (or simply the reduced sum) of {ga} and will be denoted 
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by Eredgfl or, if there is no danger of misunderstanding, simply by Ega. Clearly, 
D Eredea = E ^redQa = U^,,-

Example. If all ga are equal to g, then = ]A x rel g. 
We conclude the exposition of these topics with the above definition, leaving to the 

reader, as an easy but lengthy exercise, the task of formulating and proving various 
propositions analogous to those which have been or will be given in this section 
for the product and sum in the original sense. 

D. DISTRIBUTIVE LAWS 

In this subsection, various propositions are established concerning what may 
be called "distributive laws" for set operations, in a rather general sense. As a matter 
of fact, there are distributive laws in the proper sense, e.g. ((JX„) x Y = x Y), 
"distributive laws" asserting the existence of a natural (canonical) bijective relation 
for classes resulting from certain operations, e.g. for (£AT0) x (EY6) and x Yh), 
and, finally, assertions of the following kind: if, for any a e A, fa is a one-to-one 
relation on Xa onto Ya, then l f a is bijective on Y,Xa onto EYa. In each case, there is 
an assertion implying that two certain sets (or classes) are equipollent, which will 
be useful in Section 9. 

We begin with a proposition on union and intersection which has its proper place 
in Section 2 but could not be proved there, since at that stage we had not yet intro-
duced the Axiom of Choice. 

5 D . l . Theorem. Let A, B be non-empty sets, and let {Xttib | a e A, b e B} be 
a family of sets. Then 

n u nxaJa, u = n uxa,fa. 
aeA beB feBA a aeA beB feBA a 

Proof. If x e H \JX„tb, then, for every aeA, let B(a) denote the set of all beB 
a b 

such that x e Xa b. Clearly, every B(a) is non-empty and therefore there exists an 

j e BA such that fa e B(a) for every aeA. This implies x e f)Xafa. If, conversely, 
a 

x e U C\Xa fa, choose a relation g e BA such that x e flXa<ga. Then, for every 
feBA a a 

aeA, xe Xaga <= \JXab, hence x e f | U-̂ a.6- _ The proof of the second equality 
b a b 

is left to the reader. 
We now proceed to assertions on "distributivity laws" involving products and 

sums. Only a sample of such assertions is given here. 
5 D.2. Theorem. Let A, B be non-empty sets, and let {Xaib | a e A, b e B) be 

a family of sets. Then 

n = u n x a J a , n = n n x * j a • 
a b feBA a a b fsBA a 
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Proof. Let x e Then x = {*„}, xa e (JXay, therefore, there exists an 
a b ' b 

f e BA such that xa e Xa ja, for every a e A. Clearly, x e \\Xa fa. If, conversely, 
a 

x = {xfl} e U Yl^aja then choose g eBA such that x e nXa ga; then xa e Xa ga cz 
/efl-4 a 

cz \JXa b, for every a e A, and therefore x e [ ] \JXab. To prove the second equality, 
b ' a b 

let x = {xa} e J } n^a.t; then xa e Xaib for every as A, be B and therefore x e 
a b 

e IJXa./a for every / e BA. If, conversely, x = {x„} e f) YlXa,fo> suppose that 
a feBA a 

x $ II OXa.b- Then, for some a' and some b', x„. $ Xa, b.] choose f e BA such that 
a b 

fa' = b'; then x $ T[Xa f a and we obtain a contradiction. This proves the equality 
a 

in question. 

5 D.3. Let A be a class; let B, C, be disjoint sets. Then the relation assigning 
to every f e ABuC the pair </fl,/c> is bijective for ABuC and AB x Ac, and will 
be called canonical ( f o r ABuC and AB x Ac). 

Proof. Clearly, iff e ABuC, then/ = fB u / c ; this implies that the relation assigning 
C / * B . / C ) to / is one-to-one. If g e AB, h e Ac, then / = g u h e ABuC (since B, C are 
disjoint) and g = fB, h = fc. This proves the proposition. 

5 D.4. Let A be a class, and let B, C be sets. Then the relation which assigns 
to every g e (AB)C the relation {<y, z ) (gz ) y | y e B, z e C} belonging to ABXC 

is bijective for (AB)C and AB*C; it will be called canonical ( f o r (AB)C and AB*C). 
Proof. Denote the relation in question by q>. If h e AB*C, then, for any z e C, 

let hz denote the relation on B assigning h(y, z) to y e B; put g = {z -»• hz). Then 
ge(AB)c and clearly (gz) y = h(y, z); therefore, <pg = h. This proves that (p 
maps (AB)C onto AB*C. Now, if gu g2 belong to (AB)C, gi =)= g2, then there is a 
z' eC such that gYz' #= g2z and therefore there exists a y' e B such that (gtz') y' =# 
+ (9 2 ^ ' ) / ; since <p0! assigns (g t z ' ) y' to <y', z'> and (pg2 assigns (g2z) y' to <y', z'>, 
we have shown that <pgi =1= cpg2-Thus <p is one-to-one, which completes the proof. 

5 D.5. Let A, B be classes, let C be a set. Then the relation assigning to every 
</, g} e Ac x Bc the reduced product (see 5 CAJ of f and g is bijective for Ac x Bc 

and (A x B)c. It will be called, canonical (for Ac x Bc and (A x B)c). 
Proof. For any (f,gyeAc x Bc denote by <p(f,g) the reduced product of 

relations/, g, that is the relation which assigns to z e C the element </z, gz") e A x B. 
— If h e (A x B)c, then, for any z eC,hz is a pair which can be expressed uniquely 
in the form hz = </z, gz) where fz e A,gz e B. Clearly,/ = {z ->• /z}, g = {z -» gz} 
belong, respectively, to Ac and to Bc, and q>(f, g} = h. We have shown that <p 
maps Ac x Bc onto (A x B)c. The rest of the proof is left to the reader. 

5 D.6. The preceding propositions imply the following assertions: for any class A 
and any disjoint sets B, C, the classes ABuC and AB x Ac are equipollent; for any 
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class A and any sets B, C, the classes (AB)C and AB*C are equipollent; for any classes 
A, B and any set C, the classes Ac x Bc and (A x B)c are equipollent. 

5 D.7. If {.Ya} is a non-void family of sets, Y is a set, consider the relation which 
assigns to every { /„} e fK-X^) the reduced product (see 5 C.5J of {/„}. This relation 

a 

is bijective for n(-^a) (H^a) 1 / it w/// be called canonical ( f o r nC^-a) 
a a a 

(IK.)")-
a 

The proof is left to the reader as an exercise. 

5 D.8. Let {Y4 | b e B) be a family of sets; let X be a set. For any be B let (pb 

denote the relation consisting of all <y, <b, y», y e Yb. Then the relation which 
assigns to every f eXzr" the family {/ o (pb} is bijective for XZYb and it 
will be called canonical for XZYb and n ^ ^ ) - 4 

b 
Proof. If {gb} e nXY\ Put / = y> -»• 9by | y e it is easy to see that 

b 
{0ft} = {/° <Pb}- Clearly, i f / , / ' belong to XZY", f + / ' , then/D <pb #/' o cpb for some 
b. This proves the proposition. 

5 D.9. Let {Xa | a e A}, { Ya | a e A} be families of sets. Let { / „ | a e A) be a family, 
fa being a relation forXa and Ya. Then (1) I f a is a relation for EXa and EYa ; D (E/ a ) = 
= E(D/a), E(Z/a) = EE/a; E/a is single-valued (respectively, one-to-one) if and 
only if every fa is single-valued (respectively, one-to-one); (2) II/a is a relation for 
TlXa and nya; D(n/a) = n(D/a), E(n/a) = n(E/a); n/a in single-valued (respect-
ively, one-to-one) if and only if every /„ is single-valued (respectively, one-to-one). 

The proof is left to the reader as an easy exercise. 
Corollary. Let {Xa | a e A), {Ya \ ae A] be families of sets. If {/„} is a family 

of relations such that fa is bijective for Xa and Ya, then E/a (respectively, II/a) 
is bijective for T.Xa and S7 a (respectively, for TlXa and IIYa). 
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CHAPTER II 

ALGEBRAIC STRUCTURES AND ORDER 

(Sections 6 — 13) 

In Section 6 some algebraic concepts are introduced: compositions ("binary 
operations"), semi-groups, groups, and rings. These concepts are not immediately 
necessary for general topology, but quite essential for any application of topology 
to other branches of mathematics. 

In Section 7 the notion of a mapping (more generally, of a correspondence) is 
introduced as well as that of a "struct". The latter is a formal but useful generaliz-
ation of concepts such as groups, rings, modules, topological spaces. Let us give 
a preliminary description of the notion of a struct; this term is due to J. W. Tukey, 
who used it in a rather special case, namely to denote a topological space endowed 
with a uniformity (see "Convergence and uniformity in topology", Princeton, 1940). 

Many mathematical entities consist of a set endowed with a certain structure; 
thus a group may be defined as a pair <X, a) where X is a set and <7 is a composition 
satisfying certain conditions, a ring is a triple <X, a, ¡i) where a, ¡1 are compositions 
with certain properties. With this fact in view, we term a struct any pair <X, ¿;> 
where X is a class; X is called the underlying class and £ the structure of the struct 
3C = (X, £>• Thus for a group, the underlying class is the set of elements of the 
group, and the structure is group multiplication; for rings the underlying class is 
the set of elements, and the structure is a pair of compositions. However, for the 
case of a ring <X, a, ¡x) we may also say (in a sense which will be made precise 
in Section 6 and 7) that the "additive" group <X, <r> and the "multiplicative" semi-
group (X, /j.) are "underlying structs". These remarks may serve to indicate the 
meaning of structs; we emphasize (and will stress this point on several occasions) 
that this notion is purely formal, and is mainly used to simplify statements. 

As concerns mappings, we abandon the attitude of conceiving mappings simply 
as certain sets of pairs, and include both the set mapped and the set into which the 
mapping goes as part of the notion of mapping itself; thus a mapping of X into 7 
is a triple </, X, 7>, where/ is a relation (the graph of the mapping), X, Yare sets. 
However, even this last notion is not sufficiently rich. For example, if we say that 
a mapping F of a group (X, <r> into a group < Y, T> is a homomorphism, then — 
precisely speaking — this is not a property of the mapping F = </, X, 7 ) as such, but 
rather a logical relation or a predicate concerning F, <X, a} and <7, T>. This can 
be expressed by saying that </, X, 7 ) is a homomorphism relative to a, r. A dif-
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ferent approach seems more appropriate: we will term a mapping any triple 
(P = </, SC, <yy, where 3C = (X, a) and <& = <7, T> are structs, and </, X, Y> is a 
mapping in the previous sense. 

Section 8 is, in fact, a continuation of Section 6. Some further algebraic notions 
are examined and some more profound properties of concepts from Section 6 are 
presented. 

The following four sections concern further fundamental notions of set theory 
and of the theory of order. Cardinal numbers are considered in Section 9, order 
in Section 10, well-order and ordinal numbers in Section 11, and systems of sets 
(covers, filters and ultrafilters) in Section 12. 

The concluding Section 13 is devoted to the notion of category (only definitions, 
examples and several elementary propositions are given); less experienced readers 
may well pass over this section until a second reading. 
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6. C O M P O S I T I O N S 

Although the examination of algebraic objects, such as groups, rings, etc., is not 
the purpose of this book, these objects will necessarily appear in our considerations 
as tools for the investigation of topological problems and, if endowed with a continu-
ous structure, as examples on which the applications of topological concepts and 
theorems can be demonstrated. As a matter of fact, algebraic concepts already occur 
in the theory of sets. This is one reason for considering them at this stage. Another 
reason is that a brief treatment of various algebraic objects prepares the way for the 
introduction of concepts of a mapping, conceived as a triple (J, A, B), of a cor-
respondence and especially of the important notion of a struct, i.e. of a class endowed 
with a structure. 

First we shall recall some basic concepts and their current definitions stated in 
a somewhat informal manner, and give a number of examples. After this, we shall 
treat compositions (in general) and several types of algebraic objects such as semi-
groups, groups, rings in more detail. 

A. PROPERTIES OF COMPOSITIONS 

6 A.l. It is said that a group G is given if there is given a non-void set G and if to 
every pair of elements x, y from G an element z e G, usually denoted by x. y and called 
the product of x and y, is assigned in such a way that (l) (x . y). z = x . (y . z), 
(2) there exists an element e e G, called a neutral or unit element, such that always 
x . e = e . x = x; (3) for any x e G there exists an element t, denoted usually by 
x - 1 , such that x . t = t. x = e. 

Examples. (A) If A is a set, then the set G of all permuting relations on A 
with the "product" of g and a defined as g 0 a is a group (observe that ¡A is a unit 
element). — (B) If A is a set, then exp A with the "product" of X and Y defined as 
X -5- Y is a group. — (C) The reals with the "product" x + y form a group. — 
(D) For a natural n ^ 1 consider the set of all real matrices with n rows and n columns 
whose determinant is distinct from 0. This set is a group under the usual matrix 
multiplication. 
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6 A.2. The requirements for a semi-group are less stringent than those for a group: 
thus every group is a semi-group. It is said that a semi-group G is given if there is 
given a non-void set G and if to every pair of elements x, y from G an element z is 
assigned in such a way that (x . y). z = x . (y . z). 

Examples of semi-groups. (A) The set N with the "product" x + y. — 
(B) The set N with the usual product x . y. — (C) For any class A, the class exp A 
with the "product" of X and Y equal to X u Y. — (D) For any set A, the set of all 
relations g in A, the "product" of Q and a being Q O a. — (E) Let A be a non-void 
set; consider the set G of all finite sequences with values in A. For a e G, P e G, let 
the product of a and P be the sequence a.. ft defined in 3 F.1. Then G is a semi-group. 
It is, essentially, the so-called free semi-group with the set of generators A. — 
(F) For any natural n', n ^ 1, the set of all real matrices with n rows and n columns 
is a semi-group under the usual matrix multiplication. 

6 A.3. If a non-void set A is given and to every pair of elements x, y from A there 
is assigned an element from A called the sum of x and y, and denoted usually by 
x + y, as well as an element from A called the product of x and y, and denoted 
usually by x . y, then it is said that a ring A is given, provided the following con-
ditions are satisfied for every x, y, z from A: (l) (x + y) + z = x + (y + z); 
(2) x + y = y + x; (3) there is an element, denoted 0 and called the zero element, 
in A such that always x + 0 = x; (4) for every x e A there exists an element in A, 
usually denoted by — x, such that x + ( —x) = 0; (5) (x . y) . z = x . (y . z); 
(6) x . (y + z) = x . y + x . z, (x + y) . z = x . z + y . z. 

Examples of rings. (A) For any set B, the set exp B with the "sum" X -r Y 
and the "product" X n Y. — (B) The set of all reals with the usual sum and product. — 
(C) For any natural n, n 1, the set of all real matrices with n rows and n columns 
with the usual matrix addition and multiplication. 

We are now going to give exact definitions of several general concepts relating 
to "algebraic operations" (compositions). 

6A.4. Definition. Let A be a class. A binary internal composition (or briefly 
a composition) on A is a single-valued relation a such that D<r = A x A, E<r c A. 
If a is a composition on A and x e A, y e A, then the element cr<x, j/> is sometimes 
called the composite of x and y under a or the a-composite of x and y. 

We shall now describe in an exact manner the compositions occurring in examples 
6 A.1, (A), (B); 6 A.2, (A)-(D); 6 A.3, (A) (the rest of the examples given above 
are purely illustrative and involve concepts not yet introduced in an exact manner). 
In 6 A.1, example (A), we have the composition {<g, <x> -> Q A A | Q, O permuting 
relations on A}; in 6 A.1, example (B), {<X, Y> -> X 4- Y\ X e A, Y c A}; in 
6 A.2, example (A), {<x, y} -» x + y \ x e N, y e N}; in 6 A.2, example (B), 
{<x, y} -> x . y | x e N, y e N}; in 6 A.2, example (C), « X , Y> -»• X u Y| X <= A, 
Y <= A}; in 6 A.2, example (D), the composition is {<g, a ) - * Q o a \ g < = A x A, 
a <= A x A], thus it contains, as a subset, the composition from 6 A.1, (A); in 
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6 A.3, example (A), the compositions are {<X , Y> ->• X Y\X A, Y <= A}, 
as in 6 A.1, (B), and « X , Y) - X n Y| X «= A, Y a A}. - Further examples 
of compositions: (A) {X u Y} or, more explicitly, {<X, Y) X u Y| X, Y are 
sets}; this composition on the class of all sets will be denoted by U- — (B) {X n Y} 
is a composition on the class of all sets; it will be denoted by fi. — (C) The com-
position [X Y}, that is « X , Y> -s- X Y\X,Y are sets}, will be denoted by H-. 
Observe that all these compositions are non-comprisable. 

Remark. The compositions U> D. ^ will be occasionally called union, intersection 
and symmetric difference respectively (observe that we have defined in Section 2 
the union of two classes, the union of a family of sets, etc., but the word "union" 
denoted no mathematical entity up to now). 

6 A.5. Conventions. 1) If a is a composition, then we often write xay instead 
of (7<x, Conversely, if a is a composition on X and if <r<x, y} is denoted by 
a symbol of the form,, say, x ty, then we often denote a by t . — 2) If a is a composition 
on X, A <= X, B <= X, then in accordance with the use of symbols such as [¿¡/] u 
[jzf] n \0\ etc. we shall write [^4] a[B] to denote the set of all x a y where x e A, 
y 6 B. If there is no danger of ambiguity, A a B is written, for convenience, instead 
of [A] a [£]. 

6 A.6. Definition. Let g be a composition on X, a a composition on Y. If a a g, 
so that i c i , we shall say that a is the restriction of g to a composition on Y or, 
briefly but not quite correctly, that a is the restriction of Q to Y; the composition <7 
will be denoted by Qy provided there is no danger of misunderstanding. 

Remark. If q is a composition on X, Y a X, then clearly there exists at most 
one composition on Y which is a restriction of Y. However, such a restriction does 
not necessarily exist, for it may happen that {<x, y> -> x Q y | x e Y, y e Y} is not 
a composition. 

6 A.7. Definition. Let a be a composition on a class X. A class Y is called stable 
under cr if Y cz X and e Y, y2 e Y=> ^ o y2 e Y. 

It is clear that Y is stable under a if and only if there exists a composition on Y 
which is a restriction of o. 

Examples. (A) A class Y is stable under U (under fi) if and only if it is ad-
ditive (multiplicative). — (B) The void class is stable under every composition. — 
(C) If A is a set, then the set of all X <= A such that either X or A — X is finite is 
stable under (J, D and the symmetric difference. — (D) The class of constant re-
lations is stable under the composition {g o <r}. 

6 A.8. Let Q be a composition on X. Then the intersection of any indexed class 
of sets stable under g is stable under g. — This is clear. 

6 A.9. Definition. Let g be a composition on X. An element e e X is called neutral 
under g if egx = xge = x for every x e X ; an element o e X is called absorbing 
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under g if ogx = XQO = o for every x eX, and a class Y c X is called absorbing 
under g if y eY, xeX => ygx e Y, xgy e Y. 

Remarks. 1) If g is a composition, there exists at most one neutral and at most 
one absorbing element under g. Namely, if eu e2 are neutral, then e1ge2 = eu 

elge2 = e2; if ou o2 are absorbing, then oigo2 = ou olgo2 = o2. — 2) If e is neutral, 
o is absorbing under a composition g on X, and X contains two elements at least, 
then e # o. Indeed, choose xeX, x =1= o; then egx = x and ogx = o are distinct. — 
3) The corresponding "one-sided" concepts may be introduced, e.g. an element e 
may bs called left-neutral if egx = x for every x e X, right-neutral if xge = x for every 
xeX. For instance, if X = (a, b), aga = bga = a, agb = bgb = b, then a, b are 
left-neutral and there is no right-neutral element. Observe that if there exists a left-
neutral element e and a right-neutral element e , then e = e is the only (see remark 1) 
neutral element. 

Examples. (A) Under the composition {g o o \ g, a relations in A} described 
in 6 A.2, example (D), JA is neutral, 0 is absorbing. — (B) The void set is neutral 
under U and absorbing under f)! there exists neither an absorbing element for U 
nor a neutral element for fl- However, any set A is absorbing under [JexpA and neutral 
under Heipx- — (C) The class of all finite sets is absorbing under fl-

6 A.10. Definition. Let a bs a composition on X. We shall say that cr is associative 
if, for any x, y, z from X, (xgy) gz = xg(ygz), commutative if xgy = ygx for any 
x e X, y e X. An associative composition is called also a semi-group structure. 

Examples. The compositions in all examples in 6 A.1, 6 A.2, 6 A.4 are associative, 
hence semi-group structures; those in 6 A.1, (B), (C); 6 A.2, (A) —(C) are also com-
mutative, whereas the compositions in 6 A.1, example (A), 6 A.2, examples (D), (E) 
are, in general, not commutative. The composition Y> -» X — Y | X, Y 
are sets} is neither commutative nor associative, the composition {<X, Y> -* 
-*• XY u Yx} is commutative without being associative. 

We conclude with a definition and some conventions concerning "composites of 
a finite number of elements". 

6 A.11. Proposition and definition. Let a be a composition on a class X. There 
exists exactly one single-valued relation a such that (1) Dcr consists of all finite 
non-empty sequences of elements of X, Ed c= X, (2) if x0 eX, then d{xk | k e N^ = 
= x 0 ; (3) if £ = {x^+j | k e Np} belongs to D& and x0 e X, then o{xk | k e N p + 1 } = 
= x0cr(d£). If a is associative, then the element o{ak | fee N ? + 1 } will be called the 
(T-composite of the sequence {a*} and will be often denoted by <r{ak | fee N 4 + 1 } 
or oq

k=0{ak} or <?{ak}. I f , in addition, there is a neutral element e in X, then 
we shall say that e is the c-composite of the void sequence and we shall write 
e = <T0, or e.g. e = ak}0{ak}, etc.; in this case, (3) remains valid if £ = 0 is ad-
mitted. 

If all xk are equal to an element x e X, then <r{xk | k e N„} will be called the n-th 
(T-power of x. 
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Remark. Clearly, (p{ak \ k e Np}) <j (o{ak+t \ k e NJ) = <j{ak \ k e N p + J . 
Conventions. 1) Let {xa | a e A) be a finite family of elements of X. In general 

there are many bijective relations <¡9 on a certain Np onto A, and elements a{x9k | k e 
e Np} may be different according to the choice of (p. However, if the choice of<p 
is either clear from the context or irrelevant (which is the case if a is commutative) 
then we shall denote o^x^ | k e Np} by u{xa | a e A} or a {x„} etc. — 2) If the com-

n aeA 
position a is denoted by + , we shall write, as usual, £ xk instead of c{xk | fee Nn + 1}, 

*=o 
n 

etc., and call £ xk the sum of the n-th power of x under a will be denoted by nx 
k = 0 

provided there is no danger of misunderstanding. Similarly, if x . y (or xy) is written 
n 

to denote xay, then J } xk denotes a{xk | k e N„+1}, etc., and the n-th power of x 
k = 0 

under o will be denoted by x". — 3) The symbol x", n e Z (see Section 8) will be 
sometimes used in an extended sense, namely with n ^ 1, to denote the n-th cr-power 
of x (<T being an arbitrary but fixed associative composition), with n = 0, to denote 
the neutral element under a (if it exists), and with n = — fc, fc ̂  1, to denote the 
fc-th u-power of the inverse of x under a (if it exists). The symbol nx is used in a similar 
manner (nx is then called the «-multiple of x). 

B. SEMI-GROUPS 

We are now going to define semi-groups. Properly speaking we shall define two 
concepts, namely a semi-group as a certain pair (X, cr) and a semi-group under 
a composition a as a set satisfying certain conditions involving a. This formal devi-
ation from the usual approach is, nevertheless, in accordance with current use of the 
word "semi-group" in a formally twofold sense. We shall proceed in the same way 
in defining groups, rings, etc., since such a parallel use of two closely related concepts, 
although seemingly cumbersome, will prove itself useful. 

6 B.l. Definition. A pair 9E = <X, a}, where I is a non-void set, IT is a semi-
group structure, i.e. an associative composition, on X, will be called a semi-group. 
We shall say that X is the underlying set of X, and o is the structure of X. 

If X is a non-void set and a is a composition, then we shall call X a semi-group 
under a if < X , is a semi-group. 

Conventions. 1) A semi-group (X, u) will often be denoted simply by X, i.e. 
by the same symbol as the set X (which is a semi-group under a), provided no mis-
understanding is likely to arise. — 2) If q is a composition on X, a is a composition 
on a class Y, and Q <= a, then we shall occasionally write (X, CT) instead of (X, ox). 

The fact, stated in the above definition, that X is a semi-group under a if and 
only if (X, axy is a semi-group makes possible the following mode of exposition. 

7 — Topological Spaces 
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Definitions and propositions concerning semi-groups will often be formulated 
either merely for semi-groups as pairs <X, <r> or merely for semi-groups under 
a composition, i.e. sets satisfying certain conditions; usually the task of reformulating 
these definitions and statements for the other concept will be left to the reader. 

6 B.2. Let a be a semi-group structure on a class X. In this case, which includes 
that of a semi-group <X, <r>, we shall refer to (X, a} as a "class endowed with a semi-
group structure". Such entities will be considered in Section 7. Only one example 
is given here: the class of all finite sequences endowed with the composition assigning 
to <a, /?> the sequence a . in the sense of 3 F.1. 

6 B.3. Definition. Let (X, a) be a semi-group. If < 7, g> is a semi-group, and g 
is a restriction of a, we shall say that <7, g)> is a sub-semi-group of <X, cx>. If Y <= X, 
we shall say that Y is a sub-semi-group of cr> if Y is a semi-group under a. 

Remark. Clearly, <7, cry> is a sub-semi-group of <X, <r> if and only if Y is 
a semi-group under o. It is also obvious that if (X, <r> is a semi-group, then Y <=. X 
is a sub-semi-group if and only if it is non-empty and stable under a. 

Many instances of sub-semi-groups are contained implicitly in previous examples. 
Further examples: (A) If <X, cr) is a semi-group, o and e are, respectively, the ab-
sorbing and the neutral element, then (o), (e) and (o, e) are sub-semi-groups. — (B) 
Let A be a set; consider the semi-group from 6 A.2, example (D), i.e. the set 
exp (A x A) endowed with the composition of relations. The following subsets 
are stable and non-empty, hence sub-semi-groups: the set of all g with Dg = A, 
of all g on A onto A, of all one-to-one relations g, of all bijective relations on A 
onto A, of all reflexive relations. — (C) In the semi-group of the preceding example, 
the set of all one-to-one relations g with Dg = A and the set of all constant relations g 
with Dg = A are sub-semi-groups. If A contains two elements at least, then the 
intersection of these two sub-semi-groups is void. 

6B.4. Convention. If = <7, g> is a sub-semi-group of SC = {X,oy, then 
we shall also say that & is identically embedded in SC. 

To give a motivation for this convention we anticipate some notions which will 
be introduced in Section 7. If SC = <X, g}, <& = <7, a>, 2 = <Z, T> are semi-
groups, SC is a sub-semi-group of 'Sf (thus X a 7, g = ax) and / = <<p, 2£, <&y 
is a mapping of & into <& (see 7 B.1, 7 B.10) such that f \ S £ ^ S C (see 7 B.4) is an 
isomorphism, we shall say (see 7 B.11) that / is an embedding of into aH, <p is 
an embedding relation (under the structures T and <r) and that S£ is embedded in 

by means of/ (or of cp). Now, if/ is an identity mapping, then it is appropriate to 
speak of an identical embedding. 

6B.5 . The intersection of a non-void family of sub-semi-groups of a given 
semi-group is a sub-semi-group, unless it is void. 

Proof. By 6 B.3 (remark) and 6 A.8, the intersection in question is stable, hence 
(again by 6 B.3, remark) either a sub-semi-group or void. 
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Remark. If Y, Z are sub-semi-groups of a given semi-group, then Y <u Z need 
not be a sub-semi-group. 

6 B.6. Lei <G, CT) be a semi-group. Let X c G, X + Then there exists a small-
est sub-semi-group H containing X. 

This follows at once from 6 B.5 if we consider the collection, clearly non-void, of 
all sub-semi-groups Y containing X and take its intersection as H. 

6 B.7. Definition. Let <G, a) be a semi-group, X c G, X + 0. Let H be the smal-
lest sub-semi-group containing X. Then we shall say that H, as well as <H, crH), is 
the semi-group generated by X under <J (or in <G, a}), and that X generates H 
(or is a generating set for H) as a semi-group under a. 

Examples. (A) In the semi-group <N, +> , the singleton (2) generates the 
sub-semi-group of all positive even integers, the set (3, 5) generates the sub-semi-
group consisting of 3, 5, 6 and all integers n ^ 8. — (B) In the semi-group <N, . >, 
there is no finite generating set; the set consisting of 0, 1 and all prime numbers is 
the smallest generating set for N. 

6 B.8. Definition. Let a be a composition on X. Let xeX. We shall say that 
y eX is a left-inverse (respectively right-inverse) for x under a if yox (respectively 
xuy) is neutral under a; if y e X is both a left-inverse and a right-inverse for x, we-
shall call it an inverse for x (under a). 

Examples. (A) If e is neutral under cr, then e is an inverse for e. — (B) In semi-
groups <N, + ) , <N, . > no element, except the neutral ones, possesses an inverse. — 
(C) Under the composition -f- (symmetric difference), every set X has an inverse,, 
namely X. — (D) Let A be a set. Consider the composition ^ assigning g O o to every 
pair <£>, u> of single-valued relations g e A A, a e A A. Then a e A A has a left-inverse 
under i¡/ if and only if a is one-to-one; if so, there are, in general, many left-inverses» 
namely all g e A A such that the restriction of g to Eu coincides with <T_1; a relatioa 
A s A A has exactly one left-inverse if and only if A is bijective on A onto A, and 
similarly for the right-inverse; finally, g e A A possesses an inverse if and only if P 
is bijective on A onto A. 

6 B.9. Let a be an associative composition on X. If xeX,y is a left-inverse for 
x, and y' is a right-inverse for x (under a), then y = y' is an inverse for x. In par-
ticular, every xeX has at most one inverse. 

Proof. Clearly y = ya(x<7y') = (ycrx) ay' = y'. 
Convention. If the composition is clear from the context, then the inverse of 

an element x will be denoted as x" 1 provided no misunderstanding is likely to arise. 
Observe that the inverse g~l of a relation in the sense of 1 B.8 exists for any re-

lation g but is not necessarily the inverse for g under a restriction of the composi-
tion {g o tr}. 

6 B.10. Definition. Let a be a composition on X. An element x e l is called 
invertible under a, sometimes also a-invertible or simply invertible, if it possesses. 

7' 
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an inverse. The relation consisting of all <x, y} such that x is an inverse of y (i.e. 
xay = yax is the neutral element) is called the a-inversion. 

Examples. (A) No neN except 0 is invertible under addition and no n e N 
except 1 is invertible under multiplication. — (B) Every set X is invertible under the 
composition -5-, the inverse being X. 

6 B.ll. Definition. Let g be a composition on X. If a e X, then {x ->• agx | x e X} 
will be called the left Q-translation by a, and {x -> xga | x eX} will be called the 
right Q-translation by a. An element x 6 X is called virtually invertible (under q) 
if the left g-translation by x and the right g-translation by x are both one-to-one, 
i.e. if for any z eX there is at most one yeX with xgy = z and at most one y' eX 
with y'gx - z. 

Clearly, if a is an associative composition, then every invertible element is virtually 
invertible. The converse does not hold, however; for instance, every n e N is virtually 
invertible under addition, and every neN, n 4= 0, is virtually invertible under 
multiplication. 

The concept of virtually invertible elements will be useful for the important theorem 
on the embedding of a semi-group into a group which we defer to Section 8. 

C. GROUPS 

6 C.l. Definition. An associative composition, in other words, a semi-group 
structure a on X is called a group structure if every x e X is invertible under a. 

Example: the composition {<X, Y> -»• X -f- Y} on the class of all sets is a non-
comprisable group structure. 

Remark. If a is a group structure on 4= 0, then clearly there exists a neutral 
element e. 

6 C.2. Definition. A pair <G, <7> where G is a non-void set and a is a group structure 
on G will be called a group. If G is a non-void set and a is a composition, then G 
will be called a group under a if <G, <Tg> is a group. 

This definition as well as some other definitions and propositions given in the 
sequel are quite analogous to the corresponding statements concerning semi-groups; 
for this reason, proofs and examples concerning groups are sometimes omitted. 
It is to be pointed out, however, that, in some cases, there is an essential difference 
between the corresponding notions for groups and semi-groups. 

The conventions in 6 B.1 apply, of course, for groups too, since every group is a 
semi-group. Remarks in 6 B.1 are also valid, with appropriate changes, for groups. 

Examples of groups have already been given; we give only one more. Let A be 
a set, P(A) the set of all permuting relations on A, i.e. one-to-one relations / with 
Df=Ef = A. Put Q = {<f,g>^fog\feP(A), geP(A)}; then (P(A), g> = 
= (P(A), o> is a group. 
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6 C.3. Definition. Let <G, CT> be a semi-group. A group <H, Q) is said to be 
a subgroup of <G, <r) if g is a restriction of <x, i.e. if g = aB. If E c G we shall 
say that the set H is a subgroup of <G, <7> if H is a group under a. 

Convention. If J f = <#, is a subgroup of = <G, CT) we shall also say 
that is identically embedded in & (cf. 6 B.4). 

If <G, CT) is a group, H <=. G is stable, hence a sub-semi-group, then H need not 
be a subgroup. 

6 C.4. Lei <G, ¡?> be a group, let 0 4= H <= G. Then H is a subgroup if and only 
if it is stable under g and the inverse x _ 1 of every x e H belongs to H. 

Proof. Let H be a subgroup. Then clearly H is stable. If xeH, then let y be 
the inverse of x in H, i.e. under qh. We have y = yg(xgx~1) = egx~1 where e is 
neutral for aH; since ë = ëg(ëgë~i) = (ëQë)gë~l = e, we obtain y = x _ 1 . The 
rest of the proof is left to the reader. 

6 C.5. Let <G, ff> be a group. I f {Ha | a e A} is a non-void family of subgroups 
under a, then n{#a} ' s a subgroup. 

Compare with 6 B.5 observing that n {#a} + 0 since the neutral element be-
longs to every H„. 

6 C.6. Let <G, CT) be a group. LetX c G. Then there exists a smallest subgroup 
containing X. 

Remark. Compare with 6 B.6 and observe that the assumption X + 0 is 
redundant here. 

6 C.7. Definition. Let <G, (T> be a group, let X c G and let H be the smallest 
subgroup containing X. Then we shall say that H, as well as <H, crH), is the group 
generated by X under a (or in <G, <T>) and that X generates H (or is a generating 
set for H) as a group under a. 

Example. If A is finite, then <exp A, -5-> is generated by the set of all singletons 
belonging to exp A. 

6 C.8. Before passing to semi-rings and rings we introduce the following 
Definition. A semi-group or group <G, <r> is called commutative or abelian 

if the composition a is commutative. 
Example. The group P(A) from 6 C.2 (example) is not commutative unless A 

contains two elements at most. 

D. SEMI-RINGS AND RINGS 

6 D.l. Definition. Let a, fi be compositions on X. Then /x is called distributive 
relative to a if, for any x, z from X, x/x (yoz) = (x/iy) ff(x/iz), (yaz) fix = 
= (yf*x) a(z/ix). 
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Examples. (A) The composition fi is distributive relative to (J> and con-
versely. — (B) The composition f| is distributive relative to the composition -4-, 
but not conversely. 

6 D.2. Definition. A pair <er, /z>, where a, fi are compositions on X, is called 
a semi-ring structure on X if a is commutative and associative (in other words, 
if a is a commutative semi-group structure), ¡1 is associative (in other words, a semi-
group structure, non-commutative in general) and p. is distributive relative to a. 
If, moreover, a is a group structure, then <tr, p.} is called a ring structure. 

Examples. (A) The pair <U, H> is a semi-ring structure on the class of all 
sets; it is called the natural semi-ring structure for sets. — (B) The pair < ^ - , 0 ) 
is a ring structure on the same class; it is called the Boolean ring structure for sets. — 
(C) < + , . ) is a semi-ring structure on N. — (D) Let A be a finite set; put B = 
= (exp A)A. If f e B, g e B (i,e. if / , g are single-valued relations on A ranging in 
exp A), put fag = {a ->fa -5- ga | a e A} and denote by fug the single-valued 
relation assigning to every a e A the set of all those y e A which satisfy the following 
condition: the number of elements z e A such that z e ga, y e fz, is an odd integer. 
We leave to the reader the task (not quite trivial) of proving that a and p, are com-
positions on B and <0-, /¿> is a ring structure on B. 

6 D.3. Definition. If A is a non-void set and <a, fi) is a semi-ring (respectively, 
ring) structure on A, then (A, a, /i) will be called a semi-ring (respectively, ring). 
If A is a non-void set, <<r, /x> is a pair of compositions, then we shall call A a semi-
ring (a ring) under /¿> if <A, aA, fiA} is a semi-ring (a ring). 

Conventions. 1) A semi-ring <4, a, p.> will often be denoted simply by A 
provided its structure <<r, /z> is clear from the context. — 2) If a, p are compositions, 
aA, fiA are their restrictions to compositions on a class A, and (A, aA, pAy is a semi-
ring, we often write <A, a, fi) instead of {A, aA, (iAy. 

Examples. (A) If X is a set, then the semi-ring <expX, (J, P)> (see the above 
convention) is ̂ called the natural semi-ring of parts of X. — (B) If X is a set, then 
the ring <exp X, -=-, f|) is called the Boolean ring of parts of X. — (C) Let si 4= 0 
be a collection of sets. Then stf is a semi-ring under <(J, fl> if and only if it is additive 
and multiplicative, a ring under < -r, if and only if it is additive and multiplicative 
and moreover XeX, Ye%, X z> Y=*X - Ye SC. 

6 D.4. Definition. If r = <cr, /z> is a semi-ring structure, then a will be called 
the underlying additive structure of r, and p. will be called the underlying multi-
plicative structure of r. If = <A, a, fi> is a semi-ring, then <A, a) is called the 
underlying additive semi-group of si, and <A , /1> is called the underlying multi-
plicative semi-group of si, the set A is called the underlying set oi si (cf. 6 B.1). 

These notions may be useful if, in a certain reasoning, a semi-ring <j4, a, /i> is 
investigated with regard to one of compositions a, ji only. They will be considered 
in a wider context in Section 7. 
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6 D.5. Definition. Let (a, pi) be a semi-ring structure on X. A class Y is called 
stable under <«r, pi) if it is stable (in the sense of 6 A.7) under both a and pi. 

Remark. Clearly, by 6 A.8, the intersection of any indexed class of stable sets is 
stable. 

Example. A class of sets is stable under <U, fl> if and only if it is additive and 
multiplicative. 

6 D.6. Definition. Let si = <A, a, pi) be a semi-ring; in particular, si may be 
a ring. We shall say that a semi-ring (respectively, ring) 2ft = <B, g, v) is a sub-
semi-ring (respectively, subring) of si if g = aB, v = piB. A set B <= A will be called 
a sub-semi-ring (subring) of si if it is a semi-ring (respectively, ring) under <<7, pi). 

Convention. If 2S is a sub-semi-ring (in particular, a subring) of si, we shall 
also say that 3B is identically embedded in si (cf. 6 B.4). 

6 D.7. Let <A, a, pi) be a semi-ring. A set B cz A is a sub-semi-ring (respectively, 
subring) if and only if it is a sub-semi-group (respectively, subgroup) of <A, a) 
and a sub-semi-group of <A, pi). A non-void set B c A is a sub-semi-ring if and 
only if it is stable under (a, pi), a subring if and only i f , moreover, it contains 
with every element its inverse under a. 

The first assertion is obvious, the second follows from the corresponding prooosi-
tions concerning semi-groups and groups. 

6 D.8. Let si = <A, a, pi> be a semi-ring. Then the intersection of any non-void 
family of sets which are sub-semi-rings (respectively, subrings) of sd is a sub-
semi-ring (subring) provided it is non-void. 

This follows at once from 6 D.7 and the corresponding propositions on semi-
groups and groups. 

Remark. Observe that if si is a semi-ring, then it may happen that there exist 
disjoint subrings; e.g. if si = <exp A, (J, f)>> then any singleton (X), X c A, is 
a subring. On the other hand, if si is a ring, then every subring contains the element 
neutral under a, hence the intersection of any family of subrings is non-void. 

6 D.9. Let si = <A, a, pi) be a semi-ring (respectively, ring), let X <= A be 
non-void (if si is a ring, X may be void). Then there exists a smallest sub-semi-
ring (respectively, subring) containing X. 

This follows at once from 6 D.8 if we consider the intersection of all sub-semi-
rings (subrings) B <=. A such that B => X. 

6 D.10. Definition. Let si = (A, a, pi) be a semi-ring (in particular, si may be 
a ring). If 0 4= X <=• A and B is the smallest sub-semi-ring of A containing X, then 
we shall say that B (as well as <B, aB, piB>) is the semi-ring generated by X under 
<ff, pi) (or generated by X in si) and that X generates B (or is a generating set 
for B) as a semi-ring under (o, pi) (or in si). If si is a ring, X <= A and B is the 
smallest subring of A containing X, then we shall say that B as well as (B, oB, piB) 
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is the ring generated by X under <CT, ¡1} (or generated by X in si) and that X 
generates B (or is a generating set for B) as a ring under /¿> (or in si). 

Examples. (A) Consider the semi-ring <N, + , . >. Then every set of the form 
E{x . q | x e N, x ^ k], where q ^ 1, k ^ 0 are given natural numbers, is a sub-
semi-ring; its smallest generating set consists precisely of numbers kq, (k + 1). q, 
..., (2k — 1). q. The only subring is the singleton (0). — (B) Consider the ring Z 
of integers, to be introduced in Section 8. Then the set (1) generates N — (0) as 
a sub-semi-ring, and Z as a subring. — (C) In <exp A, -=-, f|) every sub-semi-
ring is a subring. Clearly, if A is finite, the set of all (a) cz A is a generating set 
for exp A. 

6 D.ll. Definition. Let <<r, be a semi-ring structure on a class A. If an element 
is neutral for a, then it is called the zero element (or simply zero) for <c, ¡x} (or 
of (A, a, fx}) and usually denoted by 0, i.e. by the same symbol as the number 0, 
provided no misunderstanding is likely to arise. The neutral element for fx, if it 
exists, is called the unit element (or simply unit or unity) for <<7, /¿> (or of <A, a, fx)) 
and is often denoted by 1 provided there is no danger of misunderstanding. 

Remarks. 1) It is easy to see that, for a given semi-ring structure, there exists 
at most one zero element and at most one unit element. — 2) If <<r, /x} is a ring 
structure, then the zero is clearly an absorbing element for fx. 

Examples. (A) In <N, + , .>, 0 is the zero and 1 is the unit (in the above sense).— 
(B) Let si = <exp A, U, H>, A. being a given set; if B c C c A, let sig c be the 
sub-semi-ring E{X | f i c l c C}. Then 0 is the zero element and A is the unit 
element in si, whereas B is the zero and C is the unit in — (C) The structure 
<u, fl> has no unit element, the zero element is 0. 

6 D.12. Definition. A semi-ring is called unital if it contains a unit element. 
Example. The Boolean ring of all finite parts of a given set A is unital if and only 

if A is finite. 
6 D.13. Definition. A semi-ring (or ring) structure <<r, n~) is called commutative 

if n is commutative. A semi-ring (a ring) is called commutative if its structure is 
commutative. 

Examples. The structures in 6 D.2, examples (A), (B), (C), are commutative 
whereas the structure in 6 D.2, example (D), is, in general, not commutative. 

E. H O MO MO RPH ISM-RELATIONS 

Recall the following equalities proved at various places in the preceding sections, 
each of them under certain assumptions which need not be re-stated here: 
(1) i n ( Y u Z ) = ( i n 7 ) u ( X n Z); (2) u Y] = u g[Y] where g 
is a relation; (3) E - (X u 7) = (E - X) n (E - Y); (4) a(x + y) = a . x + a . y 
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where a, x, y belong to N; (5) ax+y = a*. ay where a, x, y are elements of N. 
In all these cases, regardless of the differences, we have the following situation: 
there is given a composition g on X (or on a class containing X), a composition a 
on Y (or on a class containing 7) and a single-valued relation (p on X into Y such 
that (p(x1gx2) = <r(<f»x2) for any xi eX, x2eX (the compositions in question 
are U and (J in (1), U and U in (2), U and f) in (3)). 

Therefore it seems appropriate to examine single-valued relations satisfying, 
for certain compositions q, <T, the condition (p(x1gx2) = (<pxa((px2) . First we 
shall introduce a broader notion. 

6 E.l. Definition. Let q be a composition on a class X, and let a be a composition 
on a class Y. Let <p be a relation for Zand Y. If x1cpy1, x2<py2 implies (x1gx2) cp (y1cr_K2) 
for any xi e l , yt e Y, then we shall say that the relation <p is stable under Q and a 
(or with respect to g, <r) or else that <p is (g, a)-stable. If, in addition, <p is single-
valued, and D<p = X, then we shall say that cp is a homomorphism-relation under g 
and a or that (p is a (g, (j)-homomorphism-r elation. Finally, if cp is (g, ff)-stable 
and bijective for X and Y, then (p is called an isomorphism-relation under g and, a 
or a (g, o)-isomorphism-relation. 

Remark. It is clear that <p is stable under g and a, in the above sense, if and only 
if it is stable under the composition g x a (see 6 E.9). 

6E.2 . If a relation <p is stable under compositions g and a, then <p_1 is stable 
under a and g. If g, a, x are compositions, cp and ^ are relations, (p is stable (res-
pectively, a homomorphism-relation) under g, a, and i// is stable (respectively, 
a homomorphism-relation) under a and x, then ^ o (pis stable (respectively, a homo-
morphism-relation) under g and x. 

The proof is easy and therefore omitted. 

6E.3 . If g, a are compositions and q> is stable under g and a, then D(p is stable 
(see 6 A.7) under g and E(p is stable under a. 

Proof. If Xi e Dip, x2 e D<p, then choose yi with x^y; . Since (p is stable, we have, 
by definition, .(x10x2) <p(yi^y2)', hence x1gx2 e Dep. Similarly it can be shown that 
E(p is stable. 

6 E.4. Definition. If o is a composition on X and <p is a (o, <r)-homomorphism-
relation on X into X, then we shall say that (p is an endomorphism-relation under a 
(or an endomorphism-r elation for <X, a)). If, in addition, <p is one-to-one onto X, 
then (p is called an automorphism-relation under o (or for <r>). 

Example. Consider a finite set A and let U be restricted to a composition a on 
exp A. Then the endomorphism-relations under a are exactly those relations of the 
form {Z -* <p[-X"]}, where (p is an arbitrary relation in A, i.e. a relation such that 
Dip c A, Etp cz A. 

6 E.5. If X is a set, a is a composition on a set Z => X, then the set of all 
those ip e Xx which are endomorphism-relations under a is a sub-semi-group of 
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(Xx, o), and the set of all those <peXx which are permuting endomorphism-re-
lations under a is a subgroup of <Xx, o>. 

The proof, based on 6 E.2, is left to the reader. 
Before proceeding further and introducing rings of homomorphism-relations, 

we are going to consider the product of compositions. 

6 E.6. Definition. Let {cra | a e A) be a family of compositions, oa being a com-
position on a set Xa. Consider the composition on X = HXa which assigns the 
element {xacraya | a e A} e X to a pair <x, y}, where x = [xa \ a e A} e X, y = 
= {ya \ a e A} eX. This composition is called the compositional product of {<7a} 
or simply the product of the family of {<ra} of compositions and is denoted by 
ncomp{<7a | a e A} or simply by ]]aa etc. 

a 
Remark. It is easy to see that ncomp{tra \ a e A) is distinct, in general, from the 

usual cartesian product of the family {ffa} considered simply as a family of sets, as 
well as from the relational product (see 5 C.2) of {t7a} considered as a family of rela-
tions. 

6 E.7. Definition. If a is a composition on a class X and A is a set, then we shall 
call the power of a with exponent A and denote by aA the composition on XA 

which assigns the family {xaoya} to <{xa}, {ya}>. 

Remarks. 1) Clearly, if a is comprisabls, then aA = II{a a \ a e A}. If 
A = 0, a is a composition, then oA = («0 , 0>, 0)) is a composition on the singleton 
(0). — 2) The symbol a is sometimes written instead of aA. This is done, as a rule, 
if the relation in question is denoted by + or by a dot, etc.; thus we write 

{*.} + {y a} = {*a + y a} , {*„} • W = {*a • y a} etC. 

Example. Let o be a group structure on a two-element set T. Let A be a set. 
It is easy to see that there is a one-to-one relation on TA onto exp A which is a homo-
morphism-relation under oA and the composition -f- restricted to exp A. 

6 E . 8 . Let { f f a | a e A} be a family of compositions. If every <xa is associative 
(a group structure, commutative), then Tlo„ is associative (a group structure, 
commutative). I f , for any a e A, fia is a composition which is distributive relative 
to <ia, then nna is distributive relative to Haa. 

Let o, /j. be compositions, and let A be a set. If a is associative (a group structure, 
commutative), then oA is associative (a group structure, commutative). If n is 
distributive relative to o, then piA is distributive relative to oA. In particular, 
if (a, n} is a semi-ring (ring) structure, then (oA, is also a semi-ring (ring) 
structure. 

The reader is invited to carry out the easy proof and to formulate and prove 
various related propositions, e.g. to show that if ea is neutral under cra, then {e„} 
is neutral under IIaa. 
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6E.9. Definition. If <ru a2 are compositions on Xt and X2 respectively, then 
their compositional product, denoted by a1 xcomp<72 or simply <7! x a2 is the 
composition on X1 x X2 which assigns to <<x1; x2>, <x'1; x2>> the element 

X 2 0 ' 2 X 2 ^ 6 Z 1 X X 2 . 

We leave to the reader the task of formulating and proving for this product 
propositions analogous to those valid for the compositional product of a family 
of compositions. 

6E.10. Proposition and definition. If is a family of semi-groups, <Sa = 
= <Ga, <ra>, then <IIGa, IIa-a> is a semi-group which will be called the product 
of the family {&„} and denoted by n{0a} or If{sďb} is a family of semi-rings, 

a 
s/b = (Ab, ob, pby, then (HAb, ITtr,,, Ify,,) is a semi-ring which will be called the 
product of and denoted by H{sďb} or Y\{sib}, etc. 

b 

The reader is invited to carry out the proof (based on 6 E.8) and to state similar 
propositions and definitions concerning groups and rings. 

6E.11. Proposition and definition. Let B be a set. If & = <G, <r> is a semi-group 
(group) and si = <A, o, p.} is a semi-ring (ring), then (1) <Gfl, trfl) is a semi-
group (group) equal to n { b -> 'ê | b e B} (see 6 E.10), which will be called the 
power of <§ with exponent B and denoted by and (2) <AB, oB, p.3) is a semi-ring 
(ring) equal to Tl{b sé\ beB} which will be called the power of si with ex-
ponent B and denoted by siB. 

6E.12. Theorem. Let a be a commutative semi-group (respectively, group) 
structure on a class Y. Let g be a composition on a set X. Consider the class H of 
all those f e Yx which are homomorphism-relations under g and a. The restriction 
of <Jx to this class is a commutative semi-group (group) structure. If Y is a set, 
then (H, ox> (see 6 B.1, convention 2) is a semi-group (respectively, group). 

Proof. Since by 6 E.8, ox is a semi-group structure, it is sufficient to establish 
that H is stable under ox. Let <py e H, (p2e H; consider <p = cplcrx(p2 e Yx. If x e X, 
x' eX, then q>(xgx') = ((PiOXq>2) (xgx') = cp^xgx') c<p2(xgx') = ((<pxx) a (<;pjx')) o 
<7 ((<p2x) a ((p2x')) which, since a is commutative and associative, is equal to 
((q^x) o((p2x)) o ((cpxx') tr (cp2x')) = (cpx) a ((px'); thus, we have proved that cp 
is a homomorphism-relation. Therefore H is stable under ax. — The rest of the 
proof is left to the reader. 

6E.13. Theorem. Let <G, cr> be a commutative semi-group (respectively, group). 
Then the set of all endomorphism-relations for <G, cr> is a semi-ring (respectively, 
ring) under <ac, o>. 

Proof. By 6 E.12, a° is a commutative semi-group (group) structure. By 6 E.5, the 
composition ° is a semi-group structure which is clearly distributive with respect 
to 
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6E.14. Let < X , g) and <Y, c> be commutative semi-groups. Consider the set H 
of all those f e Yx which are homomorphism-relations under q and a. By 6 E.12, 
H is a semi-group under ax, and even a group whenever < Y, a ) is a group. However, 
there is, in general, no natural composition on H making it, together with ox, a semi-
ring (or even ring). On the other hand, there are two quite natural operations involving 
H: one of these assigns to every pair <<p, i/̂ ), where cp is an endomorphism-relation 
of < Y, CT>, belongs to H, the element cp o ¡¡/ from H, the second one assigns to every 
pair %), where i]/ e H and % is an endomorphism-relation of (X, g}, the element 
\j/ o x from H. These "operations" satisfy, moreover, some natural conditions, 
namely cp o (i/^ + \j/2) = (p ° «Ai + <p ° ((pi + cp2) » ̂  = ^ » if + fi2 o if where 
we have denoted, for convenience, by -I- the "additive" composition in question. 

The following apparently quite different example has much is common with the 
situation described above. Let 8% denote the class of all comprisable relations, let Sf 
denote the class of all sets and consider the relation {<g, XS) -> | g e 3%, X e 
This relation is single-valued with domain ^ x S? and range in It satisfies the 
equalities e f ^ u X2] = g ^ ] u q[X2~], (gj u g 2 ) [X~\ = g^Z] u 

It is expedient to consider "operations" of such a kind in more detail. One may 
try to define them as single-valued relations on A x B into B satisfying certain con-
ditions. However, a slightly different definition will prove to be more adequate and 
convenient. 

F. MODULES 

6 F .l . Definition. Let A, X be classes. If q is a relation with domain A such that 
every g[(a)], a e A, is a single-valued relation on X into X, we shall say that q is 
an external composition (more explicitly, an unstructured external composition) 
on X over A (or with domain A). The class X will be occasionally called the action-

field (or simply field) of g, and we shall say that g acts on X. 

Examples. (A) If X is a set, then {/-»• <x,/x> | x eX,feXx} is an external 
composition on X with domain Xx. — (B) { m - + ( n , m . n ) | m e N , neNj is 
an external composition on N with domain N. — (C) Let = (A, o, fi} be a ring. 
Let B be a set. Consider the relation [a <{x6}, {apxb}} | a e A, {xb} e A8}. This 
relation is an external composition with domain A and field AB. 

6F.2. Convention. Let n be an external composition over a class A on X. 
If a e A, x e X, we shall denote by a fix the (unique) element y such that <a, x, y} e fi. 

6 F.3. Definition. Let pi be an external composition over a class A on X. Then 
a class Y<= X is called absorbing under pi if a e A, y e Y=> apiy e Y. 

If Y is absorbing under pi, then pi n (A x Y x 7) is an external composition over 
A on Y; it will be called the restriction (more precisely field-restriction) of pi to an 
external composition on Y, and denoted by piY if there is no danger of misunderstanding. 

6 F.4. Before proceeding further, we shall point out the following important fact. 
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Very often,.simultaneously with an external composition in the above sense, there is 
given a structure on its domain; for instance, in example (C), there is a ring-structure 
on the domain A of the composition considered. As a matter of fact, such a structure 
is usually of a considerable importance. For this reason, we shall define a "richer" 
concept of an external composition endowed with a certain structure for its domain. 
However, at this stage, only a rather special definition is given, with merely semi-
groups (or groups) and semi-rings (or rings) in view. 

Definition. Let A be a class and let a be a semi-group or a semi-ring structure on A 
(thus a may also be a group or a ring structure). Let p be an external composition 
over A (thus Dp = A) on a class X. Then <//, a) will be called an external composition 
over the semi-group or semi-ring si = <A, a); we shall also say that </i, a) is a struc-
tured (or enriched) external composition. 

Example. If si = <A, a, p) is a ring, consider the relation p* consisting of 
all <a, x, y> such that y = apx. Then p* is an external composition over A on A, 
and (p*, er, p) is a structured external composition over A on A. 

We defer the examination of external compositions to Section 8. Only one special 
case will be considered now, namely that of an external composition over a ring si 
on a set X on which a certain group structure is given. 

6 F.5. Definition. Let <a, /?> be a ring structure on a class A. Let p be an external 
composition over A on a class X; let a be a commutative group-structure on X. 
Then <0-, </i, a, / ? » is called a module structure (more precisely, a left module 
structure) over si = <A, <a, / J » on X, provided the following conditions are 
satisfied: 

(1) if a e A, x e X, ye X, then ap(xoy) = (apx) o(apy), 
(2) if a e A, be A, xeX, then (aab) px = (apx) a(bpx), 
(3) if a e A, be A, x e X, then (a/3b) px = ap(bpx). 

Examples. (A) In the notation of 6 FA, <cr, </x*, a, p.}} is a module structure 
over (A, a, p) on A. - (B) Let <0 = <G, Q}, = <FF, T> be commutative groups. 
Let <X , <t> be the group described in 6 E.12, of those single-valued relations on G 
into H which are homomorphism-relations under Q and T, and let si = (A, A,/J> 
be the ring of endomorphism-relations of Ĵ f (see 6 E.13). Let p consist of all pairs 
<a, x, y} where aeA, xeX, yeX, y = a 0x. Then <t7, </i, a, /?» is a module 
structure over si on X. — (C) In the notation of the preceding example, let si' = 
= <A', a', p'} be the ring of endomorphism-relations of let p consist of all 
pairs <a', x, y} where a' e A', xeX, y eX, y = x o a'. Then conditions (1), (2) 
in the above definition are satisfied, but condition (3) is not, except in special cases. 
However, we have (afi'b) p'x = bp'(ap'x); thus, <tr, <p , a.', /?')> is a so-called 
"right module structure". — (D) Let again si = <A, a, p) be a ring. Let B be 
a set. Consider the group siB = (AB, a3) (see 6 E.11); denote by p* the relation 
consisting of all <a, {x6}, {apxb}>- Then <erB, <p*, <r, p)> is a module structure 
over si on A8. 
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6F.6. Convention. Let m = <<r, a, be a module structure over si 
on X, and let Y c X. If <cy, (fiY, a, / ?» is a module structure (over si on Y), then 
it will be denoted by iwy. 

6 F.7. Definition. A pair Qi, my where X is a non-void set, m is a module struc-
ture over si on X, will be called a module over si or an si-module. Let m = 
= <<r, <¿1, a, / ?» be a module structure over si = <D¡i, a, /?> and let X be a set; 
then X will be called a module over si under m if mx = (ox, <fix , a, / ?» is a module 
structure over on X. 

6 F.8. Definition. If (X, my, (Y, «> are modules over si, Y X, n = mY, then we 
shall say that < Y, u) is a submodule of (X, in) (or that <7, /i> is identically em-
bedded in < X , my, see 6 B.4). A set Ywill be termed a submodule of < X , my if Y cz X 
and Yis a module over si under m. 

6F.9. Convention. Let m = <<r, (fi, a, / ?» be a module structure. We shall 
say that o is the underlying additive structure and fi is the underlying external 
multiplicative structure of m. If % = <X, my is a module, we shall say that o is the 
addition, fi is the external composition of the module *X, Qi, a ) will be called the 
underlying additive group etc. (cf. 6 D.4). The relation { <a, x> -»• a fix} will be 
sometimes called the ¡i-multiplication (or the external multiplication) of the 
module 9C. 

6 F.10. Definition. If m is a module structure over si on X, then a class Yis called 
stable under m if Ycr X and Yis stable under the additive and absorbing under the 
external multiplicative structure of m (this last condition means that a/iy e Ywhenever 
a is an element of si, y e Y). 

6 F.I1. If <X, my is a module, then a set Y <=• X is a module under m (in other 
words, a submodule of <AT, m)) if and only if it is stable under m and a subgroup 
under the additive structure of m. 

6 F.12. Let m be a given module structure. The intersection of any non-void 
family of modules under m (respectively, of sets stable under m) is a module 
under m (respectively, stable). 

The proof of these both propositions is immediate. 
Example. Consider the module described in 6 F.5, example (D). Let Yconsist 

of all {x t} e AB such that xb = 0 for all b except finitely many. Then Y is a sub-
module of the module in question. 

6F.13. Let <X, my be a module. If Y c. X, there exists exactly one submodule 
which is the smallest submodule containing Y. 

6 F.14. Definition. Let <X, my be a module, Y c l . Let Z be the smallest sub-
module containing Y. Then we shall say that Z (or also <Z, in)) is the module gener-
ated by Y under m (or in < X , my) and that Y generates (or is a generating set 
for) Z as a module. 
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Example. Consider the submodule described in 6F.12 (example). For any 
b e B let q>b be the single-valued relation which assigns to every a e A the element 
{xc | c e B} e A B such that xb = a, xc = 0 for c * b. Then if { Z j , Xb <= A, is 
a family such that every Xb generates A (as a ring), then generates the sub-
module in question. 

6 F.15. Proposition and definition. Let {SCb | b e B) be a non-empty family of 
modules over a given ring si = <A, a, /?>; let 3Cb = < X b , ab, pb, a, ft}. Let X = 
= TlXb, a = II<7b (see 6 E.10); let p consist of all <a, {x6}, {a/z^xj), where a e A, 
{x6} eX. Then <X, a, p, a, /?> is a module over si. It is called the cartesian product 
of the family {Xb} and denoted by U{Xb}. 
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The purpose of this section has been described briefly in the introductory remarks 
to the present Chapter II. 

It is to be pointed out that only a few non-trivial propositions are given here; 
the section consists, for the most part, of definitions, examples, etc. The role of the 
concepts introduced here will become clear gradually, e.g. in considerations involving 
interrelations of different kinds of spaces (topological, uniform, etc.). 

Subsection 7 A requires a careful reading since the concepts introduced, although 
essentially well-known, are considered in an aspect and formulated in a form which 
is not quite usual. On the other hand, concepts such as correspondences, mappings, 
etc., considered in the following subsections, although defined in a somewhat un-
usual manner, are intuitively clear. Therefore, it may be convenient to go through 
these subsections quickly, noting the terminology and returning to each concept 
as soon as it appears in the subsequent sections. 

A. STRUCTS 

We begin by recalling some definitions from Section 6, stressing their "formal" aspect. 
A semi-group or a group has been defined as a pair <G, u) where G is a non-void 

set, a is a composition satisfying certain conditions. A semi-ring (respectively, ring) 
is a pair (A, <<r, fi)) where A is a non-void set, (a, /¿> is a semi-ring (respectively, 
ring) structure on A, i.e. a pair of compositions satisfying certain conditions. Pairs 
(X, a) where X is a non-comprisable class, have also been mentioned in Section 6 
(for instance, the class of all sets endowed with the semi-ring structure <(J, P)>)-
In Section 10, ordered classes will be considered; these are pairs <X, g}, g being 
an order on X, i.e. a relation in X satisfying certain conditions. Finally, to give 
a slightly more complicated example, a module over a ring si is a multiplet 
(X, a, n, a, ft} = <X , <cr, </i, a, /?»> where X is a non-void set, a, ¡i, a, p are 
relations satisfying certain conditions. 

Let us further recall that e.g. if si = <A, a, /?> is a ring, then <A, a> is called the 
underlying additive group of si, (A, py is called the underlying multiplicative semi-
group of si, A is called the underlying class of si. 
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It will be of some use to introduce certain general concepts which may be applied 
to situations similar to those described above; in this way, the exposition can be 
simplified and relieved of repeated explicit statements of analogous definitions 
and propositions. 

7 A.l. Definition. Every class X and every pair < Y, a> where Y is a class will be 
called a struct. If X is a struct, two (mutually exclusive) cases are possible: if X = 
= <X, a), where X is a class, then we shall say that X is the underlying class of the 
struct 3C, a is the structure of and 9C is obtained by endowing X with a; if 3E = X 
is a class, then X itself is called the underlying class of 3C and it is said that dC has 
no structure. A struct will also be termed a structured class (thus, a structured class 
is either a class or a pair <X, a) where X is a class). In particular, any pair (g, a) 
where g is a relation, as well as any relation a, will be called a structured relation. 

The underlying class of a struct 3C will often be denoted by If 3C, are structs 
and g is a relation for and \<W\ (respectively, on into \l&\ and so on; cf. 1B.6), 
then we shall also say that g is a relation for 2£ and ̂  (respectively, on <X into , etc.). 

In a struct <[X, a>, the structure a may be itself an object built up in a rather 
complicated way. In most "practically" occurring cases a is obtained from certain 
relations, in particular compositions, by successive formation of pairs; e.g. the 
structure of a module is a regular multiplet, namely a quadruple of relations. 

7A.2. Convention. A struct and its underlying class will often be denoted 
by the same symbol; thus we shall often write X instead of {X, a), 3£ instead of \9C\. 

For the sake of brevity, we shall sometimes omit the words "the underlying 
class of . . ." or, conversely, "...endowed with...", provided the proper meaning 
can be conveyed without ambiguity. Thus, we shall speak of elements and subclasses 
of a struct instead of elements and subclasses of the underlying class of a struct. 
If there is given a class X and it is clear from the context that we intend to consider X 
endowed with a certain structure a, then we shall speak of properties of X when 
those of (X, a> are meant. For instance, if X is a set and it is clear that a semi-group 
structure o on X is considered, we may say that X is commutative instead of saying 
that X endowed with o is a commutative semi-group. Similarly, a notation such 
as xeS£, Y C 3£, etc., may be used (instead of the correct symbols x e 7 c 
and so on). 

Observe that conventions of this kind have already been used in Section 6. 

7 A.3. Let X = (X, a> be a struct. In many cases (for instance, if SC is a semi-
group or a semi-ring), there is a rule which determines what structs are considered 
as "substructs" of 9C, in other words, a rule which determines, for certain subclasses 
Y <=. X, a structure /} such that < Y, /?> is considered as a "substruct" of 9C. However, 
no such rule can be given a priori. Therefore we do not try to give a general definition 
of a "substruct"; nevertheless, occasionally we shall use this expression if it is obvious 
from the context that certain subclasses of X = |i%\ are conceived as endowed with 
a definite structure determined by that of 9£. 

8 — Topological Spaces 
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7 A.4. It would be appropriate to give now a precise general meaning to clauses 
such as the underlying group of a module, a group endowed with an order, etc. 
This will be done here to a limited extent; a more complete treatment which is some-
what cumbersome (for reasons indicated in 3 F.13) will be found in the Notes at 
the end of the book. 

We begin with an intuitive description. Suppose a, ft may be expressed as multi-
ples (e.g. a = <X, <a, b>, d, e>, /? = <X, d}) in such a way that the expression for /? 
is obtained from that for a by cancelling symbols denoting objects s,..., t (in the 
above example, <a, b} and e are cancelled). Then we shall say that /? is obtained 
from a by deleting s, ..., t and that a is obtained by enriching /J with t, ..., s. If a, ¡3 
are structs with the same underlying class, we shall speak of endowing ft with t,..., s, 
as will be exactly defined below. 

To give an example, <X, a, b, c> as well as (X, <a, b>, c> is obtained by enriching 
{X, a, by with c; <X, a, by as well as b, a) is obtained from <X, a, b, a) by 
deleting a. 

The terminology just indicated agrees completely with that used (for special cases) 
in Section 6. It is to be noted, however, that, for instance, if 3C = <X, a, n, a, /?> 
is a module over si = <D/i, a, /J>, then it is not only <X, a), <X, a, p.y, etc., which 
is an underlying struct, but also the struct <X, a, /J),for which hardly any reasonable 
algebraic meaning can be found. This circumstance is not relevant, however, since 
underlying structs of such a kind, although not excluded a priori from the consider-
ations, will never play an actual role in any reasoning. 

7 A.5. If we try to give exact general definitions of notions indicated above, we 
encounter serious difficulties. For comprisable objects, exact definitions can be 
given; this has been done partly in 3 F.12 and will be completed below (7 A.7). 
However, the procedure indicated in Section 3 breaks down in the "non-comprisable 
case" because it involves, quite essentially, an infinite induction which cannot be 
carried out for non-comprisable objects (e.g. it is meaningless to speak of "sequences 
of non-comprisable objects"). 

On the other hand, notions such as the enriching of structures are used merely 
as a means for a unified description of facts which can be as well described, for 
each given kind of struct, without these concepts. There will occur, "in practice", 
a rather small number of different kinds of structs, and the structs considered will be 
formed from a small number of objects which cannot or need not be represented 
as pairs. Therefore it is sufficient, for our purpose, to define the concepts in question 
only for the case where the appropriate inductive procedure can be performed in 
at most k elementary steps, k being a fixed natural number (fc = 100 will be more 
than enough). To avoid a lengthy reasoning here, this is deferred to the Notes at 
the end of the book, and only the "comprisable case" will be explicitly considered now. 

7 A.6. The definitions given in this section will apply directly to the "comprisable 
case" only. The reader is invited to formulate, for the "non-comprisable case", 
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under the limitation indicated above, the definitions corresponding to those stated 
explicitly for the "comprisable case". 

We point out that concepts defined explicitly for the "comprisable case" will be 
used, whenever necessary, also in the "non-comprisable case". 

7 A.7. Definition. Let a, /? be elements. Let [ck \ ke N„} be a finite sequence. 
Let there exist a sequence {ak \ k e Nn + 1} such that a0 = a, a„ = ft and, for each 
k e N„, the element ak+l is obtained by enriching a.k with ck (see 3 F.12). Then we 
shall say that p is obtained by enriching a with c0, ...,c„_l (or, more precisely, 
by enriching a with members of the sequence {ck}), and that a is obtained from P 
by deleting c„_1 ;..., c0 (or, more precisely, by deleting members of the sequence 
{ct}). In particular, if a = /?, then P is obtained by enriching a with no elements 
(in other words, by enriching it with members of 0). 

If a, P are elements and there exists a finite sequence { c j such that /? is obtained 
by enriching a with members of {ct}, we shall say that /? is an enrichment of a or 
that a is enrichable to p. 

7 A.8. Convention. Let the elements a = <X, a>, P = <X, b) be structs with the 
same underlying set X. Let /? be obtained by enriching a with c 0 , . . . , c„_x (it is not 
difficult to prove that in this case b is obtained by enriching a with c0, ..., c„_ 
Then we shall also say that P is obtained by endowing a with c0,..., cn_1 (or, in 
a not quite correct manner, that P is equal to a endowed with c 0 , . . . , c„_!), and 
that a underlies P or P is underlaid by a. The case a = j8 is included, as indicated 
above. 

Remark. The expressions "a underlies /?", "/? is obtained by endowing a 
with c0, ..., cn-i' will be used solely if a, P are (possibly non-comprisable; see 
7 A.6) structs with the same underlying class. Thus, if r\ are classes, then as well 
as ri are enrichable to <£, rj}; however, ^ underlies <£, whereas rj does not. 

Examples. (A) If si = <A, cr, /z> is a ring, there are at most four underlying 
structs, namely si itself; its underlying additive group (A, IT>, obtained by deleting fi; 
the underlying multiplicative semi-group <A, /*>; the underlying class A. As a rule, 
all these structs are distinct; but it may happen that <j = fi (this is the case if and only 
if A is a singleton). — (B) If J t = <M, a, </i, a, /?>> is a module over a ring si = 
= <D/z, a, py then there are at most 16 underlying structs, e.g. J l itself, the under-
lying additive group <M, cr), the underlying "group with operators" <M, a, p} 
obtained by deleting from the structure of JK the ring structure <a, /?>, etc. — 
(C) A topological group (see 19 B) 3C = o,u) is obtained by endowing a group 
(X, c> with a topology u or a topological space (X, u> with a group structure a, 
always under certain compatibility conditions for a and u. Observe that, according 
to the definition adopted, the struct <X, u, tr) is also obtained by endowing <X, <r> 
with u. However, only the triple <X, a, u>, and not (X, u, <J), will be termed a topo-
logical group. 

8' 
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B. CORRESPONDENCES 

We now proceed to the very important notions of mappings and correspondences. 
It is fairly clear that the concept of a single-valued relation is not suitable to ex-

press the idea of a mapping in the sense current in mathematics, for various proper-
ties ascribed to mapping cannot be properly conceived as those of relations. First, 
we cannot properly say that a single-valued relation is "onto" or is "into", whereas 
the concept of a mapping contains inherently the indication of what may be called the 
latent or potential range of the mapping, i.e. of the "class into which the mapping 
goes"; the actual range is a part of this class. Secondly, a single-valued relation as 
such cannot be considered e.g. as continuous; it can be thought of as continuous, 
or isomorphic, etc., only with regard to certain topologies, or certain group structures 
and so on. On the other hand, it is usual and expedient to consider such properties 
as intrinsic qualities of a mapping. 

For these reasons, a mapping is often defined as a triple <<p, A, B) such that <p 
is a single-valued relation (usually comprisable), A = Dcp, B => Ecp; the explicit 
indication of A is superfluous in a sense, but consistent in view of the fact that 
a mapping may and will be conceived as a special case of a correspondence. 

We shall now make a further step and also include in the concept of a mapping 
the structure with which A and B may be endowed. Then, a mapping may be defined 
as a triple < cp, si, 38) such that <p is a single-valued relation, si, 38 are structs and 
Dcp = \si\, Ecp <= \38\ (see 7 A.1). 

However, the notion of a mapping, even if conceived as above, is still not general 
enough in view of the important role played by "multi-valued mappings" in various 
considerations. For this reason, we are going to introduce a very general notion 
of a correspondence for structs which will include as special cases mappings of 
structs and correspondences for classes. 

7 B.l. Definition. If si, 38 are structs with underlying classes A, B, and g is a rela-
tion for A and B, then the triple <(?, si, 38) will be called a correspondence for si 
and 38 (or a correspondence for si ranging in 38). If R = si, 38) is a cor-
respondence, then Q is called its graph and denoted by gr R; si is called the domain 
carrier (or the latent domain) oiR and denoted by D*R; 38 is called the range carrier 
(or the latent range) of R and denoted by E*R. 

Observe that every correspondence R = (Q, si, 38) is a struct. Its underlying 
class 0 = gr R may also be denoted by |2i| (see 7 A.1). 

Examples. (A) Let 9C = <X, 0, n), = <X', a', ¡i) be rings. Let cp be 
a single-valued relation on X into X'. Then F = <<p,3£,<X') is a correspondence 
for 9C and , f = <cp, a), <X', er'» is a correspondence for the groups <X, o) 
and (X', a'); F and f are different although they have the same graph cp. If cp is 
a homomorphism-relation under (a, p.) and <<7', y!), that is under a and 0' as well 
as under n and ¡1, it will be said (see Section 8) that F = <<fp,&, 3C') is a homomor-
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phism; if (p is a homomorphism-relation under er and a', it will be said that / = 
= <<p, (X, cr), <X', a'yy is a homomorphism. — (B) Consider a composition 
¡i on a class X, and put 3C = <X, /i). For asX, put <7„ = {x y | apy = x}. Then 
5a = <ff0, X, X ) is a correspondence and, in general, its latent domain X is dif-
ferent from the domain Doa of its graph. 

Convention. If R is a correspondence, then D gr R, Egr/i will sometimes be 
called, respectively, the actual domain and the actual range of R. 

7 B.2. Definition. A correspondence <g, si, 38y will be called an abstract cor-
respondence if si, 38 have no structure, i.e. if si, 38 are classes. If R = <g, <A, a), 

pyy is a correspondence, then <g, A, By will be called its underlying abstract 
correspondence; A will be called the abstract domain carrier of R, and denoted, 
in accordance with 7 A.1, by |D*ii|; B will be called the abstract range carrier of R 
and denoted by |E*I?|. 

7B.3. Conventions. A correspondence and its graph will often be denoted 
by the same symbol (most often, a letter). Thus, if R is a correspondence, we shall 
often write instead of (gr R) [X], or, provided gr R is single-valued at x, 
we shall write Rx instead of (gr R) x; we shall speak of fibres and inverse fibres (see 
1 B.7, 1 B.9) of a correspondence, etc. — Conversely, if g is a given relation and the 
carriers si, 38 (such that Dg <= \si\, Eg <= \38\) are clear from the context, then 
<g, si, 3Sy will occasionally be denoted simply by g. 

Moreover, let R = <g, si, 3Sy be a correspondence; let X <= jsi|. Suppose that 
it is clear from the context that certain subclasses of \38\ are thought of as endowed 
with certain structures determined by 38, i.e. as "substructs" of 38 (see 7 A.3). 
Then, provided there is no danger of misunderstanding, we shall call the image of X 
under R not only the class 2?[-X"] = but also this class endowed with a cer-
tain structure determined by 38. A similar convention applies, of course, for inverse 
images, fibres and inverse fibres. 

7B.4. Convention. Suppose that either R is a correspondence, Q = gr R, or 
R = Q is a relation. Let si, 38 be structs. We shall denote by R : si -* 38 the cor-
respondence <o-, si, 38y where u is the relation Q n (\si\ x \38\). 

This notation will be used mainly in the case where Q is single-valued, Dg => \si\ 
and g[|j^|] <= \38\; in such a case g: si -*• 38 is equal to <g|̂ |, si, 3 8 y . 

Example. Let R and C denote respectively the set of all real and all complex 
numbers. Then {x -*• x2 + 1} : R -» R, {x -» x2 + 1} : C R are different cor-
respondences with different graphs; the actual range of the first of these is equal 
to the interval [ 1, -» [ (in the set R), that of the second one is equal to R. 

Remark. In accordance with the above definition, an expression such as "some 
q> : si -» 38" simply means "some correspondence for si and 38", the expression "let 
(p = <p : si -* 38" means "let <p be such that q> is equal to <p :si -» 38", that is 
"let <p be a correspondence for si and 38", etc. 
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7 B.5. Definition. If F = <<p, A, B) is an abstract correspondence, C is a class, 
then <<pc, A n C, Bthat is q>: A n C -»• B, will be called the domain-restriction 
of F to C, and similarly for the range-restriction and restriction (cf. 1 B.10). 

If F and G are abstract correspondences, G is a domain-restriction of F, then 
we shall say that F is a domain-extension of G, and similarly for the range-extension 
and extension. If it is clear from the context which kind of restriction or extension 
is considered, we shall often speak e.g. of restriction instead of domain-restriction, 
of extension instead of domain-extension. 

Convention. Let si be a struct and let SC be a "substruct" of si (see 7 A.3). If F = 
= ((p,si,38y is a correspondence, then <p\ 9C -» that is <<P|2-|, 9C, 38} = 
= <(? n x \38\), 9C, 38) will be called the domain-restriction of F to 3C and will 
be denoted by F%. An explicit formulation of similar conventions concerning range-
restriction, etc., is left to the reader. 

7B.6. Let R be a correspondence and let 5 be equal to R: 3C -* <W. In general, 
?£ an <W may be quite arbitrary and the graph of S may be any restriction of gr R 
(of course, gr S is determined by 19C\ and \<W\, since it is equal to gr R n x \&\j), 
However, two "extreme" cases are important: (1) the case, described above, when 
the structure of % = D*^ = E*S is determined by that of E*R, namely 
when 0*5" is a substruct of D*/î, E*5' is a substruct of E*R, (2) the case gr S = gr R 
which we are now going to consider. 

Definition. Let R be a correspondence; let S be equal to R : 3C -> If the under-
lying classes of D*S and D*/î as well as those of E*5and E*R coincide, then we shall 
say that 5" is a transpose of R. 

Clearly, each of the following conditions is necessary and sufficient for S to be 
a transpose of R: (a) abstract correspondences underlying R and S coincide; 
(b) = |D*£|, |E*R| = |E*S|. 

An instance of transposes has occurred in 7 B.1 : the correspondences F and / 
from the example (A) are transposes of each other. 

7 B.7. Definition. A' correspondence R = (g, si, is called domain-full if 
Dg = \si\ (i.e. if the actual rang; of R coincides with the underlying class of its latent 
rangs); it is called range-full if Eg = \<%\. 

Example. Consider 7 B.1, example (B). Clearly every Sa is range-full. If 
(X, fi} = <N, +> , then only S0 is domain-full. If fi> = <N, .), then only S t 

is domain-full. 

7 B.8. Conventions. Let R = <g,si,&8) be a correspondence. Parallelling 1 B.6, 
we are going to introduce terms indicating various combinations of the properties 
just introduced. According to 7 B.1, we say that R is a correspondence for si and 38. 
If Dg = \si\, i.e. if R is domain-full, we shall say that R is a correspondence on si 
ranging in 38; if Eg = \38\, we shall say that R is a correspondence for si ranging 
on 38; finally, if Dg = \si\, Eg = \38\, we shall say that R is on sé onto 38. 
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If si = 38, we shall say that R is a correspondence in si (or for si); if, moreover, 
Dg = \si\, we shall say, of course, that R is on si into si;if,in addition, Eg = \si\, 
we shall say that R is on si onto si. 

7 B.9. Many (but not all) properties first defined only for relations will be carried 
over to correspondences (usually by the following rule: R is said to possess the pro-
perty P if and only if gr R possesses the property P). However, this rule is to be 
applied with care; in most cases, its use will be explicitly indicated, unless clear from 
the context. We mention here explicitly two properties: a correspondence R is called 
single-valued (respectively, one-to-one) if its graph is single-valued (respectively, 
one-to-one). 

7B.10. Definition. A correspondence F is called a mapping if it is domain-full 
and single-valued. A mapping F is called injective if it is one-to-one, surjective 
if it is range-full, bijective if it is both injective and surjective. A bijective map-
ping <<p, si, 38s) is called a permutation if si = 38. 

Examples. (A) Let be the class of all sets. Consider the mapping F = 
= (X ->• X n Yj : where 7is a fixed class. If 7is the universal class, then F 
is bijective; if not, then F is neither injective nor surjective. — (B) Let g be a relation. 
Consider the single-valued correspondence G = {X -» g[Z]} : & -* & (see the 
above example). Then G is a mapping if and only if every fibre of g is comprisable; 
G is range-full if and only if there exists a class A c Dq such that the domain-
restriction cr of g to A is one-to-one and EA is the universal class. 

7 B.ll. Let si, 38 be structs. In many cases (see 6 E.1) there is a rule determining 
what bijective cp :si -> 38 are considered as "isomorphisms" and which injective 
i// : si -» 38 are considered as "embeddings" (cf. 6 B.4). 

It is difficult to describe isomorphisms in an exact manner sufficiently general 
to include most of the important cases (however, this can be done for algebraic 
structs, see Section 8). We shall only describe embeddings in terms of isomorphisms 
and substructs (see 7 A.3) without giving a formal definition. 

As a rule, an injective mapping F = <<p, si, 38> will be called an embedding (of 
si into 38) provided (1) the image (see 7 B.3) F\si~\ may be considered as a substruct 

of 38, and (2) F: si -* <& is an isomorphism. 
We point out, in addition, that an expression such as "9C is embedded in <&" 

means that there is given an embedding of 3C into <&; if we say that 3C may be embedded 
in <y, then this means that there exists an embedding of 3C into <W. 

Parallelling 1 D.3, we introduce the following definition which will be properly 
motivated somewhat later in this section. 

7 B.12. Definition. A correspondence R = <g, si, 38} will be called a fibration 
if it is range-full and its fibres are disjoint (in other words, g _ 1 is single-valued). 
In particular, we shall say that R is a fibration over si or, if Dg = \si\, that it is 
a fibration upon sd. 
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C. OPERATIONS ON CORRESPONDENCES 

7 C.l. Definition. Let R, S be correspondences. If the domain carrier D*R 
of R coincides with the range carrier E*S of S, then we shall denote by R o S and call 
the composite of R and S the correspondence <gr R a gr S, D*S, E*R>; in this case 
(i.e. if D*R = E*S) we shall often say that "R 0 S is defined". If the condition 
D*R = E*S is not satisfied, then the expression "R o S" has no meaning (is not 
defined). — If R is a correspondence, we shall call its inverse, and denote by R'1, 
the correspondence <(gr.R)_1, E*R, D*R}. 

Remarks. 1) Observe that Roil is a correspondence in D*R; its actual 
domain as well as its actual range are equal to D gr R. — 2) Clearly, R is a map-
ping if and only if J? - 1 is a fibration. 

7 C.2. Let R, S, T be correspondences. If (Ro S) o T is defined (more precisely, 
if D * R = E*S, D * S = E * T ) then also R o (S o T) is defined and is equal to 
(R„S)oT. If RcS and S c T are defined, then (R „ S) „ T = R o (S o T). Finally, 
(R o S ) _ 1 = S - 1 o R_i whenever R 0 S exists. 

The proof is clear and therefore omitted. 

7 C.3. Let P be one of the following properties of a correspondence 4>: $ is 
comprisable, domain-full, range-full, single-valued, one-to-one, a mapping, a fibra-
tion, injective, surjective, bijective. If both R and S possess property P, and R o S 
is defined, then R o S also possesses property P. 

We prove the first assertion leaving the rest to the reader. If R = 38, 
S = <«7, 38s) are comprisable, then Dg and Ea are comprisable, and therefore 
q o a is comprisable too, since D(g 0 a) <= Dtr, E(g 0 a) c Eg, q o o c D(g 0 c) x 
x E(g o cr) <= Dtr x Eg. Evidently, si, 38, <6 are comprisable, hence R o S = 
= <g o a, si, is comprisable. 

7 C.4. If R is a (comprisable) correspondence, then there exists a (comprisable) 
fibration F and a (comprisable) mapping M such that M „ F = R. 

Proof. If R = (Q,si,3Sy, put F = <(p,si,g>, M = (p,Q, 38} where cp = 
= {x ->• <x, y} | <x , y} e g}, p = {<x, y} -> y | <x, y} e g}. 

7 C.5. Definition. If {Ra | a e A} is a family of abstract correspondences (thus 
D*Ra, E*i?0 are sets), then their product, denoted by Il{i?01 a e A} or simply by 
n {R a } , is defined as <n{gfl}, Tl{Xa}, n{ya}> where ga = gr R„ Xa = D*R„ Ya = 
= E*Ra and Il{g0} is, of course, the relational product in the sense of 5 C.2. 

Convention. If all Ra are equal to a fixed correspondence R, then RA is written 
instead of n { X J . 

Remarks. 1) The reader is invited to formulate the definition of the product 
of finitely many abstract correspondences, possibly non-comprisable (cf. 7 A.6). — 
2) We have limited the definition to abstract correspondences, i.e. to the case 
where the domain and range carriers are classes. Observe that "Il{fla}" has, in 
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general, no meaning if Ra are arbitrary comprisable correspondences; for each kind 
of the carrying structs D*i?a, E*Ra, a special definition is required. 

7 C.6. Definition. Let {Ra | a e A} be a family of correspondences with the same 
domain carrier 9£ = D*/?a and the same actual domain Z = D gr Ra; suppose that 
E*Ra have no structure (hence are sets). Then <nrcdoa, 3C, IIYffl> where Q„ = gr Ra, 
Ya = E*Ra, is called the reduced product of {Ra} and denoted by IIred{i?a | a e A} 
or IIred{Kfl} or even simply by n{i?„}, etc. 

Remarks made above (7 C.5) also apply here, with appropriate modification. 
7 C.7. Let {Ra | a e A} where A #= 0 be a family of abstract correspondences; 

let R = Il{Kfl} (in the sense o f l C.5). Then D * R = n{D*Ra}, E*R = II{E*Ka}, 
D gr R = II{D gr Ra}, E gr R = II{E gr Ra}. - Suppose, moreover, that all gr Ra 

are non-void. Then R is single-valued (one-to-one, domain-full, range-full) if and 
only if every Ra has the property in question. 

Remark. If R = IIredi?a (which means, in particular, that all D*Ra are mutually 
equal, as well as all D gr Ra), then equalities such as Egr R = n{Egri?a}, etc., do 
not hold in general; in particular, if Ra are surjective, IIredRa need not be surjective. 

7 C.8. Definition. Let R = stf, be a correspondence. If is a struct, 
<= |«s/| and s is a mapping on <tf into 38 such that gr s is a section (in the sense 

of 1 D.5) of gr R = Q, then we shall say that s is a section of R. — A section of 
will be called, in accordance with 1 D.5, a cross-section of R. 

7 C.9. Before giving an example of sections (of a fibration) we should point out 
that the concept of a fibration is, in a sense, redundant; we could avoid it and speak 
simply of inverses of mappings or even replace statements concerning fibrations 
by their counterparts concerning mappings. 

However, the intuitive connotation of these concepts is essentially different. 
A mapping (or a mapping relation) is thought of as expressing the process of trans-
forming certain objects, obtaining their "images", etc.; the inverse of such a corres-
pondence may be conceived as expressing the inverse transformation process, the 
finding of "pre-images", etc. On the other hand, a fibration is thought of as expressing 
the following idea: every element ("point") of a given class is equipped with certain 
elements (in general, of a quite different kind); these elements may be conceived 
as possible values of a variable at a given point or possible situations in some sense, 
etc. If to every point there is assigned a certain unique value from among all the 
possible ones, then a section is obtained. 

One of the most well-known examples of a fibration and its sections is the following 
one. Let M be a differentiate manifold. Put xr^ if and only if £ is a tangent vector 
for the manifold M at x. Then <T, M, B}, where B denotes Ex endowed with a sui-
table structure, is a fibration upon M. Its sections on Mt c M are correspondences 
assigning (uniquely) to every x E Mt a certain tangent vector at x (as a rule, only 
differentiable sections are of interest). In this case, the idea of equipping points with 
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vectors in various ways is clearly prevalent over that of assigning to every vector £ 
in question its "origin" x. 

The above example is purely illustrative since it involves concepts which will not 
be introduced in this book. The following one can be formulated in an exact manner. 

Let a be a semi-group structure on G; put <§ = <G, a}. If M c: G is not void, 
denote by M* the class of all non-empty finite sequences of elements of M; denote 
by JK* the class M* endowed with the composition (denoted by p here) which assigns 
{«o, an, b0, ..., bm} to the pair of sequences {a0, ..., an}, {b0, ..., bm}. Let (p be 
defined recursively as follows: (a) cp{x} = x for any x e M, (b) for any e M*, 
x e M, (p{{x} = x fi[<p£). Then <p is a homomorphism-relation under p and a, 
hence is composition-stable (see 6 E.1) under a and p\ ^ = <<p_I, H, Ji*y 
is a fibration correspondence. A section s of M assigns to every element g e Ds one 
of its "representations" as a „product" of elements of M. It is easy to see that a sec-
tion s on a semi-group H c G is a homomorphism, i.e. gr s is a homomorphism-
relation, in exceptional cases only (e.g., if M = (a), G consists of all a"). 

D. MAPPINGS 

In this subsection some facts concerning classes of comprisable correspondences, 
mainly mappings, are considered. 

7 D.l. As pointed out above (7 B.9), many properties are carried over to cor-
respondences, in particular mappings, from their graphs. Thus, we have defined 
explicitly single-valued and one-to-one correspondences, including mappings, and 
some other properties (see 7B.10). Now we introduce homomorphisms of semi-groups 
and semi-rings and related notions (for a more detailed treatment see Section 8). 

Definition. If ^ = <G, <r>, Jf = <ff, T> are classes endowed with semi-group 
structures, F = <<p, 'S, is a mapping and cp is a homomorphism-relation under a 
and T, then we shall say that F is a homomorphism. 

If si = <i4, <r, p}, si' = <i4, a', p'} are classes endowed with semi-ring structures, 
F = <(p,si, si'} is a mapping and (p is a homomorphism-relation under <<r, p> and 
<o-', p'y, that is under a and o' as well as under p and p (cf. 8 A.4), then F is called 
a homomorphism. 

7 D.2. Definition. A homomorphism (see above) F = < cp, 3C, <&y will be called 
an endomorphism if 9C = <H. A bijective endomorphism is called an automorphism. 

7 D.3. Definition. If X, are comprisable structs, then the set of all correspond-
ences g : X will be denoted by Corr (3E, <&). 

We point out, in particular, that Corr (3C, <W) consists of all correspondences for 
9E and <%/, irrespective of their properties. 
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7 D.4. Proposition and definition. Let 3C, <W be comprisable structs. The relation 
which assigns gr R to Re Corr (3C, <&) is bijective for C o r r (!%, ty) and exp (X x Y), 
where X = Y = \<&\\ it will be called canonical for Corr (%, <&) and exp ( X x Y). 
Its inverse, also called canonical (for exp (X x Y) and Corr (!£, <^)) assigns 
to every g <= X x Y its transpose g : 9£ -> <& = (g, 9C, 

If 9C', <&' are structs, = \<&\ = \<&'\, consider the relation which assigns 
to a correspondence R for 9C and ty its transpose R : 3C' -> This relation is 
bijective for Corr (SC,<Sf) and Corr (SC',<&')•, it will be called canonical/or Corr (SC,<W) 
and Corr (T, <&'). 

All above assertions are evident. They express the possibility of transition, in 
a specified sense, from relations to correspondences, etc. 

7 D.5. Convention. We have introduced canonical relations for certain classes 
at various places (see e.g. subsection 5 D). If the classes in question are endowed with 
certain structures, then the correspondence (as a rule, a bijective correspondence) 
obtained will usually be called a canonical correspondence (or mapping, as the case 
may be). 

7 D.6. If SC is a comprisable struct, X = then Corr (6£, 2£) endowed with the 
composition of correspondences (see 7 C.1) is a semi-group. The canonical map-
ping (see 1 D.5, 7 D.4) of Corr (<£, S£) onto exp (X x X) endowed with the com-
position of relations is a bijective homomorphism (hence an isomorphism, see 
8 C.3). 

This follows from the equality gr (R o S) = gr R 0 gr S. 

7 D.7. Definition. If 9C, are comprisable structs, then the set of all mappings 
of 9C into will be denoted by <&). 

7 D.8. LetUP, be comprisable structs, X = |#f|, Y = The relation assigning 
gr / to f e F(âT, <W) is bijective for F(H£, <W) and Yx; its inverse assigns to every 
cp e Yx its transpose <p : 9C <3t. If T , <&' are structs, \T\ = \9C\, = \<&\, 
consider the relation such that f e F(9C, 'W) is assigned to its transpose f : 9C' -+<&'. 
This relation is bijective for F(&, and F(£", <&')•, the relations described above 
will be called canonical for the respective sets. 

This is a complete analogue of 7 D.4, and the canonical relations in question are 
restrictions of those described in 7 D.4. 

7 D.9. Let 9C be a comprisable struct. Then F(9C,$£) is a sub-semi-group of 
the semi-group Corr($",$") (see 7 D.6) and the set of all permuting mappings 
of 3C onto SC is a subgroup of Corr(!%, 9C\ 

We conclude with a somewhat less evident assertion. 

7 D.10. Let ®J, <&' be comprisable structs. Let u e F [ST, 3C), v e F (<8f, <&'). 
Then {/-> i; o/o u} maps <W) into Ffë', <&'). This mapping is (a) injective 
if and only if u is surjective and v is injective, (b) surjective if and only if u is 
injective and v is surjective, (c) bijective if and only if both u and v are bijective. 
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We shall prove assertion (a) only. Clearly, we can suppose that X, 9C', are 
sets, since, by 7 D.4, there is a canonical bijective relation for F(3f, <&) and 
as well as for F(#",<r) and F(|#"|, \<W'\), etc. Now, suppose that E gr u = S£, v is 
one-to-one. If mappings / and g from M) are different, then fx 4= gx for some 
xe%. Since E gr u = X, there exists an element x' e X' such that ux = x. Then 
(/o u) x' 4= (g o u) x' and (v o/o u) x' 4= (v o g o u) x' because v is injective. If 
u is not surjective, choose / , g in F(#T, <&) such that f =¥ g, but / and g coincide on 
E u; then fa u = g 0u, hence v of ou = v o g ou. If u is not injective, let va = vb, 
a 4= b. Let / and g be constant mappings of 9£ into <&, Ef = (a), Eg = (b). Then 
v of = v o g, hence v of 0u = v o g ou. 
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8. A L G E B R A I C SYSTEMS 

The purpose of this section is, first, to state some basic definitions and propositions 
concerning "algebraic systems" in a rather general sense, and secondly, to derive 
some results of a more special kind needed in what follows. 

As a matter of fact, except for mere examples, only few kinds of "algebraic systems" 
occur in this book (semi-groups including groups; semi-rings including rings; modules; 
algebras). 

The concept of an "algebraic struct" presented here is more than sufficient to cover 
all such structs; on the other hand, it is very narrow in comparison with a "general 
algebraic system" as currently defined. The introduction of algebraic structs is not 
necessary, since all definitions can be given separately for each kind of struct actually 
considered. Nevertheless, it is often useful to give certain definitions and propositions 
in a general form which covers all algebraic systems under consideration. 

The second aim indicated above concerns some propositions on homomorphisms, 
congruences and ideals, and some more or less isolated results including theorems 
on the embedding of commutative semi-groups into groups and rings into fields 
which make possible an exact introduction of integers and rational numbers. 

We shall define algebraic structures gradually. First, structures formed from in-
ternal compositions on a class are defined. This makes possible a definition of external 
compositions over a struct (a special case has been considered in Section 6). Some 
of their basic properties are examined. Then we define algebraic structs in the sense 
loosely indicated above. 

It is to be pointed out that, in accordance with the character of this book, questions 
concerning algebraic structs are often only sketched. 

A. EXTERNAL COMPOSITIONS 

8 A.l. We begin with a remark of a general character. As in Section 7, definitions 
are often given for the „comprisable case" only; the reader is invited to carry them 
over to the more general case (i.e. that of possibly non-comprisable objects under the 
limitation described in 7 A.5). Concepts defined for the „comprisable case" will be 
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used, if necessary, in this generalized sense. We recall that the reasons for this mode 
of exposition have been explained in 7 A. 5. 

8 A.2. Definition. Let X be a. set. Every regular multiplet, say a = <a1 ; . . . , a„>, 
of internal compositions on X will be called an internal algebraic structure on X; 

..., an will be called constituents of a. If a is an internal algebraic structure on X, 
then <X , a) will be called an internal algebraic struct. 

As pointed out above, we shall also consider non-comprisable internal algebraic 
structures and structs. For convenience, we recall that, in this sense, internal algebraic 
structures on a class X are, in particular, compositions on X, pairs <a, /J> of com-
positions a and ¡3 on X, triples <a, /?, y> where a, /?, y are compositions on X \ internal 
algebraic structs are (X, a), <X, a, /?>, a, /?, y>, etc., where a, /J, y are com-
positions on X. 

Examples. (A) Semi-groups and semi-rings are internal algebraic structs. — 
(B) <(J, f l , - > i s a non-comprisable internal algebraic structure on the class of all 
sets. — (C) If A is a class, and 0t is the class of all comprisable relations in A (i.e. 
of all sets Q c A x A), then (Ja, C\a, oa) is an internal algebraic struct. 

We are now going to carry over to internal algebraic structures several concepts 
and propositions introduced in Section 6 for compositions. For reasons of con-
venience, this will be done explicitly only for the very special case of a structure a = 
= (a, ¡J.} where a, p are compositions. The reader is invited to formulate the cor-
responding statements for the general case. We point out that we shall occasionally 
use these general statements though the explicit formulations apply only to the 
special case mentioned above. 

No examples will be given here since they may be found in Section 6, and others 
will be given in the subsequent exposition. 

8 A.3. Definition. Let a = <<7, p} be an internal algebraic structure on a class X. 
If Y <=• X and o', p' are restrictions of o, p to compositions on Y (see 6 A.6), then 
<CT', p'y will be called the restriction of a to an algebraic structure on Y and will 
sometimes be denoted by aY. — A class Y will be called stable under a if Y <= X 
and y is stable under both o and p. (see 6 A.7). 

Remark. Clearly, the intersection of any non-void indexed class of sets stable, 
under a is stable under a (cf. 6 A.8). 

8 A.4. Definition. Let a = <cr, /z> be an internal algebraic structure on a class X, 
and let a' = <<r', p'y be an internal algebraic structure on a class X'. A relation q> 
for X and X' is called composition-stable (or simply stable) under a and a or also 
(a, a')-stable if it is a stable relation under a and o' as well as under p and p (i.e. 
if x^y^ x2cpy2 imply ( x 1 o x 2 ) <p [y^'yi), (x^px^ <p (y^'y^. 

If, in addition, q> is single-valued and Dip = X, then we shall say that cp is a homo-
morphism-relation under a and a'. 

If 3C = <X, oc>, 3C' = <.X', ot'>, F = (cp, 3C, %'y and <p = gr F is stable under a 
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and a', then F will be called stable (more explicitly, composition-stable). If <p is 
a homomorphism-relation on 3C (i.e. if, in addition, Dcp = <p is single-valued), 
then we shall say that F is a homomorphism. 

8 A.5. Definition. Let {/?a | a e A} be a family of internal algebraic structures; 
for any a e A, let Pa = <<ra, pa) where <ra, pa are compositions on sets Xa. The 
pair <nirfl, Upa} (more explicitly, <IIcomp{c7fl | a e A}, Ilcomp{pa \ a e ¿ }> ; see 6 E.6) 
will be denoted by ncoinp{/?a | a e A} or by n{/?a} and will be called the product 
(more explicitly, compositional product) of {/?„}. 

Clearly, II{/?fl} is an internal algebraic structure on IIXa. 
Convention. Instead of ncomp{a -*• /? | a e A) (i.e. II/?0 where all /?a are equal 

to an internal algebraic structure ft) we write (iA. Thus, if /? = <(7, p} is an internal 
algebraic structure on X, then pA = (oA, pAy is an internal algebraic structure on XA. 

8 A.6. Definition. If [S£a | a e 4̂} = {<Xa, /?„> | a e A} is a family of internal 
algebraic structs, then <IIZa, n/?0> is called the product of {¿Ca} and denoted by 
N{&A | a e A} or T\9Ea. fIf all 9Ca are equal to a struct 3C, then SEA is written instead 
of n{ar, | A e A } . 

Remark. This definition as well as the preceding one pertains to the "comprisable 
case". For non-comprisable structures and structs, we can of course define the products 
a x a', a) x <X', a'), etc., in a way which may be indicated as follows: if a, a' 
are compositions on classes X, X', we define their compositional pair-product, 
denoted for convenience by a x o', as the composition assigning <x«7y, x'a'y'y 
to the pair « x , x'>, <y, / » . 

8 A.7. We recall that, according to 6 F.1, a relation p is called an external com-
position over a class A acting on a class X, \i Dp = A and, for any a e A and any 
x e X , there is exactly one y eX such that <a, x, yy e p. The reasons for considering 
pairs <p, a), where p is an external composition over a class, have been explained 
in 6 F.4. 

Definition. If m = <p, a), and p is an external composition over a class A acting 
on a class X, then we shall say that m is an external composition over si = <A, a) 
acting on X. 

Let m be an external composition over a struct si acting on X; thus, either m = p, 
si = A (see 6 F.1) or m = <p, a), si = (A, a), the relation p being an external 
composition over the class A. Then si will be called the structured domain of m, 
\si\ (see 7 A.1) will be called the abstract domain of m, p will be called the under-
lying relation of m. 

To distinguish the two cases in question, we shall sometimes say that an external 
composition m is structured if m = <p, a), unstructured otherwise. 

In this section we shall mainly consider external compositions of the form <p, a>, 
a being an internal algebraic structure. Other kinds of structured external com-
positions will be considered e.g. in Section 19. 
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8 A.8. Definition. An external composition over a class or over an internal alge-
braic struct will be called a purely algebraic (or pure) external composition. 

8 A.9. Important examples of structured external compositions over a ring have 
been given in 6 F. We now give two examples of a different kind. — (A) Let M be 
a set. Let B(M) be the set of all bijective mappings of M onto M and let B(M) be 
endowed with the Composition of mappings, denoted by o ; let /z consist of all 
(<p, x, cpx), where cp e B(M), xeM. Then m = (p, o) is an external composition 
on M over the group <B(M), •>, the structured domain of m. — (B) If /z is a com-
position on X, let p* consist of all <x, y, Xfiy} where xeX, y e X, and let p** 
consist of all <x, y, ypxy; then p*, p** are (unstructured) external compositions 
on X over X ,and p* 4= p** unless p is commutative. Now let SE = (X, </i1( p2,..., 
..., n„yy, be an internal algebraic struct. Then, in the above notation, px,..., p„y, 

Hi,..., /¿„>, (p*, Pu M2> •••> AO> etc-> a r e Pu r e external compositions on X 
over 9C. 

8 A.10. We add a definition of a general character. In 8 A.7, we have introduced 
the concept of the structured domain of an external composition. It is useful to 
define the structured domain of a relation for a very general case. 

Definition. Let g be a relation. If R = a> or R = g, then <Dg, a) or Dg, respecti-
vely, will be called the structured domain of R. In other words, if R is a structured 
relation (see 7 A.1), then D|i?| endowed with the structure of R is called the structu-
red domain of R. 

Convention. If it is intended to consider, along with R = a), its structured 
domain a>, we shall sometimes say that R is a domain-structured relation. 

This notion is clearly too general to be reasonably applicable in all situations; e.g. 
there is little sense in considering (A, A, B) as the structured domain of a mapping 
<f,A, B}. However, it is rather useful if, for instance, nets (see 15 B.2) are conside-
red: a net is a pair | a e A}, where A is a set, ^ is a certain order on A; 
the domain of this net is A, its structured domain is the ordered set (A, ^ ). 

8 A.ll. Convention. 1) If m is an external composition on X over s f , m = ¡x 
or m = a>, p. being an unstructured composition, then for every a e and 
x eX, there exists exactly one y such that (a, x, yy e p = |m|. This element y will 
be denoted by amx or by apx. It will be sometimes convenient to call the relation 
assigning amx to <a, x ) the external multiplication associated with m (or with p) 
or simply external p-multiplication. Conversely, let A, X be classes; for any a e A, 
xeX, let the symbol amx denote an element of X. Then the relation consisting of all 
<a, x, amxy, a e A, x e X, is an external composition on X; it will often be denoted 
by m. — 2) As usual, we shall sometimes use the same symbol for an external com-
position m = oCy and its underlying unstructured composition p. — 3) If m is 
a composition on X over si, and B <=. \si\, Y a X, then [B] m [7] will denote the 
class of all bmy, where beB,yeY. Instead of [£] m [ 7], we sometimes simply write BmY. 
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8 A.12. Definition. Let m be an external composition on X over si. If Y c X, 
and a e \si\, yeY=>amyeY, then Y is called absorbing under m; an element 
yeX is called absorbing (under m) if the singleton (y) is absorbing. An element 
e e \si\ is called neutral under m if x e X => emx = x. 

8 A.13. Definition. Let m, n be external compositions on X over si and on Y 
over si, respectively. Let p = |m|, v = |/i| denote the underlying relations of m 
and n. If v is a restriction of p, we shall call n a field-restriction or simply a re-
striction of m. We shall also say, in a more explicit manner, that n is the restric-
tion of m to an external composition on Y; we shall sometimes denote n by mY. 

Remark. Clearly, if m is a composition on X over si, and Y c X, then there 
exists at most one external composition on Y which is a field-restriction of m. In 
order that such a field-restriction exist, it is sufficient and necessary that Y be ab-
sorbing under m; in this case, its underlying relation (which is an unstructured ex-
ternal composition) is equal to \m\ n i\si\ x Y x Y). 

We now introduce a notion which has been considered for a special case (without 
introducing a special name) in 6 F. 

8 A.14. Definition. Let m be an external composition on X over si; put A = \si\. 
Let a be an internal composition on X. 

If am(xoy) = (amx) o(amy) for any a e A, xeX, yeX, then we shall say 
that m is action-distributive with respect to o. 

Let g be a composition on A which is a constituent (see 8 A.2) of the structure 
of m. If m is action-distributive with respect to a and, in addition, (agb) mx = 
= (amx) a(bmx) holds for any a e A, b e A, x e X, then m is said to be g-distributive 
with respect to a. 

Finally, an unstructured action-distributive m will sometimes be simply called 
distributive. 

For instance, if <X, o, p, a, /?> is a module, then <p, a, j9> is a-distributive with 
respect to a. 

8A.15 . Proposition and definition. Let 8ft be a struct and let {ma \ a e A} be 
a family of external compositions over 8ft. Put pa = \ma\, B = \8ft\ and if is not 
a class, put 3ft = <B, /?>. For any a e A, let m„ act on Xa. For any b e B, x = 
= {x„} e UXa, put bpx = {bpaxa} e ILX"„. Then, according to 8A.11 , p denotes 
an external composition (on HXa over B) consisting of all <b, {xa}, {bpaxa}y. 
Let m be equal to p if ma are unstructured, i.e. if 3ft is a class, and let m = /J> 
if St = (B, /?>. 

Then m is an external composition on X over 3$; it is called the compositional 
product, or simply the product of {ma} and it is denoted by IIcomp{/na} or simply 
n{ma}. If all ma are equal to a fixed p, then we denote n{/na} by pA and call it 
a power of p (with exponent .4). 

9—Topological Spaces 
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8 A.16. We have defined the compositional product twice: in 6 E.6 for internal 
compositions, in 8 A.15 for external ones. The question arises whether these defini-
tions overlap, i.e. whether an internal composition can coincide with an external 
one. It turns out that this may happen only in exceptional cases which do not occur 
"in practice". Namely, the following proposition holds: 

The void set 0 is an external composition on 0 over 0 as well as an internal com-
position. If p # 0 is an internal composition on a class X as well as an external 
composition on a class Y over a class A, then, for some y, we have Y = (y), e 
eX, A = X x X, p = (X x X) x (y) x (y). Conversely, if AT is a class, <y, y> e X, 
then p = (X x X) x (y) x (y) is an internal composition on X and an external 
composition on (y) over X x X. 

Indeed, if p 4= 0 is as described above, then p. is a single-valued relation (since 
it is an internal composition). On the other hand, since p is an external composition, 
p[(a)~] e Yr for every a e A (observe that A = Dp is non-empty). Therefore, Y is 
a singleton; put Y = (_y). Clearly, p = A x (y) x (j/), and A = Dp = X x X 
(since p is an internal composition on -XT). In addition, Ep = (<y, _y>), hence <_y, y} e 
e X. In particular, we obtain the following proposition. 

If X is a class and p is an internal composition on X as well as an external composi-
tion on X over a class A, then either X = 0, p = 0, or there exists an element y such 
that <j>, = y, X = (y), A = (y), p = (y). 

This is clear, for, by the above proposition, X = Yis a singleton (j/) and y> e X; 
hence y} = y, A = X x X = (<y, y» = (y), p = X x X x (y) x (y) = (y). 
Of course, this case is clearly "pathological" from the intuitive point of view. It 
is not ruled out by our system of axioms; however, the axiom a 4= <a, b) 4= b could 
be added to this system without affecting the exposition. 

Returning to the question of compositional products, let X be a set and suppose 
that the set A of all a a such that <a, a) e X is non-empty. For every a e A put 
pa = X x X x (a) x (a). Then Hpa in the sense of 8 A.15 is equal to X x X x 
x (Jx) x (JA), whereas Tlpa in the sense of 6 E.6 is equal to (XA x XA) x (a) where a 
is the set of all <a, a, a), a e A. 

Therefore, properly speaking, it would be necessary to modify the above definition 
and to call the product in question e.g. the external compositional product. Never-
theless, we retain the terminology introduced above since "practically" there will 
occur no compositions of the kind just described. 

8 A.17. It seems appropriate to insert a remark of a general character here. We 
have already stressed, at various places, that the axiomatic system, as well as the 
approach to basic mathematical concepts adopted in this book is merely one of 
a multitude of more or less equivalent modes of presenting certain mathematical 
facts in a rigorous form. In addition, within the general framework developed in 
this book, there are many "degrees of freedom". Thus, a certain discrepancy pointed 
out in 8 A.16 (namely the fact that an internal composition can simultaneously be 
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an external one) is by no means inherent in the idea of compositions but can be ruled 
out by adopting a formally different definition. 

Namely, we may define an external composition on X over si as a pair (p, 
where (1) p is a relation satisfying conditions indicated in 6 F.1,i.e. p is what is called, 
according to 8A.6, an unstructured external composition on X over A, (2) si is 
a struct with the underlying class equal to the domain A of p. Then an external com-
position is always a pair, whereas an internal one is a class; therefore, the diffi-
culties described in 8A.16 are ruled out. We have adopted a formally simpler de-
finition for the reason that the cases indicated in 8 A.16 are "practically" irrelevant. 

8 A.18. Definition. Let si be a struct, A = \si\, let m be an external composition 
on X over si, m' an external composition on X' over si. Then a relation <p for X 
and X' will be called composition-stable (or simply stable) under the external 
compositions m and m' or also (m, m')-stable if (amx) cp (amx') whenever a e A, 
xcpx'. 

If, in addition, <p is single-valued and D q> = X, then we shall say that <p is a homo-
morphism-relation under m and m', or an (m, m')-homomorphism-relation. 

Example. Let S be a set, P the set of all permutations of S. Consider the composi-
tion pon S over P consisting of all </>, x, px). Then a relation q> in S is stable under 
p and p if and only if p0(p = (p0p for every p e P. It is easy to prove that if S 
contains at least three elements, then <p = Js is the only (p, /¿)-homomorphism-
relation. 

B. ALGEBRAIC STRUCTURES 

8 B.l. Definition. Let X be a class. Let r be a regular multiplet, r = rt or r = 
= (ru ..., r„>. Suppose that there exists a natural m, 0 ^ m ^ n, such that (a) if 
k = 1, ..., m, then rk is an internal composition on X, (b) if k = m + 1, . . . , n, then 
rk is a purely algebraic (see 8 A.8) external composition of X. Then r is called a purely 
algebraic (or, for short, algebraic) structure on X and < X , r> is called a purely 
algebraic (or, for short, algebraic) struct. Each composition rk is called a constituent 
composition (internal or external) of r. More explicitly, we shall say that r is an 
algebraic structure and <X, »•> is an algebraic struct of the type <m, 0> if m = n, 
« m , n — m), sim + 1, ..., sin) if n > m and sik, k = m + 1, ..., n, is the structured 
domain of rk. 

We do not formulate a definition for the "non-comprisable" case; see 8 A.1. 
Examples of algebraic structs are semi-groups (they are of type <1, 0>), semi-rings 

(of type <2, 0>), modules (which are structs of type <<1, I),si}, si being a ring). 
They have been considered in Section 6, and further examples will follow in this 
section. 

8 B.2. It is conceivable that an algebraic structure r on X admits of two expres-
sions with the properties described above and thus has two types in the sense of 8 B.1. 

9' 
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It is easy to see that, in such a case, these expressions are as follows: r = ..., rp> 
and r = (ru ..., rp-u r'p,..., r'n} where n > p, rp is an external composition of 
the form <r'p, a simple reasoning based on 8 A.16 then shows that either 
X = 0 or X is a singleton. Therefore, we may assert that any algebraic structure 
y on a class X containing more than one element can be expressed uniquely in the 
form indicated in 8 B.1. 

It may also happen that the number m from definition 8 B.1 is not uniquely determ-
ined. Clearly, in such a case some rk is an external as well as an internal composition 
on X; this implies (see 8 A.16) that either X = 0 or X = (z), rk = (z) where z is 
an element such that <z, z> = z. Thus, this last "pathological" case of <z, z) = z 
excepted (cf. 8 A.16), the number m from 8 B.1 is uniquely determined provided 
the underlying set X is not empty. Summing up, we may say that, apart from the ex-
ceptional cases indicated, the expression r = (»-j r„} described in 8 B.1 and the 
type of an algebraic structure r are uniquely determined. 

8 B.3. It is easy to prove the following: Let r be an algebraic structure on X with 
a uniquely determined type (this is true whenever X has more than one element). 
Then r can be expressed in exactly one manner in the form r = <r l5..., rn) described 
in 8 B.1. 

Therefore, the following definition is correct. 
Definition. Let an algebraic structure r = (ru ...,rp} on X possess a uniquely 

determined type, say <m, n> or <<m, n), ...>. We shall call r' = (jru ..., i*m) the 
internal component of r provided m ^ 1; if m = 0, we shall say that r has no in-
ternal component. Similarly, r" = <»*m + 1, ...,rpy will be called the external com-
ponent of r provided m < p; if m = p, we shall say that r has no external com-
ponent. 

We shall sometimes term <X, r') (respectively <X, »•">) the underlying internal 
(iexternal) struct of <Xr 

It follows the from the considerations in 8 B.2, that, with the exception of cases X = 0 
and X = (z), <z, z) = z, an algebraic structure on X always either possesses a uni-
quely determined internal component or has no such component, and the same 
holds for the external component. 

We are going to introduce, for algebraic structures, various concepts defined pre-
viously for compositions. Some of these notions have already been defined for the 
special case of internal algebraic structures (see 8 A.3 —8 A.6). 

8 B.4. Definition. Let r be an algebraic structure on X; let Y <=. X. If r = 
= < r u ..., rpy where rk are internal or external compositions on X, s = ..., sp) 
and, for each k = 1 , . . . , p, sk is the restriction of rk to a composition on Y, then we 
shall say that s is a restriction of r to a structure on 7 o r also a field-restriction of r 
to Y, and we write s = rY. 

Remark. In this definition, as well as in the following statements concerning 
arbitrary algebraic structures in the sense of 8 B.1, we have in mind the "normal" 
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case where the typ; of structure considered is uniquely determined. Nevertheless, 
the definitions and propositions are also valid, if properly interpreted, for the rather 
uninteresting "exceptional" cases (see 8 A.16). 

8 B.5. Definition. Let r be an algebraic structure on let i c l Then Y is called 
stable under r if it is stable under every internal constituent of r, and absorbing 
under every external constituent; Y is called absorbing under r if it is absorbing 
under every constituent of r. 

For instance, in a module Jt = <M, m) there are only two absorbing sets: M 
and 0; every submodule is stable. 

It is clear that the intersection of any indexed class of sets stable (respectively, 
absorbing) under i* is stable (absorbing) under r. 

8 B.6. Lei (X, r ) be an algebraic struct, let Y a X. Then Y is stable under r 
if and only if there exists a field-restriction of r to a structure on Y. 

This follows at once from the assertions in 6 A.7 and 8 A.13 (remark). 

8 B.7. At first sight it seems reasonable to define a substruct of an algebraic 
struct <X, i*> as an algebraic struct of the form <y, ry). As a rule, however, we only 
consider structs satisfying certain conditions (such as stated in the definition of 
a semi-group, a group, a semi-ring, etc.). If {X, r) is such a struct and f c Z is 
stable (i.e. <7, ry> is meaningful), then it can still happen that <7, rY) does not 
satisfy the conditions set up for the kind of structs considered; thus if (X, r ) is a 
group, 0 4= Y <= X, and Y is stable, then < Y, rY} is a sub-semi-group but it need 
not be a subgroup. 

For these reasons, we do not give a general definition of substructs of an algebraic 
struct. The above remarks serve only to indicate a mode of defining substructs. 

8 B.8. Definition. Let \3Ca \ ae A), where ?Ia = (Xa, ra>, be a family of algebraic 
structs. Let all ra be of the same type. Suppose that every ra has an internal or an 
external component (this supposition excludes, by 8 B. 3, only the cases X = 0, 
and X = (z), <z, z) = z). 

If ra = \ ..., r<n)>, then we put n{ra} = <naf<1), ..., IIai-<n)> (for the definition 
of n y ^ see 6 E.6 if r™ are internal, 8 A.15 if rlk) are external), n{X a} = <ILX"a, Ura}. 
The structure n{»-a} denoted also more explicitly by ITcomp {ra} is called the car-
tesian product of{ra}, and H{Xa} is called the cartesian product of As usual, 
we write rA instead of Tl{ra} if all ra are equal to r, and similarly for 3CA. 

Clearly, this definition includes definitions 8 A.5 and 8 A.6 and also, as a very 
special case, definition 6 F.15. 

We conclude this subsection with the definition of a special kind of algebraic 
struct which includes all algebraic structs actually considered here and admits 
a simple description of homomorphisms. 

8 B.9. Definition. An algebraic struct 3C = (X, r>, as well as its structure r, is 
called module-like provided the following holds: if r = r1 or r = <r1; ..., »•„>, rk 
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being an internal (for 1 < k ^ m) or external (for m < k g n) composition on X, 
then (1) r l is an associative internal composition, (2) every internal rk, k > 1, is 
distributive with respect to ru and every external rk, k > 1, is action-distributive 
(see 8 A.14) with respect to r1. The composition ri will be sometimes called the 
basic constituent of r. For convenience we shall sometimes refer to the compositions 
rk, k > 1, as the multiplicative constituents of r. 

Stated in a more intuitive way, a module-like algebraic struct is obtained by endow-
ing a semi-group <X, <r> with arbitrary internal and external compositions, distributive 
or action-distributive with respect to o. 

Observe that a module-like struct may be of the form say X = <X, a, u). In such 
a case, a is a basic as well as a multiplicative constituent of the structure of X. An 
example: 3C = <S, U> U>> S being the class of all sets. 

Examples. A) Clearly, semi-groups, semi-rings and modules (as well as "right 
modules", see 6 F.5, example (C)) are module-like structs. — B) Let v consist of all 

X, such that X is a set, Q is a comprisable relation. Then the structure 
<(Ji I!, v> is module-like, whereas <fi, (J, v> is not. 

8 B.10. I f < X , r> is module-like and Y c X is stable under r, then <7, ry> is mo-
dule-like. — This is clear. 

As an example of module-like structs, we shall now introduce algebras over rings. 

8 B.ll. Definition. Let <a, /?> be a ring structure on a class A; put si = (A, a, /?>; 
let <«7, p) be a ring structure on a class X. Let r = <g, a, /?> be an external compo-
sition on X over si such that (ff,/1) is a module structure on X over si. If, in addition, 
ar (xpy) = (arx) py = xp (ary) for any a e A, xeX, y e X, then we shall say that 
<<7, p, f> = <<7, p, g, a, py is an algebra structure on X over si; the struct < X , <7, p, r> 
will be called an algebra over si provided X is comprisable non-void and si is a ring. 

In a more intuitive way, we may say that an algebra is a ring endowed with an 
external composition satisfying certain conditions. 

Examples. (A) Let si = <A, a, /?> be a ring. Let /?* consist of all <a, x, aPx) 
where a e A, x e A. Then (A, a, /?, p*, a, p) is an algebra over si. More intuitively, 
this means that with every ring si there is associated an algebra obtained by endowing 
si with a natural external composition over A itself. — (B) Let si = (A, +, .) 
denote an arbitrary ring. Let P be a set. Denote by x the external composition on Ap 

over si such that a x {bp} = {a . bp). Then (Ap, ap, pp, x, a, /?> is an algebra over si. 
The algebra obtained by transferring (see 8 C.4) the structure just described from Ap 

to F(P, si) by means of the canonical relation is usually called the algebra of func-
tions on P with values in si. 

C. HO MO MO RPHISMS. CONGRUENCES 

In this subsection we consider composition-stable correspondences, in particular 
homomorphisms and congruences, i.e. composition-stable equivalences. 
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8C.1. Definition. Let 9C = (X, r>, <& = <Y, s> be algebraic structs. Let cp be 
a relation for X and Y. If r = (rL, ...,»*„> and s = <sx, ..., s„) are of the same 
type t and cp is stable under rk and sk for each k = 1, ..., n, then we shall say that 
cp is composition-stable (or simply stable) of type t under r and s or that cp is 
(r, s)-stable (the words "of type t" are usually omitted in this expression and in 
other similar expressions introduced here); the correspondence <̂ cp,SC,<Wy will be 
called composition-stable. 

If, in addition, cp is single-valued and Dcp = X, then <p will be called a homo-
morphism-relation. 

A mapping ((p,SE,(3/y which is composition-stable will be called a homomor-
phism (of 3C into a homomorphism of the form <<p, 3C, 3i") will be called an 
endomorphism (of A homomorphism <<p, SC, the inverse of which is also 
a homomorphism will be called an isomorphism; an isomorphism of the form 
<<p, 3C, 2£) will be called an automorphism. 

Let 3C, <W be algebraic structs of the same type. If there exists an isomorphism of 3C 
onto <&, then we shall say that 9C and ̂  are isomorphic. If there exists a homomor-
phism of 3C onto ty, we shall say that ^ is a homomorphic image of 9£. 

Observe that an injective homomorphism is not an isomorphism if it is not sur-
jective. It is true (see 8 C.3) but not quite trivial, that a bijective homomorphism 
is an isomorphism. 

Examples. (A) If A is a finite set, S? = exp A, then every homomorphism-
relation <p under <U, fl)y and <f), U)y ¡s of the form [X B — U Bx} where 

xeX 
B c A and {Bx | x e 4̂} is a disjoint family of subsets of B. — (B) Consider com-
position-stable correspondences <<¡9, <N, + ) , <N, + » . Clearly, every homomor-
phism-relation cp is of the form {x -»• k . x}, k fixed. On the other hand, it is difficult 
to describe all composition-stable relations <p. Certain relations <p of this kind 
can be obtained as follows: let M <= N be an arbitrary non-void set; let <0,0) e <p 
and, for m e N, let <m, x> e ip if and only if x is expressible as a sum of m numbers 
from M. 

8 C.2. Let Kt denote the class of all comprisable composition-stable correspond-
ences of type t. If F e Kt, then F'1 e Kt; if F e Kt, Ge Kt and D*F = E*G, then 
FcGeKt. 

8 C.3. Let 9C = <X, r>, <& = <Y, i> be algebraic structs. If F = <p : 9C <& 
is a bijective homomorphism, then it is an isomorphism; i f , in addition, <p = J, 
then 9C and coincide. 

Proof. By 8 C.2, F~l is composition-stable; since F is bijective, F'1 is a mapping; 
thus F~1 is a homomorphism, which proves the first assertion. If, in addition, 
cp = J, then X = Y. If e.g. r, s are of type <1, 0), i.e. if r, s are internal compositions, 
then <p(xrx') = (<px) s (cpx'), that is xrx = xsx' for any x e X, x' e X and therefore 
r = s. The assertion for the general case follows immediately. 
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8 C.4. Let 3C be an algebraic struct and let cp be a bijective relation for and 
a class Y. Then there exists exactly one algebraic structure s on Y such that 
<<p, SC, <Y, $>> is an isomorphism. 

Proof . l f & = < - X » , r= <»-!,...,»•„>, put (1) ysky' = q> ((<p~1 y) rk (<p~1 y')) if rk 

is internal, (2) asky = <p (a rk((p~1y))ifrk is external. It is easy to show that s = <Sj, ...,s„> 
is an algebraic structure for which (p : 3C -> < Y, s} is an isomorphism. The uniqueness 
of s follows from 8 C.3 since if s' is another structure with the property in question, 
then J : <Y, s> -» < Y, s'> is an isomorphism. 

Convention. We shall say that s is obtained by transferring r to Y by means 
of cp. 

8 C.5. Convention. Let 3C be a comprisable struct and let <%f be a comprisable 
algebraic struct; let X = \SC\,<& = <Y, s>. The algebraic structure on F(3T,<3/) obtained 
by transferring s by means of the canonical relation for Yx and F(3£, <3f) (see 7 D.8) 
will be denoted by sx or s3', occasionally simply by s (cf. 6 E.6, remark 1). The struct 
<F(1, <&), sx} will often be denoted simply by F(3T, <3/). 

8 C.6. Definition. If X and <& are algebraic structs of the same type t, then the set 
of all homomorphisms h = h :2£ - » w i l l be denoted by Horn (X, <&). 

In general, there is no reasonable internal composition on Horn (3C, <&). On the 
other hand, there are two natural external compositions, and if & = <$/, there is 
a natural internal composition. 

If 3C is an algebraic struct (of type t), then Horn ( 1 , X) is a semi-group under 
the composition of mappings. 

This follows from 6 E.5 and 8 C.2. 
8 C.7. If 3C, <%) are algebraic structs of the same type, we shall often consider 

two external compositions on Horn (3C, W). One of these is over Horn X); it 
(respectively, its underlying unstructured composition) consists of all g, g o h), 
h e Horn ($C, SC), g e Horn (3C, <&). The other is over Horn (W, •&); it (respectively 
its underlying composition) consists of all </, g,fog} where / e Horn {®f, <3/), 
g e Horn (3C, <&). 

8 C.8. In special cases, Horn ( f , <&) is stable under the structure of F(#", 
(see 8 C.5) and therefore may be considered as an algebraic struct. One such case 
is described below. 

Let 3C = <X, r>, <& = < Y, s> be structs of the same type t, t = <1, 0> or t = 
= 4>> •••)• Suppose that the internal constituent o of s is associative and 
commutative and every external constituent of s is action-distributive with respect 
to o. Then Horn (3C, <&) is a stable subset of F{3C, and the field-restriction of 

to Horn (3C, is an algebraic structure on Horn (X, 

Proof. It is sufficient to show that, for any homomorphism-relations cp and \j/ 
under r and s, y = {x -»(<px) a (1px)} is also a homomorphism-relation under r 
and s. For convenience, we indicate the proof only for the special case r = p}, 
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s = <c7, v) (Q, a are internal compositions, n and v are over si); instead of yoy', 
y + y is written. 

Now, y(xgx') = (<px + <px') + ({¡/x + ipx') and therefore, by the associativity and 
the commutativity of a, y(xex') = ((px + ifx) + (<px + \j/x') = yx + yx'. If a e \s/\, 
then y(apx) = av(cpx) + av(if/x) and therefore, by the action-distributivity of v, 
y (apx) = av(<px + ij/x) = av(yx). 

Remarks, l) The suppositions from the above proposition are satisfied e.g. 
if is a commutative semi-group or a semi-ring or a module. — 2) Under the sup-
positions indicated above, the external compositions described in 8 C.7 are action-
distributive with respect to ox. - 3) If, in addition, 9C = , then Horn (3C, 9C) 
endowed with <ax, o) is a semi-ring (a ring, if a is a group structure). It will be 
denoted simply by Hom($T, HE). In this connection, see 6 E.13. 

8 C.9. Let 3C = <X, r } , HJ = <7, s> be algebraic structs; let F be a homomor-
phism of3C into . Then is stable under s; <F[X], s'), where s' is the restriction 
of s to a structure on is an algebraic struct, and F : 3C {/^[-Y], s'> is a sur-
jective homomorphism. 

Proof. If a is an internal constituent of s, y e y' e i 7 ^ ] , then let g be the 
corresponding constituent of r. Choose xeX, x' eX such that y = Fx, y' = Fx'. 
Clearly yoy' = <p(xgx'). Thus it is proved that F ^ ] is stable under a. In a similar 
way it can be proved that Fpf] is stable under external constituent compositions 
of s. The rest of the proof is left to the reader. 

Convention. In accordance with 7 B.3, s') will be called the image of 3C 
under F; it will often be denoted by 

Remark. There are many useful properties such that if r has the property in 
question, then s', as described above, has this property as well. For example if r is 
an associative (or commutative) composition, then s' is associative (or commutative). 

We are going to state a proposition concerning a connection between homomor-
phisms and certain equivalences. 

8 C.10. Definition. Let 9C = (X, r) be an algebraic struct. Let X be an equivalence 
on 3C (that is, on I ) . If X is (r, » -̂stable, then it will be called a congruence on 9C 
or an r-congruence. 

Examples. (A) If k is a natural number and X is the least equivalence contain-
ing all <x, x + k}, then A is a congruence on N. — (B) Let k e N; let X consist 
of all <x, y) e N x N such that x ^ k, y ^ k or x = y; then X is a congruence 
on N. — (C) Let <G, cr> be a commutative semi-group; denote xoy by x . y. Put xXy 
if (and only if) there are natural m, n and u, v from G such that x . u = ym, y . v = x". 
Then A is a congruence on G. - (D) If X, Yare sets, put XXY if (and only if) X + Y 
is finite. Then A is a (J-congruence as well as a PJ-congruence and a <U, (^-con-
gruence. 
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8 C . l l . Theorem. Let 3C = (X, r> be an algebraic struct (of type t). Let F be 
a mapping of 3C into a class Y. Then there is at most one algebraic structure s 
(of typet) on such that F : 3C -* < F [ X ] , s> is a homomorphism. Such a struc-
ture exists if and only if the graph ofF-1 o F, that is the equivalence {x x' | Fx = 
= Fx'}, is a congruence on X. 

Proof. Suppose that sh i = 1,2, are structures such that the mapping Ft equal 
to Fi'.SC -* <iri[A'], Jj) is a homomorphism, i = 1,2. Then F t o F J 1 is equal to 
J: <F[X], i2> <F[X], st) and, by 8 C.2, composition-stable. Therefore, by 8 C.3, 
Si = s2. 

Now suppose that such a structure s exists. Then by 8 C.2, F _ 1 o F is composition-
stable, hence its graph, being an equivalence, is a congruence. On the other hand, 
let {x x' | Fx = Fx'} be a congruence. Let Q be an arbitrary internal constituent 
composition of r. If, for k = 1, 2, xk e X, x'keX, Fxk = Fx'k, then, by definition, 
F(xlgx1) = F(X'1QX'2). Therefore if we put, for every y s F[X], y' eF[X~\, ygy' = 
= F(xgx') where y = Fx, y' = Fx', we obtain an internal composition g on F[X] 
such that {x ->• Fx} is a homomorphism-relation under g and g. The proof is com-
pleted by considering an arbitrary external constituent of r. 

8 C.12. Definition. Let 3C = (X, r ) be an algebraic struct, let Y be a class and let 
/ be a relation (or a correspondence) such that / : 9£ Y is a mapping which 
satisfies conditions indicated in 8C.11 (i.e. the graph o f / - 1 of is a congruence 
on X). Then the uniquely determined structure s such that / : 3C -> < Y, s} is a homo-
morphism will be denoted by r\f and </[X], s) will be denoted by 9C\f. The struct 
9C\f will occasionally be called the quotient-struct (e.g. the quotient-semi-group, the 
quotient-group etc.) of 2£ under /, and similarly for the quotient-structure r\f of r 
under f . 

Convention. If A is a congruence on an algebraic struct 3C = (X, r>, then the 
symbol S£jX will be used, in general, to denote any SCjf where / is such that xXx' o 
o f x = fx'. In particular, if the fibres of X are comprisable, then SC\X denotes, as 
a rule, the struct 3C\g where g = {x -» A[(x)]}. 

Examples. (A) If ke N and fx = k. x, then <N, + > / / is isomorphic with 
<N, + } provided k > 0. — (B) Let G = E[n | n e N, n ^ 1}; let <r be a composition 
on G, xoy = x . y. Consider the congruence X described in 8 C.10, example (C). 
Then, by the above convention, we may write <G, <r>/A = (K, U> where K is the 
collection of all finite sets of prime numbers. 

8 C.13. Theorem. Let 3C = Qi, r>, <W = i ) be algebraic structs of the same 
type. Let F be a homomorphism of 3C into <®. 

Then %\F and F[X] coincide, F is the composite ofF : X -> SCjF and J : %jF <& 
(in symbols, F = (J : SE\F ->&)<> (F -* &/F)); the mapping F : X -> 3C\F is 
a surjective homomorphism, J : XjF -* <& is an injective homomorphism. 
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If% is an algebraic struct, H e Horn (SE, 2£), G e Horn <&), F = G „ H, H is 
surjective and G is injective, then there exists exactly one isomorphism <P of SCjF 
onto & such that H = $ 0 (F : SE SE/F). 

Proof. The first assertion follows at once from the definition of SE/F and F\_SE~\ 
and from 8 C.9, 8 C.11. To prove the second, it is sufficient to put & = H o F_1. 

Remark. The theorem may be stated in a more intuitive way as follows: every 
homomorphism can be expressed, in an essentially unique manner, as the com-
posite of a surjective homomorphism and an injective one. 

8 C.14. Let be algebraic structs, Fe H o m ( f , ^ ) . If X is a congruence 
on <&, then F~1oXoF is a congruence on HE. 

The proof is left to the reader. 
We conclude this subsection with a proposition on the congruence generated 

by a given relation. 

8 C.15. Let HE be an algebraic struct. If [Xa | a e A} is an indexed class of con-
gruences on 2E, then f)Xa is a congruence on HE. 

The straightforward proof may be omitted. 
8 C.16. Let SE be an algebraic struct. Let K be a relation in SE (i.e. in \2E\). Then 

there exists a smallest congruence on SE containing K; more explicitly, there exists 
a uniquely determined congruence X on SE such that (1) K C X, (2) if X' is a con-
gruence on 3E, K <=• X', then X c X'. 

Proof. Clearly, X x X, where X = |$f|, is a congruence on HE containing K. 
Now let X denote the class of all <x, YY sX x X such that <x, y) E G whenever Q 
is a congruence on 9C, K <=• Q. It is easy to see that A is a congruence possessing 
the required properties. 

D. IDEALS 

In many cases, it is important to investigate a special type of homomorphism 
and congruence, namely those "generated", in a specific sense, by a subset of the 
struct in question. 

We shall limit ourselves to module-like structs (see 8 B.9). First we consider 
inverse images of zero. 

8 D.l. Definition. Let HE = (X, »•> be a module-like struct (this means that either 
r = q is an associative internal composition or r = (q, ...) where g is an associative 
internal composition and the other constituents of r are distributive, respectively 
action-distributive with respect to g). If an element o e X is neutral under g and 
absorbing under each of the remaining constituents of r, then it is termed a zero 
of the module-like struct 9C. 

Clearly, the zero of a module is a zero in the above sense. 
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8 D.2. Let X, be module-like structs of the same type; let X = (X., r>, and 
denote by g the basic constituent of r. Let ty possess a zero, denoted by 0. Let F e 
e Horn ( X , ty) and denote by T the inverse image of 0 under F. 

Then the following conditions are satisfied: (1) for any t e T, (a) xgt e To xeT, 
(b) tgy e To y e T, (c) xgtgy e T o xgy e T; (2) T is absorbing under every 
multiplicative constituent of r. 

Proof. Let ^ = <7, s) and denote by a the basic constituent of s. For any t e T, 
we have Ft = 0; therefore, F(xgt) = FxoFt = Fx from which assertion (a) follows, 
and similarly for (b) and (c). 

Now let g' be an internal constituent of r distinct from g, and let a' be the corres-
ponding constituent of s. Then, for any x e X, t e T, we have F(xg't) = (Fx) o'(Ft) = 
= (Fx) <x'0 = 0, F(tg'x) = 0 a'F(x) = 0; thus, T is absorbing under g. Similarly, 
it may be shown that Tis absorbing under every external constituent of r. 

8 D.3. It turns out (see 8 D.15) that, for module-like structs, the above conditions 
(1), (2) are also sufficient for a non-empty subset T of a module-like struct X to be 
the inverse image of zero under an appropriate homomorphism. Therefore it is 
useful to consider sets satisfying these conditions; they will be called ideals here, 
although in various cases they bear a different name (e.g. normal or invariant sub-
groups if X is a group). We now state the definition explicitly. 

8 D.4. Definition. Let X = <X, r> be a module-like struct; let g be the basic 
constituent of r. A non-void class T <= X is called an ideal of X (or an ideal under r, 
or simply an r-ideal) if 

(1) for any t e T the following holds: (a) xgt e To x e T, (b) tgy e To yeT, 
(c) xgtgy e To xgy e T; 

(2) T is absorbing under every multiplicative constituent of r. 
Convention. Let i denote the smallest congruence on 3C containing T x T. 

Then SCjT is written instead of SCfx. 
Before proceeding to general propositions on ideals, we shall consider ideals 

in some special cases. 

8 D.5. Let 3C be an additive class of sets. A non-void class <= 9E is an \Jp-ideal 
if and only if it is additive and hereditary (i.e. if it contains, with any T, each 
set X eX such that X <= T). 

Proof. There is only one composition, namely (J, and this composition is com-
mutative. Hence, a class of sets is an ideal if and only if, for any Te ST, and any 
set X e St', Xe3T implies X u Te F and X u T e / implies X e . From this 
the assertion follows at once. 

8 D.6. Let 3C be a multiplicative class of sets. A non-void class <= X is an 
0%-ideal (in other words an ideal of (9C, f)>) if and only if it is multiplicative and 
Te T , X e X, T c= X imply Xe$~. 
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Remark. If HE = exp A, A being a set, then an fl^-ideal will be called a filter 
on A; see Section 12. 

8 D.7. Let HE = <X, »•> be a module-like struct; let g be the basic constituent of r. 
Let TczX be non-empty. If HE has a zero, then T is an ideal of HE if and only if it is 
absorbing under every multiplicative constituent of r, and, for any t e T, xgtgy e 
e To xgy e T. If g is commutative, then T is an ideal if and only if it is stable 
under g, absorbing under every multiplicative constituent of r, and te T, xgte T 
implies xeT.If g is a group structure, then Tis an ideal if and only ifTis absorbing 
under every multiplicative constituent and stable under g, teT=>leT, and 
x e X, teT=> xgtgx e T, where, for any z e X, z denotes the inverse of z under g. 

Proof. The first two assertions being almost evident, we shall prove the third. 
Clearly, the condition is satisfied if T is an ideal. Let the condition be fulfilled. If 
xgy e T, and t e T, we have xgtgx e T, (xgtgx) g (xgy) e T, hence xgtgy e T; therefore, 
if xgtgy e T, t e T, then xgtg(tgy) e T, xgy e T. This proves the assertion. 

8 D.8. It follows at once from 8 D.7 that (1) ideals (in the sense of 8 D.4) of a group 
coincide with its invariant (normal) subgroups in the sense of the current definition; 
(2) ideals (in the sinse of 8 D.4) of a ring coincide with its two-sided ideals in the 
current sense. — Observe, however, that ideals of a semi-group <G, <r> are, in general, 
different from its ideals in the sense frequently met in the literature; the latter are ter-
med absorbing sets here. 

8 D.9. If HE is a module-like struct with zero 0, then (0) is an ideal and 0 belongs 
to every ideal. 

Convention. Observe that, for any module-like struct HE, is an ideal. Ideals 
distinct from \HE\ and (0) will occasionally be called proper ideals of HE. 

8 D.10. The intersection of a family of ideals is either an ideal or void. More 
precisely, if HE is a module-like struct, {Ta | a e A] is a family of ideals of HE, then 
either C\Ta = 0, or C)Ta is an ideal of HE. 

It follows from 8 B.5 that ()Ta satisfies (2) from 8 D.2; condition (1) from 8 D.2 
is verified in a straightforward manner: e.g. if t e f)Ta, xgt e f]Ta, then, for any a, 
t e Ta, and xgt e Ta, hence x e Ta; thus, x e f)Ta. 

8 D.1I. Theorem. Let HE = < X , r ) be a module-like struct. If Y <= X, 7 * 0 , 
then there exists a smallest ideal of HE containing Y (more precisely: there exists an 
ideal Tof Hi such that Y c: Tand T c: V whenever Vis an ideal of HE, 7 c V). 

Proof. Let Tdenote the class of all t e X such that t e Kfor any ideal Fof HE such 
that V ZD 7. It is easy to verify that T is an ideal (if X is comprisable, we may use 
8 D.10). Clearly, Tis the smallest ideal containing 7. 

8 D.12. Definition. Let HE = r> be a module-like struct. If 7 <= X and T 
is the smallest ideal of HE containing 7, then we shall say that 7 generates T as an 
ideal of HE or that 7is a generating class for Tas an ideal of HE. 
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Remark. The void set generates the intersection of all ideals, provided this lat-
ter is not empty (hence, it generates (0) if 0 is the zero of SC); otherwise, it generates 
no ideals. 

8 D.13. Before proving the main theorem announced in 8 D.3, some lemmas are 
given concerning congruences. 

Let SC = (X, r) be an algebraic struct; let X be a symmetric relation on X; let 
the following condition be satisfied: 

(S) if g is an internal constituent of r, then, for any elements a, b, c of X, bXc 
implies (agb) A (age), (bga) X(cga); if an external composition g over si is a consti-
tuent of r, then, for any a e \si\, b eX, c eX, bXc implies (agb) A (age). 

Then the smallest equivalence containing A is a congruence on SC. 

Proof. Put 1 = A KJ )x. Denote the equivalence in question by v. We are to prove 
that v is an -̂congruence, i.e. a g-congruence for each constituent g of r. We shall 
give the proof for an internal g only; the "external" case is quite analogous. — 
Let xvy, x'vy'. Then there exist (see 3 F.4) sequences {xk}k = 0, {x£}£=0, such that 
x0 = x, xp = y, x'0 = x , x'q = y', xkXxk+1, x'kXx'k+1; clearly, we may suppose that 
p = q. Then (Xo0XQ) Z(x0g'x 1), (x0gxi) ¿(xjgxi),..., (xp_ igx'p) X(xpgx'p), from which 
(x0ex'0) v (XPQX'P) follows directly. 

8 D.14. Let SC = < X , r> be a module-like struct, let g0 be the basic constituent 
of r. Let A be a symmetric relation on X satisfying condition (S) from 8 D.13 for 
each multiplicative constituent g of r. Let A* consist of all <ag0xg0b, ag0yg0by 
where a, b, x, y are elements of X and xXy. Then A* is a symmetric relation 
satisfying condition (S) for each constituent g (including g0) of r. 

This follows at once from the distributivity of the multiplicative constituents 
with respect to g0. 

Observe that l e i * does not necessarily hold. 
We are now ready to prove the main theorem on ideals. The decisive step is con-

tained in the following proposition. 
8 D.15. Let SC = < X , r> be a module-like struct with zero and let T <=• X be 

an ideal; let v be the smallest congruence containing T x T. Then T is a fibre 
of v and there exists a homomorphism F of SC onto a module-like struct <& such 
that T is the inverse image of zero. 

Proof. Denote the basic constituent of r by g0. Put A = (T x T) u \x- From the 
properties of ideals it readily follows that A satisfies condition (S) from 8 D.13 for each 
multiplicative constituent g of r. Now let A* be the relation described in 8 D.14; 
since X contains a zero, clearly A c: A*. Denote by v the smallest equivalence contain-
ing A*. By 8 D.13, v is a congruence; it is easy to see that it is the smallest one contain-
ing A. Evidently, t1vt2 for any t1 e T, t2e T. Now let t e T, u e X, t 4= u, uX*t; then 
there exist a, b, x, y such that u = ag0xg0b, t = ag0yg0b, xXy, that is x e T, y e T. 
From the properties of T, we have ag0b e T, co0xg0b e T. Thus teT,ueX, uX*t implies 
u e T. Now let teT, we X, tvu. Since v is the smallest equivalence containing A* 
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there exist, by 3 F.4, ukeX such that u0 = t, up = u, ukX*uk+l. From this it follows 
at once that ueT. This proves the assertion on v. The existence of an (essentially 
unique) homomorphism with the required properties follows from 8 C.11. 

8 D.16. Let SE = <X, r> be a module-like struct. If o is an element, o £ X, then 
clearly we get a module-like struct SE' = (X', r') possessing a zero, if every consti-
tuent gk of r is extended to a composition g'k on X u (o) in such a way that, for the 
basic constituent g0, og'0x = xg'0o = x for every x e X u (o), for every multiplicative 
internal constituent gk, og'kx = xg'ko = o for every x e X u (o), and similarly for an 
external gk. If Tis an ideal of SE, then evidently T u (o) is an ideal of SE'. 

8 D.17. Theorem. Let SE = <X, i*> be a module-like struct. In order that there 
exist a homomorphism F of SE onto a (module-like) struct <3/ with zero 0 such that T 
is the inverse image of 0 it is necessary and sufficient that Tbe an ideal ofSE. 

Proof. Necessity: 8 D.2. Sufficiency: 8 D.15, 8 D.16; in the "exceptional case" 
that X is the universal class, we may go over to an appropriate isomorphic struct. 

8 D.18. Let HE be a module-like struct. Let T be a monotone collection of ideals 
of SE. Then U^" 15 an ideal. (In other words, the class of all comprisable ideals 
of SE is monotonically additive.) 

Proof. The conditions stated in 8 D.3 are to be verified. Put T* = UT. Write ab 
instead of agb where g is the basic constituent of r. Let t e T*; let aeX, b eX, 
at b e T*. Then there are ideals Tu Tz belonging to T such that teTu a tb eT2. 
Since T is monotone, there is an ideal 7" e T such that Ti cz T', T2 c T'. Then, 
T' being an ideal, we get ab e T'. Therefore ab e T*, and thus condition (l c) 
from 8 D.4 is fulfilled. The remaining parts of the proof are quite similar and there-
fore left to the reader. 

8 D.19. Definition. An ideal M of a module-like struct SE is called maximal 
if it is distinct from \2E\ and every ideal Mt => M is equal either to \SE\ or to M. 

Examples. (A) In <N, + ) , the maximal ideals are precisely those consisting of 
all n . p, n e N, where p is a fixed prime number. — (B) In <N, . ) e.g. the following 
ideal M is maximal: M consists of all Ak. n where fc e N, n is odd. 

8 D.20. Theorem. Let X be a set and let SE = <X, r> be a module-like struct. 
Let X be generated as an ideal by a finite set. Then, for any ideal T of SE distinct 
from X, there exists a maximal ideal M => T. 

Proof. Denote by T the collection of all ideals of SE distinct from X. Let S cz T 
be a monotone collection. By 8 D.16, S0 = (JS is an ideal of SE. Suppose that 
S0 = X. Then, denoting by K a finite set which generates X as an ideal (see 8 D.12), 
we have K c (JS and therefore K c S for some ideal S e S. This implies S = X 
which is a contradiction. We have proved that T is monotonically additive. The 
assertion of the theorem follows by 4 C.3. 

Remark. Clearly, the suppositions of the theorem are fulfilled e.g. if SE is a unital 
ring or if SE = <exp A, n>, A being a set. 
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E. EMBEDDING INTO GROUPS 

In this and the following subsection we shall consider two related questions: 
under what conditions is it possible to embed a semi-group into a group or to embed 
a ring into a field, i.e. a ring every non-zero element of which is invertible under 
multiplication. We shall give an answer for the commutative case. Based on the results 
obtained, integers and rational numbers are introduced. This could be done, if 
necessary, immediately after the introduction of natural numbers in Section 3, but 
it seems natural to consider these topics in a wider context. 

8 E . l . Theorem. Let = <H, <r> be a commutative semi-group. Then there 
exists a commutative group & and a homomorphism cp of ¿if into 'S with the follow-
ing property: if is a commutative group and ij/ is a homomorphism of into Cft, 
then there exists exactly one X ) such that \j/ = x° <P-

The group 'S and the homomorphism (p are essentially unique: if and <p' 
possess the property in question, then there is a isomomorphism f of 10 onto'S' such 
that cp' = f o cp. 

The graph of cp'1
 0 cp is uniquely determined and consists of all <x, such that 

xau = you for some u. The set <?[#] is a generating set for <§ as a group. 

Proof. We shall write x + y instead of xoy. Consider the semi-group ¿C x ¿C 
(see 8 A.6). If <x, y>, <x', y') belong to H x H put <x, y> X <x', y') whenever 
x + y' + u = y + x' + u for some u e H. It is easy to show that A is a congruence 
on / x For any <x, y> e H x H, let v<x, y> denote the fibre A[<x, >>>] of 
X at <x, y>; clearly, v_1 o v = X. Put & = (j? x let the composition on ^ 
still be denoted by + . Evidently, ^ is a commutative semi-group, v<x, x) with 
arbitrary x e H is neutral for e§. If £ e choose <x, y) e clearly v<y, x> is the 
inverse of £ in <$. 

If x e H, then <x + u, u> X <x + v, v} for any u, v from H. Therefore we may 
put, for any xeH, cp*x = v<x + u, u) where u e H is arbitrary. It is easy to prove 
that (p = <<¡9*, Jif, <&} is a homomorphism. 

Let ij/ be a homomorphism of into a commutative group Jf = <K, T>; for 
convenience we write a + b instead of axb, a — b instead of axE where B is the in-
verse of b under x. Clearly, if <x, X <x', y'}, then i/oc — ipy = ipx' — ij/y'~, now 
let x be the mapping of into which assigns to an element £ e the element 
\j/x — \j/y, where x, y are such that v<x, y> = It is easy to prove that x is a homo-
morphism; clearly, cp o x = î . It is easy to see that x is uniquely determined. 

Assertions concerning the existence and the uniqueness of X easily imply the asser-
tion on the essential uniqueness of 0 and (p. In its turn, this assertion implies, since 
(/o <p)-1 o/o (p = (p~l o cp, that the graph of cp'1 o cp is uniquely determined. 
With cp as described above, we clearly have cp~1 o (p = X. 

Finally, if £ e e§, £ = v<x, y), then (py + £ = v<y + u, u) + v<x, y) = 
= v<x + y + u, y + u) = <px. This proves that ^ is generated by <p[ii]. 
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8 E.2. Theorem. Let tff = <H, a> be a commutative semi-group. Then ¿P admits 
of an injective homomorphism in a group if and only if every xe H is virtually 
invertible (see 6 B.11). 

Proof. Let <p be an injective homomorphism of J f into a group <G, a"). Let 
x, u, v be elements of H, u 4= v. Then, denoting by x the inverse of x under a', 
we have xa'(xau) = «#=(; = xa'(xav) which proves xou 4= xav. 

If the condition is fulfilled, apply 8 E.1. By 8 E.1, the graph of <p_1 o cp consists of 
<x, such that xou = you for some u. Since every u e H is virtually invertible, 
xou = you => x = y. Thus gr (<p-1 o cp) consists of all <x, x), xe H, and there-
fore <p is injective. This proves the theorem. 

Remarks, l) It is easy to see that 8 E.1 and 8 E.2 remain true, with obvious 
changes, if we suppose that a is a commutative semi-group structure on a class 
(possibly non-comprisable). — 2) Theorem 8 E.1 and its proof describe, in a formal 
manner and for a rather general situation, the well known device of considering 
"formal differences" x — y of elements of a commutative semi-group. 

8 E.3. Every commutative semi-group = <H, a} such that every xe H is 
virtually invertible, is a sub-semi-group of a commutative group = <G, cr') such 
that for every £ 6 G there exist x, y from H with xo'l; = y. 

This follows at once from 8 E.2. 
8 E.4. We are now ready to introduce integers as elements of a group into which 

<N, + ) is embedded. This can be done in various ways. Here we choose an axiomatic 
definition; the set of integers will appear as a new undefined object which necessitates 
the introduction either of addition (for integers) as a further basic object, or the 
introduction of the group of integers as a fundamental concept described by axioms. 

It is irrelevant, however, which method of introduction of integers is used, since, 
as a consequence of the above theorems, any two such sets are isomorphic, in a sense 
specified in the proposition below. 

There exists a group = <G, c7> such that <N, + > is a sub-semi-group of 'S 
and, for any £ e G, there are m e N, n e N such that £on = m. Let = <G¡, £rf>, 
i = 1, 2, be a group, and let <N, + > be a sub-semi-group of <G;, cr,-); let there 
exist, for any £ e G;, elements m e N, N E N such that £ER;n = m. Then there exists 
an isomorphism f of onto su°h that fn = n for every n e N. 

We omit the proof since the proposition follows easily from 8 E.1, 8 E.2, 8 E.3 (besi-
sides, it is easily proved directly). 

8 E.5. Defining axioms for integers. 
(a) Zgr is a commutative group; 
(b) the semi-group of natural numbers <N, + > is a sub-semi-group ofZgT; 
(c) N generates Zgr as a group. 

We shall call Zgr the group of integers. Its underlying set will be denoted by Z 
and called the set of all integers; its elements will be called integers. The structure 

10 — Topological Spaces 
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of Zgr will be denoted by + z or simply by + and will be called the addition for in-
tegers. 

8 E.6. We do not give an exposition of the arithmetic of integers and assume 
that it is known. Only two propositions will be stated, and two basic concepts will 
be given an explicit definition here. 

Proposition and definition. There exists exactly one composition pon Z such that 
<Z, + z , p~) is a ring with a unit. The struct <N, + , .> is a sub-semi-ring of 
<Z, + z , p}. The composition p is called multiplication for integers. Instead of xpy, 
we write x . y or xy (accordingly, p will be denoted simply by a dot.). 

We omit the proof. 
Proposition and definition. There exists exactly one order x on Z such that (1) 

for any m e N , n e N , m ^ no mxn, (2) for any x, y, z from Z, xxy => (x + 
+ z) x(y + z). — The order x will be called the natural order for integers and will 
be denoted by or simply by 

F. EMBEDDING INTO FIELDS 

We are going to consider commutative rings such that every element, except 0, 
possesses an inverse. Such rings, called fields, are quite important; well known 
examples are: the field of rational numbers, the field of real (respectively, complex) 
numbers, the field of rational functions and so on. However, none of these rings 
could be properly considered till now, since we had not even introduced rationals. 
The only field which has been exactly defined is the struct </4, A, f)x> where 
A = (0, (a)). 

We now give a definition of fields and consider some related questions. One might 
expect that a proposition similar to 8 E.1 could be stated; but no theorem analogous 
to 8 E.1 is true, in general, for the embedding of rings into fields. Nevertheless, there 
is a theorem (8 F.6) similar to 8 E.3. Using this theorem, we shall introduce rational 
numbers. 

8 F .l . Definition. Let si = (A, o, p} be a commutative ring. An element x e A, 
x + 0, is called a divisor of zero in si if there exists an y e A, y #= 0, such that 
xpy — 0. 

Examples. (A) Let P be a non-empty set. Consider the ring Zp. Then an ele-
ment {xp} e Z^ is a divisor of zero if and only if some xp = 0 and some xq 4= 0. — 
(B) Denote by T„, n e N, the set of all k. n, ke Z. Let (p be a natural homomor-
phism of the ring Z onto Z/Tn. If x e Z, then <px is a divisor of zero in Z/T„ if and 
only if the greatest common divisor of x and n is different from n and 1. 

8 F.2. Let si = <A, a, p) be a commutative ring. An element of si distinct 
from 0 is a divisor of zero if and only if it is not virtually invertible under p. 

Proof. Let si = + , .) . If x e A is a divisor of zero, let xy = 0, y =t= 0. Then 
xy = x . 0 = 0; therefore {y x . y} is not one-to-one and thus x is not virtually 
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invertible (see 6B.11). If x is not virtually invertible, then choosing y, z, y + z 
such that x . y = x . z we have x . (y — z) = 0. 

8 F.3. Definition. Let si = (A, a, fi) be a commutative ring. If no xe A is 
a divisor of zero in si, then we shall say that si is a ring without divisors of zero 
or a ring with cancellation (this name is motivated by the fact that, in such a ring, 
apix = any implies x = y provided a * 0). The traditional term "domain of 
integrity" is often used to denote such rings. If A contains two elements at least 
and every x e A, x 4= 0, has an inverse, then we shall say that •a*' is a field. 

E x a m p l e s . (A) <Z, + , . ) is a ring with cancellation but not a field. — (B) The 
ring Z/T„ described in Example (B) from 8 F.1 is a field if and only if n is prime. — 
(C) Let si = (A, + , . ) be a given ring. Let S(si) consist of all families { x j e Az 

such that, for some m e Z, k ^ m => xk = 0. Define compositions a and pi on S(si) 
as follows: a = + z , i.e. { x j o{yk) = {xk + yk}. If {xt} e S(si), {>>*} 6 S(si), 
put, for every ke Z, zk = xpyk-p + ... + xk-qyq where p, q are such that x ; = 0 
for i < p, = 0 for i < q. It is easy to see that zk is uniquely determined; we 
put {x*} fi { y j = {zk}. We leave to the reader the verification of the fact that 
S(si) = a, fi> is a commutative ring. If { x j pi {yk} = { z j , { x j =t= 0, { y j * 0, 
let m, n be the least integers such that xm =#0, y„ * 0. Clearly, zm+„ = xm . y„; 
thus, if si is a ring with cancellation, then S(si) is also a ring with cancellation. — 
We outline a proof that if si is a field, then S(si) is also a field. Clearly, the unit of 
S(si) is the family { a j where ak = 0 except for a 0 = 1. If e S(si), = 1, 

= 0 for k < 0, then {t]k} is an inverse of under pi if t]k = 0 for k < 0, and 
iolo = 1> £i>7o + i o f i = 0> Zzlo + £i>7i + Zoh = 0 , . . . . This system of infinitely 
many equations clearly has a solution obtained recursively: r]Q = 1, ^ = ^ j /q , 
r)2 = — ZtfQ -I- £0th,.... For the general case observe that every x e S(si), x #= 0, 
is of the form x = {zk} pi {xfc} where x0 = 1, xk = 0 for k < 0, and zk = 0 for every 
k with exactly one exception. 

R e m a r k . If si = (A, a, pi) is a field, let B be the set of all x e A distinct from 0. 
Then <B,/zfl> is a commutative group. It will be called the multiplicative group of A. 

8 F.4. Every field is a ring with cancellation. Every subring of a ring with can-
cellation is a ring with cancellation. 

This is evident. 

8 F.5. Theorem. Let si be a commutative ring with a unit element, T an ideal 
of si. Then sijT is a field if and only if T is a maximal ideal of si (see 8 D.17). 

P r o o f . Suppose sijT is a field; let si = <A, +, .>, sijT= (A/T, + , •>. Denote 
by 1 the unit element of si, and by / t h e canonical mapping of si onto si\T. 

Now suppose Tj is an ideal of si, T t => T, Tt + T. Choose teTu t$T. Then 
ft =|= 0, hence for any x e A there is u e AfT with u .ft = fx. If u = fv, then 
f(vt - x) = 0, vt e Tu vt - xeTu hence x e Tx. We have shown that Tx = A. 
This proves that T i s maximal. 

10* 
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Suppose T is maximal. If x e A, x$T, consider the set Tx of all zx + t, where 
ze A, teT. This set is clearly an ideal, Tx => T, Tx * T(for xeTx,x$ T); therefore 
Tx = A. Now let y e A be such that yx + t = 1. Then ( f y ) - ( f x ) = 1. This proves 
that j / / T i s a field. 

Corollary. Let si be a commutative ring with a unit element. Then si is a field 
if and only if there are exactly two ideals of si, namely (0) and si. 

R e m a r k . Let si = {A, + , . ) be a commutative ring. Let T b e an ideal of si. 
It is easy to prove that si/T is a ring with cancellation if and only if T has the fol-
lowing property: if x . y e T, then either x e T or y e T. Ideals with this property 
are called prime ideals of si. Occasionally, this term will also be used for ideals 
of semi-rings: if si = (A, Q, tr> is a commutative semi-ring, then an ideal T c A 
will be called prime if, for any x e A, y e A, xoy e Timplies that either x e T o r y e T. 

8 F.6. Theorem. Let sé = <¿4, c, py be a commutative ring with cancellation 
containing more than one element. Then there exists a field X = <K, o*, p*> 
such that si is a sub-ring of tf and for every £eK there are u e A, v e A such that 
Šp*v = u. If JT' is a field with the properties just described, then there exists exactly 
one isomorphism f of ď onto JT' such that fx = x for x e A. 

P r o o f . We shall write x + y instead of xoy, xy instead of xpy. Denote by B 
the set of all <x, yy e A x A such that y 4= 0. We shall introduce two compositions 
a' and p' on B putting <x1; j ^ ) a' <x2, y2> = ( x ^ + x 2 y u y^^y, <x l5 p' 
M' <x2> y>2) = <Xi*2> yi)>i> (this is possible, for 4= 0, y2 4= 0 => y^y2 4= 0). It is 
easy to prove that SB = <B, o', p"> is a commutative semi-ring. Now, for <x l5 yty e 
e B, <x2, y2y e B put <xx, yty A <x2, y2y if and only if x1_y2 = x2y1. It can be easily 
shown that A is a congruence on 38. 

Consider the semi-ring 3Sjk and let / be the canonical mapping of 38 onto 3S/1; 
we denote o'jk by a* and p'lX by p*. If y e A, y 4= 0, then /<0, _y> is a zero element 
of 38, and for any /<x, we have (/<x, _y>) ff*(/<— x, _y>) = 0; thus cr* is a group 
structure. Hence 38jX is a ring. Clearly, /<x, x ) (where x e A is distinct f rom 0, but 
otherwise arbitrary) is a unit element for 3SjX, and, for any /<x, y ) e 38jX distinct 
f rom 0, f ( y , x> is its inverse under p*. We have proved that 3S/X is a field. 

Obviously, /<x, m) = f(.xv, uvy for any u, v from A distinct from 0. Therefore 
we may put, for any x e A, gx = f(xu, uy, where u e A, u 4= 0. It is easy to show 
that g is an injective homomorphism of si into 38¡X. 

The rest of the proof may be left to the reader. 

8 F.7. Definition. Let J f = (K, a, py be a field. We shall say that a set X c K 
generates JÍT as a field if K is the smallest field (under <(7, py) containing X. 

For instance, in 8 F.6 we have shown that A generates X as a field. 

8F .8 . We are now able to introduce rational numbers. The situation is analo-
gous, in a sense, to that considered e.g. at the beginning of subsection 3 D as well 
as in 8 E. We already know, as a quite special case of 8 F.6, that there exists a field Q 
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such that <Z, + , . ) is a subring of Q and, for every £ e Q, we have = u for some 
u e Z, v e Z, v 4= 0; such a field g is essentially unique (in the sense indicated in 
8 F.6). We could choose (even exhibit effectively) a certain field Q with these proper-
ties to serve as the field of rational numbers. For reasons explained in connection 
with the introduction of natural numbers in Section 3, however, we adopt as in 3 D, 
a different procedure stating properties of Q mentioned above as axioms for a certain 
fixed object which will be called the field of rational numbers. 

8 F.9. Defining axioms for rational numbers. 
(a) Q f d is a field; 
(b) the ring of integers <Z, + , . ) is a subring ofQ[d; 
(c) Z generates Q f d as a field. 

Definition. We shall denote the underlying set of Q f d by Q. Every element of Q 
will be called a rational number (or, briefly, a rational); Q will be called the set 
of (all) rational numbers, and Q f d will be called the field of rational numbers. 

Clearly, by the defining axioms, every integer is a rational number. We state expli-
citly the following proposition: 

If £ is a rational number, then there are integers u, v, v 4= 0, such that v£ = u. 
It is to be pointed out that Q f d is a fixed field; this field, its underlying set and every 

rational number are determined uniquely; however, we can assert no more of their 
properties than those which follow from the axioms. 

8F.10. C o n v e n t i o n . The compositions of Q f d will be denoted by + Q and . Q 

or simply by + and . and will be called the addition (multiplication) for rationals; 
thus Q f d = <Q, + Q , .q). Usually, we shall write x + y instead of x + Q y, xy or 
x . y instead of x . Qy. The symbol Q f d will be used only rarely in the sequel. 

We do not examine the field <Q, + , . ) ; basic properties of this field and the cur-
rent arithmetic of rationals will be assumed to be known. However, the order on Q 
will be defined explicitly. 

8 F . l l . Proposition and definition. Let Q consist of all ( x j ) e Q x Q such that 
there exists a number n e N, n > 0, with nx e N, ny e N, nx ^ ny. Then Q is an 
order, called the natural order on Q. 
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9. C A R D I N A L S 

In this section, questions are investigated concerning, roughly speaking, the "size" 
or the "number of elements" of sets. It is natural to consider two sets as possessing 
"the same number of elements" if and only if they are equipollent (see 3 A.1). As 
we know (see 4 C.9) the "size" of finite sets can be characterized by means of natural 
numbers; a similar characterization of the "size" of infinite sets will be achieved 
by means of cardinal numbers. 

We intend to assign to every set X a certain object, a cardinal number, which will 
be called the cardinality or the power of X, in such a way that two sets are assigned 
the same object if and only if they are equipollent. This can certainly be done. Indeed, 
consider the relation e = {X Y \X e Ye ¿7, X is equipollent to 7} where if 
is the class of all sets. By the Axiom of Choice, there exists a class S c 5 " such that, 
for every XeSf, there exists precisely one Ye 3) with XgY; put {X, Y) e cp if and 
only if X e YeSS, XQY. Now we could declare the set cpX to be the cardinality 
of the set X; in other words, we could "choose" one "representative" from each 
class of mutually equipollent sets and declare it to be the cardinality of every set 
equipollent with this selected set. 

Of course, the choice of such "privileged" sets to serve as cardinals necessarily 
contains certain artificial characteristics. We shall therefore choose a procedure 
similar to the one used in Section 3 for natural numbers. Cardinal numbers will 
be introduced by means of axioms containing a new basic concept, the relation 
of being the cardinality of a set; the fact, indicated above, that there exists a single-
valued relation cp on the class of all sets such that cpY = <pX if and only if X and Y 
are equipollent will serve to ascertain that the conditions imposed by axioms can 
be satisfied. 

In addition, as mentioned above, it is desirable that the cardinality of any finite 
set X coincide with the "number of elements" of X in the sense of 3 E.7. This is, 
of course, not necessary, and an approach is quite acceptable under which finite 
cardinals would be different from natural numbers. However, it seems quite natural 
to 'identify" these cardinals with natural numbers; the symbol card X has already 
been introduced (in 3 E.7) with a view to such an approach. Therefore, we shall 
introduce explicitly an axiom stating that the cardinals of finite sets coincide with 
the natural numbers. 
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A. C A R D I N A L N U M B E R S 

9 A.l. Axioms for cardinal numbers. 
(a) card is a single-valued relation whose domain is the class of all sets; 
(b) card X = card Y if and only if X and Y are equipollent; 
(c) card Nk = k for each ke N. 

9 A.2. Definition. If X is a set, card X will be called the cardinality or the power 
of the set X. If x is the power of some set, i.e. if x e E card, we shall say that x is 
a cardinal number or simply a cardinal. A cardinal x will be called finite (infinite) 
if x = card X, where X is finite (infinite); this definition is correct, since the particular 
choice of the set X is clearly irrelevant. 

9 A.3. We shall now order cardinals "by their size", putting card X < card Y 
if, roughly speaking, there are "less" elements in X than in Y. The meaning of X 
having less elements than Y is clearly that X is equipollent to a part of Y without 
being equipollent to Y; it is not sufficient to require that X be equipollent with a proper 
subset of Y, since every infinite Y is equipollent to a proper subset of itself. 

Before stating the definition we shall prove several propositions (some of which 
are not quite trivial) on equipollent sets, the main purpose being to establish which 
cases can occur from among the following ones which appear possible a priori: (a) 
X is equipollent to a part of Y and Y is equipollent to a part of X; (b) X is equi-
pollent to a part of Ybut Yis equipollent to no part of X; (c) Yis equipollent to a part 
of X but X is equipollent to no part of Y; (d) neither is X equipollent to any part 
of Ynor is Y equipollent to any part of X. We shall prove that in case (a), the sets X 
and Y are equipollent, card X = card Y; in case (b), we shall put card X < card Y, 
and similarly, in case (c), card Y < card X; as for case (d), which would mean that 
the sets X and Yare "incomparable", it will be proved that this cannot happen. 

9 A.4. Theorem. Let A, B and C be classes, A <= B <= C. Let A be equipollent 
to C. Then B is equipollent to C. 

P r o o f . Since A, C are equipollent, there exists a bijective r e l a t i on /on C onto A. 
Denote by D the class of all x such that, for some ke N, k ^ 1, xefk\C — £] 
(see 3 F.2); put £ = (C - B) u D. Then, clearly, / [ £ ] = D, En(B - D) = 0, 
E u (B — D) = C. Now put g = / £ u JB_D (that is, gx = fx if xe E, gx = x 
if xeB - D). Then Dg = E u (B - D) = C, Eg = /[£] u (B - D) = B, and 
it is easy to see that g is one-to-one. 

From Theorem 9 A.4 we immediately have the following assertion. 

9 A.5. Theorem. Let A and B be classes. Let there exist C <= A, D c B such 
that A is equipollent to D and B is equipollent to C. Then A and B are equipollent. 

P r o o f . As A is equipollent to D there exists a bijective relation / on A onto D. 
Then / [ C ] c D cz B; but / [ C ] is equipollent to C, hence to B so that, by 9 A.4, 
D is equipollent to B. Therefore A, being equipollent to D, is equipollent to B. 
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9 A.6. Theorem. Let A and B be sets. Let A be equipollent to no part of B. Then 
B is equipollent to some subset of A. 

P r o o f . Suppose that the contrary holds. Let si be the set of all one-to-one rela-
tions R such that DR <=. A, ER cz B. Obviously 0 6 si. It is easy to see that si is 
monotonically additive, for if 3C <=. si is monotone, then clearly £ = \J9C is a rela-
tion for A and B which is one-to-one by 4 A.2. Consequently according to theorem 
4 C.3 there is a maximal set p in si. According to the stated assumption we have 
Dp 4= A, Ep 4= B. Let us choose x e A — Dp, y e B — Ep. Then clearly p u (<x, y>) e 
esi, which contradicts the maximality of p. 

R e m a r k . The theorem can also be proved by use of theorems 4 A.7, 4 A.8 (and 
the Axiom of Choice). The reader is invited to carry this out as an exercise. 

Before introducing the definition of the relation < for cardinals we shall state 
the following proposition which will guarantee that this definition will not depend 
on the special choice of the representing sets. 

9 A.7. Let A1,A2,B1,B2 be sets. Let Ax be equipollent to A2 and let Bt be equi-
pollent to B2. Let there exist a Cx <=• Bt such that A1 is equipollent to C1. Then there 
exists a C2 <=. B2 such that A2 is equipollent to C2 (at the same time, of course, 
C2 is equipollent to C t) . 

The simple proof is left to the reader. 

9 A.8. Definition. A quasi-order g is called monotone if, for any x e Dg u Eg, 
y e D g u Eg, x 4= y, either xgy or ygx. 

9 A.9. The relation {X is equipollent to a subset of 7} is a monotone quasi-
order on the class of all sets. 

This follows at once from 9 A.6. 

B. O R D E R ON C A R D I N A L S 

9 B.l . Theorem. There exists exactly one relation on the class of all cardinals 
which contains a pair <card X, card Y> if and only if X is equipollent to a subset 
of Y. This relation is a monotone order. 

This follows at once from the preceding propositions, in particular from 9 A.9. 
C o n v e n t i o n . The relation indicated above will be called the natural order for 

cardinals and denoted by If x, y are cardinals, x ^ y, we shall say that x is less 
than or equal to y. As usual, instead of x ^ y we also write y ^ x; if x ^ y, x 4= y, 
then x < y or y > x is written. 

R e m a r k . The restriction of the order g to the set N coincides with the order 
on N described in 3 D.2. 

Now we shall give some easily proved propositions on the natural order for car-
dinals. 
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9 B.2. Theorem. If A is a set, then card A < card (exp A). 
This follows at once from 3 A.6. 

9 B.3. Theorem. Let Abe a set of cardinal numbers. Then there exists a cardinal 
number b such that b > a for each ae A. 

Proof . By the Axiom of Choice, there exists a family {Za | a e A} such that 
card Xa = a. Then \JXa is a set and evidently a ^ card (U-^o) f ° r each ae A. In 
view of 9 B.2 it is now sufficient to put b = card (exp (U-^a))-

It can be shown that the cardinals form a non-comprisable class; we shall in fact 
prove a stronger assertion: a class of cardinals is a set if and only if it is "bounded 
from above". 

9 B.4. Theorem. Let A be a class of cardinal numbers. Then A is a set if and 
only if there exists a cardinal number b such that a < b for each a e A. 

Proo f . Let A be a set. Then by 9 B.3 there is a cardinal b so that b > a for each 
ae A. Conversely let there exist such a cardinal b. Let 5 be a set, card B = b. For 
each a e A, a < card B, hence there exists a set X c B such that card X = a. 
Consequently A <=• card [exp B] from which it follows (since the relation card is 
single-valued) that A is a set. 

9B.5. If f is a comprisable single-valued relation, then card E / ^ card D/. 
This follows at once from 4 B.2 (corollary). 

9B.6. C o n v e n t i o n . The power of N (hence, of any countably infinite set) 
will be denoted by K0. 

The reasons for this notation will be clear later (see 11 B.9) in a wider context. 

9 B.7. The cardinal number X0 is infinite. If a is an infinite cardinal, then 
K0 ^ a. 

This follows at once from 4 C.9. 

9 B.8. If A is an infinite set, then there exists a disjoint collection si of countably 
infinite sets such that (Jsi = A. 

Proof . Let M be the set of all non-void disjoint collections 3C <=. exp A consisting 
of countably infinite sets. It is easy to see that M is monotonically additive. Hence there 
exists a maximal e M. We are going to prove that \J3> 0 = A. Suppose S = \J8C0 4= 
4= A. If A — S is finite, choose a set X0 e put X'0 = X0 u (A — S), and 3£'0 = 
= — (X0)) u (Xq). Then S£'0 possesses the properties required. If A — S is an 
infinite set, there is, by 4 C.9, a countably infinite set B <=• A — S. Clearly u (B) 
is disjoint and consists of countably infinite sets. This is a contradiction, for S£0 

is maximal in M. 

9 B.9. If A is an infinite set, then there exists a set B such that A is equipollent 
to B x N. 

P roof . Let si be a disjoint system of countably infinite sets, (Jsi = A. It is easy 
to deduce from 4 B.2 that there exists a family {(px \Xesi} such that every q>x 



154 II. A L G E B R A I C S T R U C T U R E S A N D O R D E R 

is a bijective relation on N onto X. Now, if x N, put <p(X, n> = <pxn. 
It is easy to see that the relation q> is one-to-one on si x N onto A. 

9 B.10. Let A be an infinite set. Then, for any countable set X, A is equipollent 
with A u X: if X is countable non-empty, then A is also equipollent with A x X. 

Proo f . We shall only show that A x N is equipollent to A, leaving the rest of the 
proof to the reader. — By 9 B.9, there exists a set B such that A is equipollent to B x N; 
now it is clear that A x N is equipollent to (B x N) x N and therefore equipollent to A, 
because (B x N) x N is evidently equipollent to B x (N x N) and N x N is, by 
3 G.9, equipollent to N. 

9 B.11. If X, Y are sets, card Y ^ card X, X is infinite, then X u Y is equipol-
lent to X. 

This follows at once from the fact that X x (0, 1) is equipollent to X, and theorem 
9 A.4. 

9B.12. If X is an infinite set, Y c X, card Y < card I , then X - Y is equi-
pollent to X. 

Proof . Suppose card (X — 7) < card X. We have either card (X — Y) ^ card Y 
or card Y ¿L card (X — Y). By 9 B.11, we have in the first case card X S card Y, 
in the second case card X ^ card (X — Y), hence, in each case, there is a contra-
diction. This proves that card (X — Y) ^ card X, hence X — Y is equipollent to X. 

9 B.13. Theorem. Let si be a monotone collection of sets. Let m be a cardinal 
number and let card X < m for each X e si. Then card U s i ^ m. 

P roo f . I. Let M be a set such that card M = m. It is obviously sufficient to con-
sider si 4= 0. Put A = Us i . Let si' be the system of all \f9E, where SE <= si; we have, 
of course, si <= si'. By 4 A.4, si' is monotone and completely additive. Let be 
the system of all one-to-one relations cp such that Dq> esi', Eq> a M. As 0 4= si c 
<= si' and card X < m for X e A, we obtain 4= 0. 

We shall show that !F is monotonically additive. Let 9C <= J5" be monotone. By 4 A.2, 
USE is one-to-one. We have D(\J9E) = U and since si' is completely additive, 

<l>eZ 
we have D(U^) e si'. Further we have E(U^) = U E<p <= M. Hence \J2£ e P. 

q>£SC 
II. Let (pe SF, Dq> 4= A. Then Dip = (J3C for some monotone collection SE <= si. 

Since + A = \Jsi, there exists a Ye si such that Y<= X for n o l e i , hence 
Y X for all X e SE and therefore Y => \J3E. If Y 4= U p u t Z = Y; if Y = (J3E, 
then Y 4= A, hence there exists a Z e si, Z => Y, Z 4= Y. Clearly, card E (p = 
= card Dq> ^ card Y < m. Hence, by 9 B.12, card (M — Ecp) = m. Thus there 
exists a bijective relation \j/ on Z — Dcp into M — E cp. Then D(<p u if) = Z, q> u \j/ e 3?. 

III. By the above argument, the suppositions of theorem 4 C.6 are fulfilled. Hence 
there exists a ij/ e 3F with Di¡/ = A. This proves that card U s i ^ m. 

9 B.14. Theorem. In every non-void class of cardinal numbers there exists 
a least element. 
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P r o o f . Suppose that, on the contrary, 3C 4= 0 is a class of cardinals and that 
in 3C there does not exist a least element, and let us derive a contradiction. Evidently 
3C contains only infinite cardinals and for each a e 3C there exists a b e 3C such that 
b < a. Let us choose ceS£; there exists a set C of power c. Let si be the system 
of all X <=. C such that card X < m for each me SC. si 4= 0 since a finite X <= C be-
longs to si. We shall show that si is monotonically additive. Let !%><=. si be monotone. 
Let aedC\ then there is a b e 9C, b < a. For each X e si and hence for each X e SS 
we have card X < b. Hence by 9B.13 card (Jâiï ^ b < a. Obviously \J3S cz C; hence 
U Me si. 

Because si is monotonically additive, there exists by 4 C. 3 a maximal A e sé. Because 
card A < c, there exists an x e C — A; then clearly A u (x) e si, which contradicts 
the maximality of A. 

C. A R I T H M E T I C O F C A R D I N A L S 

We shall now consider the "arithmetic" of cardinals, defining for them addition, 
multiplication and exponentiation as generalizations of the corresponding composi-
tions for natural numbers. This is motivated by theorem 3 E.8 in which addition, multi-
plication and exponentiation introduced for natural numbers by recursive definitions 
have been related to set-operations such as the union and the cartesian product. 

9 C.l . Proposition and definition. Consider the relation consisting of all 
<<a, by, c> where a, b, c are such that there exist sets A, B, C, with card A = a, 
card B = b, card C = c, A n B = 0, C = A u B. This relation is a composition 
on the class of all cardinals. It will be called the addition (for cardinals) and denoted 
by +; the cardinal a + b will be called the sum of a and b. 

R e m a r k . In other words, if a, b are cardinals, then their sum a + b is defined as 
the cardinality of some i u B where A, B are arbitrary disjoint sets with card A = a, 
card B = b. It is asserted that this definition is "correct", i.e. that a + b does not 
depend on the particular choice of A, B. This remark also applies, with appropriate 
changes, to the multiplication (9 C.3) and exponentiation (9 C.5) of cardinals. 

P r o o f . Suppose that A', B' are disjoint, card^4' = a, card B' = b. Clearly, if q> 
(respectively i¡/) is bijective on A onto A' (respectively, on B onto B') then <p u \j/ 
is bijective on Au B onto A' u B'. Thus, i u B and A' u B' are equipollent, which 
proves the proposition. 

9 C.2. Addition for cardinals restricted to the set of natural numbers coincides 
with addition on N (as defined in 3 E.1). 

This follows at once from 3 E.8. 

9 C.3. Proposition and definition. Consider the relation consisting of all 
« a , b}, c) such that for some sets A, B, a = card A, b = card B, c = card (A x B). 
This relation is a composition on the class of all cardinals. It will be called multi-
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plication (for cardinals); the element assigned by this composition to <a, by will be 
denoted by a . b or ab and will be called the product of a and b. 

This follows at once from the fact that A x B and A' x B' are equipollent provided 
A and A', B and B' are equipollent. 

9 C.4. Multiplication for cardinals restricted to the set of natural numbers 
coincides with multiplication on N (as defined in 3 E.2). 

9 C.5. Proposition and definition. Consider the relation consisting of all 
<<a, b}, c) where a, b, c are cardinals and, for some A, B, C, we have card A = a, 
card B = b, card C = c, AB = C. This relation is a composition on the class of all 
cardinals. It will be called exponentiation (for cardinals) and the element assigned 
thereby to <a, by will be denoted ab. 

This follows at once from the fact that A3, Pa are equipollent provided A and P, B 
and Q are equipollent. 

9 C.6. Exponentiation for cardinals restricted to N coincides with exponentiation 
{<a, by -* ab} on natural numbers (as defined in 3 E.3). 

9 C.7. The pair < + , .) formed by the addition and the multiplication on cardi-
nals is a commutative semi-ring structure on the class E card of all cardinals; for 
this structure 0 is the zero element, 1 is the unit element. 

All the assertions in question, such as x + (y + z) = (x + y) + z, etc., follow 
at once from the corresponding facts concerning sets and their equipollence. Thus, 
x(y + z) = xy + xz follows from X x (YuZ) = (X x Y) u (X x Z), x .(y . z) = 
= (x . y) . z follows from the fact thatX x (Y x Z) and (X x Y) x Z are equipollent. 
Therefore the detailed proof may be left to the reader. 

9 C.8. If a, b, c are cardinals, then (1) ab+c = a". ac; (2) abc = (a")c; (3) (ab)c = 
= ac. bc. 

The proof consists in applying propositions on equipollence contained in 5 D.6. 
R e m a r k s . 1) Let a be a cardinal. Clearly, 0° = 0 provided a 4= 0; a0 = 1 (in 

particular, 0° = 1); a1 = a, 1" = 1. - 2) If A is a set, card A = a, then 2" = 
= card (exp A), hence, a < 2" (this follows from 9 B.2). In particular, N0 < 2N°. 
- 3) The assertion "if K0 ^ a ^ 2Xo, then either a = N0 or a = 2X°" is known 
as the "continuum hypothesis" (observe that 2No is the power of the set R of all 
real numbers, see 10 H). With a view to some recent results, it seems that the con-
tinuum hypothesis is an undecidable sentence in the axiomatic system presented 
here (after a suitable formalisation). We do not consider these questions here since 
they lie outside the scope of this book. 

9 C.9. If a is an infinite cardinal, then X0 ^ a, a + K0 = a, a . X0 = a. In 
particular, = X 0 / o r every finite n ^ 1. If n is a finite cardinal (i.e. a natural 
number), then n < N0, n + X0 = N0, n . K0 = X0. 

These assertions follow at once from the preceding propositions, particularly 
9B.10, 9B.11. 
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9 C.10. Theorem. If a is an infinite cardinal, then a + a = a, a . a = a. 
P r o o f . The first assertion follows at once from 9 B.11. To prove the second one, 

let A be a set, card A = a. Consider the class 3F of all one-to-one relations <p such 
that Dcp = X c A, Eq> = X x X. If Jt c 2F is monotone non-void, then clearly 
\JJi is a one-to-one relation; let it be denoted by g. Clearly Dg = U{D<p | <p e Jt\, 

= U{E<p | <p e the monotonicity of Jl and the fact that E<p = Dcp x Dip, 
for every q> e imply at once that Eg = Dg x Dg. Therefore, J5" is monotonically 
additive. There exists, by 4 C.9, a countably infinite X <=. A and, by 3 G.9, X is 
equipollent to X x X; hence is not void. By 4 C.3 there exists a maximal f e OF. 

Put B = Df, b = card B; clearly, b2 = b since Ef = D / x D / . Suppose b < a. 
Then, by 9 B.12, card (̂ 4 — B) = a. Hence, there exists a set C c: A — B with 
card C = b. We already know that b2 = b; since b is infinite, we have (by the first 
assertion of the theorem we are now proving) b = bz + b2 + b2. Therefore, there 
exists a one-to-one relation h on C onto (B x C) u (C x B) u (C x C). 

Then / ' = / u h is a one-to-one relation, Df = B u C, Ef = (B x B) u Eh = 
= (B u C) x (B u C). Therefore / ' e which is a contradiction since / is maximal 
on 3F,f =>f,f 4=/. 

We have proved that b = a, hence a2 = a. 

9 C . l l . Let a, b, p, q be cardinals. If a ^ p, b ^ q, then a + b ^ p + q, 
ab ¿j pq, ab ^ pq. If a < p, b < q, then a + b < p + q, ab < pq. 

P r o o f . The case a ^ p, b ^ q is quite easy. Consider the case a < p, b < q. 
If a, b are finite, the assertion is evident, Therefore, suppose a ^ b, b infinite. Then, 
by 9 C.10, a + b = b, ab = b, hence a + b<q^p + q, ab < q ^ pq. 

D. F A M I L I E S O F C A R D I N A L S 

We conclude this section with some propositions concerning sums and products 
of families of cardinal numbers. 

9 D.l . Let {xa | a e A} be a family of cardinal numbers. Then ( l) there is exactly 
one cardinal number s such that there exists a family of sets {Xa | a e A} for which 
ca rd ! , , = xa, for any a e A, and card = s; (2) there is exactly one cardinal 

aeA 
number p such that there exists a family of sets {Xa \ a e A} for which card 
Xa = xa, for any aeA, and card \\Xa = p. 

aeA 

P r o o f . It follows from 4 B.2 that there exists a family of sets {X a | a e A) such 
that card Xa = xa. By 5 D.9, if {Xa | a e ,4} is a family of sets such that card X'a = xa, 
then EXa and hX'a, as well as IlXa and TIX'a are equipollent. This proves the pro-
position. 

Definition. The cardinal s described above will be denoted by £{xa | a e A} or by 
£xa and called the cardinal sum (usually simply sum) of the family {xa | a e A} or, 
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for convenience, the sum of cardinal numbers xa, a e A. The cardinal p described 
above will be denoted by Il{x0 \ a e A} or by Tlxa and called the cardinal product 
(usually simply product) of the family {x01 a e A} or, for convenience, the product 
of cardinal numbers xa, a e A. 

R e m a r k s . 1) Observe that the cardinal sum of the void family is the number 0, 
and the cardinal product of the void family is the number 1. — 2) We use the symbol E 
for the (cardinal) sum of cardinal numbers and for the sum of sets (in the sense of 
Section 5); the symbol E will also be used for some other purposes in the sequel. 
Nevertheless, the proper meaning will always be clear from the context. — 3) For 
any family of sets {X a | a e A}, we have E card Xa = card Z.Xa; if {X0} is disjoint, 
then E card X„ = card \JX0. - 4) Clearly, E{x; | i e (1, 2)} = x t + x2 . - 5) 
The preceding remarks, with appropriate changes, also apply to the product and 
to the symbol II. 

9 D.2. Let <p be a one-to-one relation on a set A onto a set B. Let {x61 b e B} 
be a family of cardinals. Then £ xb = £ xva and 0 = EI x<pa-

beB aeA beB acA 
This assertion (the "commutativity law" for sums and products of families of cardi-

nals) follows at once from 5 B.5, 5 A.11. 

9 D.3. Let {Ba | a eA} be a disjoint family of sets; put B = {JBa- For every 
aeA, let {x6 | b e Ba} be a family of cardinal numbers. Then £ Y*xb ~Y,X>> 

aeA beBa beB 
and n n** = n xb-

aeA beBa beB 

This proposition follows immediately from 5 B.6 and 5 A.13. 

9 D.4. For any family {xfl | a e A} of cardinals and any cardinal number y, 
(Ex f l). y = E(x„ . y). 

This assertion is deduced at once from 5 B.7. 

9 D.5. If b is a cardinal, A is a set, card A = a and bx = b for every xe A, 
then £bx = a. b, ]Jbx = b". 

xeA xeA 

This is clear since if Bx = B for every xeA, then £ Bx = A x B, J} Bx = BA. 
xeA xeA 

9 D.6. If {xa} is a family of cardinals, and y is a cardinal, then Y\xy
a = (n^o)^-

a a 
This follows from 5 D.7. 

9 D.7. Let x be a cardinal and let {ya} be a family of cardinals; put y = . 

Then xy = n*'"-
a 

This follows from 5 D.8. 

9 D.8. If {x„ | a e A), {ya | a e A} are families of cardinals, and xa ^ ya for 
every aeA, then 

^ Hya- E K = Fba-
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9 D.9. Theorem. If {xa | a e A}, {ya | a e A} are non-empty families of cardinals 
and xa < y„ for every a e A, then 

< Y\y° • 
a a 

Proof . Clearly Exa ^ IIya. There exist families of sets {Xa}, {7a} such that 
card Xa = xa, card Ya = ya. Put X = EXa, Y = II Ya. We have to prove that card X < 
< card Y. Let / be a single-valued relation on X into Y. For any a e A and xeXa 

put fax = pra (/<a, x>); then fa is a single-valued relation on Xa into Ya, and there-
fore Ya — / a [ I a ] =t= 0 since card Xa < card Ya. Hence there exists a z = {za} e Y 
such that za e Ya — / a [X a ] for every a e A. It is easy to see that z f\X~\. Thus, for 
any / e Yx, the set f\X\ is different from Y. This proves that card X < card Y. 
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10. O R D E R 

The concept of quasi-order (in particular, of order) has already been introduced 
in Section 1, and many examples of orders occur in the preceding sections, some of the 
most important being the following: the order <= on the class of all sets, the 
order ^ on the set N and the order ^ on the class of all cardinals. As yet, however, 
we have not discussed this notion in a systematic manner. This will be. done in the 
present section. 

A. QUASI-ORDER 

First we shall give basic definitions (some of which have already been introduced). 

10 A.l . Definition. A transitive relation g is called a quasi-order in A if Dg u 
u Eg c i , a quasi-order on A if Dg u Eg = A. A quasi-order g is called an order 
if it is reflexive and xgy, ygx implies x = y. A quasi-order Q is called strict if never 
XQX. 

R e m a r k . Clearly, if Q is a strict quasi-order, then xgy, ygx hold simultaneously 
for no x, y. 

10 A.2. Definition. A quasi-order g is called distinguishing if xgy, ygx implies 
x = y. 

Clearly, every order and every strict quasi-order is distinguishing. 

To denote a reflexive quasi-order (usually, an order) which is fixed during an exposi-
tion, we shall often use the symbol ^ (whereas < will be used to denote a strict 
quasi-order). Sometimes, given two classes X, Y endowed with (reflexive) quasi-
orders g, a, we shall even use the same symbol ^ to denote both g and a. 

10 A.3. Let g be a quasi-order. Then the class g j of all <x, 6 g such that 
x> £ g is a strict quasi-order, the class g2 of all <x, y) such that either <x, e 

e or x = y e Dg u Eg is an order, and the class g of all <x, y) such that either 
x = y or both <x, e g and <j>, x> e g is an equivalence. 

The easy proof is omitted. 

Definition. We shall call the relations g t , g2 and g described above, respectively, 
the strict quasi-order associated with g, the order associated with g and the equi-
valence associated with g. 
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Remark . The above concepts and terms will be used chiefly for the case where g 
is a distinguishing quasi-order. In such a case gx c: g <= g2, gt is the largest strict 
quasi-order contained in Q, and Q2 is the smallest order containing Q. 

Example . If < and ^ are the usual relations on Q, then < is the strict quasi-
order associated with and ^ is the order associated with < . 

C o n v e n t i o n . If ^ (respectively, denotes an order, then < (respectively, > ) 
is used to denote the associated strict quasi-order, and conversely (see 10 A.2, con-
vention). 

10 A.4. Let g be a quasi-order on A. Let <p be a single-valued relation such that 
D<p = A and {x -» y | (px = cpy} coincides with the equivalence associated with Q. 
Then a = (poQo(p~i is a distinguishing quasi-order on E<p = (p[A]. 

Proof . Clearly, a consists of <a, b) such that, for some x, y, we have xgy, (px = a, 
cpy = b. It is clear that a is transitive. 

If aob, boa, then there are x, y, x', y' such that (px = (px = a, (py = (py' = b, 
x8y< y'gx'. We have x$x', y&y' where & = (p~l „ (p. Since 3 coincides with the 
equivalence associated with g, we find that (l) either x = x' or xgx', x'gx, (2) either 
y = y' or ygy', y'gy. This implies ygx, hence xSj>; therefore (px = <py, which 
proves a = b. 

Definition. We shall say that the a described above is the distinguishing quasi-order 
induced by Q (under <p)\ the order (strict quasi-order) associated with o will be called 
the order (strict quasi-order) induced by Q (under (p). 

Examples . (A) The order induced by the quasi-order {.XT is equipollent with 
a part of y} under the relation card coincides with the relation ^ on the class of 
all cardinals. — (B) Consider a semi-group structure / i o n a class X. Put xoy if and 
only if y = zpx for some z e X, xoy if and only if y" = zpx for some z e X and 
some p e N, p ^ 1, y" being defined, as usual, by y1 = y, yn + 1 = y"ny. If p) = 
= <N, + ) , then a coincides with the natural order on N, a is a reflexive quasi-order 
and its associated equivalence has two fibres: (0) and N - (0). If A — N — (0), 
(X, p.} = (A, + ) , then a coincides with the natural quasi-order < on A; on the 
other hand, 5 = A x A. If <X, p) = <A, . ) , then it can be shown that the relation 
c= restricted to the set of all finite sets X <= P (where P is the set of all prime 
numbers) coincides with the order induced by o under the relation which assigns to 
every n e A the set of all those ps P which divide n. 

10 A.5. Definition. If g is a quasi-order on A and X <= A, then the relation g n 
n(X x X), which is a quasi-order, will be termed the restriction of g to a quasi-order 
(order, strict quasi-order, etc.) on X and will be denoted by gx. 

Remark . 1) The terminology and notation just introduced may be ambiguous 
since gx is also used to indicate the domain-restriction of an (arbitrary) relation g 
or the restriction of a composition g. It will be used only if its meaning is sufficiently 
clear from the context. — 2) It is clear that the restriction of an order is an order, etc. 

1 1 — Topological Spaces 
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10 A.6. Let g be a quasi-order on X; let a be the distinguishing quasi-order 
induced by g under a mapping relation (p. Let Y <=. X. Then <rvlYicoincides with the 
distinguishing quasi-order induced by gr under <pY. 

10A.7. Let g be a quasi-order in a class A. Let as A, b e A, and suppose that 
bga does not hold. Let a be the smallest transitive relation (see 1 C.4) such that 
q cz a, <a, by e a. 

If Q is distinguishing, then a is also distinguishing; in particular, if g is an 
order, then a is an order. 

P r o o f . Put g' = g u (<a, by). The relation o consists (see 3 F.4) of all <u, u> 
such that there exists a finite sequence {zk | k s Nn + x} with u = z0,v = z„, {zk, z k + 1 > 6 
e g' for all k e N„. Let g be distinguishing. Suppose that u, v are such that uov, vau. 

Then there exists a sequence [zk | fee N p + 1 } and a number p, 0 ^ p ^ n, such 
that zkg'zk+1 for k e N„, z 0 = u,zp = v, z„ = u. If there is no k such that (zk, zk+1y = 
= (a, by, then zkgzk+1 for all k e Nn, hence UQV, VQU which implies u = v. If 
there exist such k, choose the least one. If there is some I > k with <z(, z l + 1 > = 
= (a, by, then choosing the least such I we obtain <z i ; z i + 1 ) e g for all ¿ with 
k < i < I, hence either zk+1g z, (in the case k + 1 < I) or zk+1 = z, (if k + 1 = 1). 
Since the first case gives bga, which is excluded, the second case must take place and 
therefore b = a, g' = g, a = g, f rom which u = v follows. 

Consider now the case that there is exactly one k with <zk, z k + 1 > = <a, by. Then 
either 0 iS fc < p or p ^ k < n; it is sufficient to consider one of these cases, e.g. 
0 ^ k < p. Then, clearly, z0gzk, zk+1gzp, ZpQzn, i.e. uga, bgv, vgu; it follows that 
bga, which is impossible. 

Thus we have proved that u = v, and therefore the first assertion is established. 
The second is an immediate corollary. 

10 A.8. Definition. A quasi-order g is called monotone if, for any x s Dg u Eg, 
j i e D g u Eg, x 4= y, either xgy or ygx. 

E x a m p l e . If s i is a class of sets, then clearly c ^ i s monotone if and only 
if si is a monotone class of sets. 

10 A.9. Definition. An order g on X is called maximal if there is no order a 
on X such that a => g, a 4= g. 

10 A.10. Theorem. An order is maximal if and only if it is monotone. 
" I f " is clear. "Only i f " follows at once from 10 A.7. 

10 A . l l . Let A be a set. Then each of the following sets is completely multipli-
cative and monotonically additive: the set of all quasi-orders in A; the set of all 
reflexive quasi-orders in (or on) A; the set of all distinguishing quasi-orders in 
(or on) A; the set of all orders in (or on) A. 

P r o o f . We prove only the last assertion, leaving the rest to the reader. If Ji is 
a non-void system of orders on A, then it is clear that C\Ji is also an order on A. 
Now let Ji be a monotone non-void system of orders on A. Consider p = (JJt. 



10. O R D E R 163 

Clearly p is reflexive, and it is easy to see that p is a quasi-order. Now if xpy, 
ypx, then there exist g e M, a e Ji such that xgy, yox. Since M is monotone, either 
g <= a or a c g. Suppose g c a; then xay which, together with yax, gives x = y . 

10 A.12. Theorem. Let A be a set; let g be an order in A. Then there exists a mono-
tone order o on A such that a g. 

P r o o f . By 10 A.11 and 4 C.3, there exists an order a in A which is maximal in 
the set of all orders in A and contains g. This order is monotone by 10 A.10 (and 
clearly is on A). 

Corollary. Every set can be monotonically ordered (more precisely: if A is a set, 
there exists a monotone order on A). 

B. O R D E R E D C L A S S E S 

10 B.l . Definition. Let X be a class, g a quasi-order in X. Then ( X , g> is called 
a quasi-ordered class (a quasi-ordered set, if X and hence g are comprisable). If 
( X , g ) , < Y, ff) are quasi-ordered classes, we shall say that <Y, <r> is embedded in 
<X , g) or that <Y, is a quasi-ordered subclass of < X , g> if Y <= X and a = gr. 

If g is an order on X, then ( X , g> is called an ordered class; if g is a strict quasi-
order in X, then ( X , g) is called a strictly quasi-ordered class; if g is monotone, 
then (X,g} is called a monotone quasi-ordered class (or a monotonically quasi-
ordered class), etc. 

R e m a r k . If o is a quasi-order and o x is the restriction of a to a quasi-order on 
a class X, then we shall often write < X , <r> instead of ( X , axy and say, for convenience, 
that X is endowed with a when we mean that X is endowed with ox. 

E x a m p l e s . (A) For any class X, (X, Jx> is an ordered class. — (B) For any 
class X, (X, X x X} is a quasi-ordered class (observe that any order induced by 
X x X is of the form (<a, ay), whereas the associated order (see 10 A.3) on X is 
equal to Jx. — (C) Let g be the least quasi-order containing all pairs <x, (x)> and 
<x, x>. Within the framework of the theory of classes and sets presented in this book, 
it is hardly possible to prove or disprove that g is an order. Nevertheless, the restriction 
of g to the least g-saturated class containing 0 is an order which is isomorphic t o 
the natural order on N. — In the following three examples, the classes under con-
sideration are endowed with a restriction of the inclusion. — (D) The class 
exp (X x X), i.e. the class of all comprisable relations in a given class X. — (E) The 
subclass of the preceding class consisting of all equivalences in X. — (F) For 
a given algebraic structure a on a set X, the class of all congruences (see 8 C.10) 
under a. 

10 B.2. C o n v e n t i o n s . A quasi-ordered class <X, g> will often be denoted, 
in accordance with convention 7 A.2, simply by X provided its structure g is clear 
from the context. The distinction between ( X , g ) and X will be disregarded in various 

li* 
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expressions and notations; e.g. we shall speak, as usual, of elements of a quasi-
ordered class 3C instead of elements of its underlying class. 

10 B.3. Definition. Let a quasi-ordered class (X, g) be given. Let a e X, b e X. 
Then, as already defined in Section 1, we put ] <-, a ] = g _ 1 [ (a ) ] u (a); [ a, [ = 
= e[(fl)]u(a); = a] ] flj->[ = [ a, ^ [-]*-,« ]; 
| a, b ] = [ a, -> [ n ] <-, b 1, etc. (see 1 C.6). 

Moreover, sometimes (only rarely) the symbol ] « - , - > [ will be used to denote 
the whole class X. 

R e m a r k s and c o n v e n t i o n s . 1) The relation g - 1 occurring above is the in-
verse relation to g in the sense of 1 B.8; if g is a quasi-order (an order, etc.), g~l 

will be termed the inverse quasi-order (order, etc.). — 2) It is easy to see that ] <-, 
a ] n [ a, -> [[ coincides with the class of elements equivalent with a under the 
equivalence associated (see 10 A.3) with the given quasi-order; thus, if this quasi-
order is either strict or an order, then ] <-, a ] n [ a, -»•[ = (a). — 3) We do not 
introduce special terms for the various classes described above and refer to them 
all indifferently as intervals (of a given quasi-ordered class). 

10 B.4. Definition. Let a quasi-ordered class (X, g) be given. A class Y a X 
is called left-saturated (right-saturated) if it is saturated under o - 1 (respectively, 
under g). 

R e m a r k . Let si be a class of sets. If si is left-saturated relative to the order cz 
(i.e., if X e si, Y c X imply Ye si), then si is called hereditary. 

10 B.5. Let g be an arbitrary relation. Then the class of all g-saturated sets 
is completely additive and completely multiplicative. In particular, the class 
of all left-saturated (or right-saturated) subsets of a given quasi-ordered class 
is completely additive and completely multiplicative. 

Remark . Every left-saturated subset of a quasi-ordered class is a union of 
a family of intervals of the form ] <-, a ], and similarly for right-saturated subsets. 

10 B.6. Definition. Let (X, g} be a quasi-ordered class. A class Y <= X is called 
interval-like (under g) if, for any a e Y,b e Y, we have [ a, b ] <= Y. 

Example . Let A be an uncountable set; let exp A be ordered by inclusion. 
Then the set of all countably infinite X <= A is interval-like. 

R e m a r k . We shall show later (10 C.3, 10 C.4) that, roughly speaking, a non-
void set is interval-like if and only if it is an inverse fibre of an order-preserving 
mapping onto an ordered class. 

10B.7. The class of all interval-like subsets of a given quasi-ordered class is 
completely multiplicative and monotonically additive. 

We only indicate the proof for monotone additivity. If <W is a monotone system 
of interval-like subsets, put Y0 = [JW. If aeY0, be Y0, then, for some Yx e<&, 
Y2e<&, we have a e Yu be Y2. Thus either Yt <= Y2 or Y2 cz Yx; in the first 
case a e Y2, hence [ a, b ] c Y2 <= y0. 
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10 B.8. Definition. If {3Ca | a e A} = {<X0, oa) | a e A} is a family of quasi-
ordered sets, then its cartesian (or cardinal) product, denoted by Tl{£a | a e A} 
or n{$Ta}, etc., is by definition the set n{Jir

a} endowed with the quasi-order n{<70} 
(that is, nrel{(Tfl | a e A); see 5 C.2). In other words, the quasi-order of TM£a consists 
of all <{xa}, {ya}> such that xaoaya for each a. - If si = <A, g}, & = <B, <r> are 
quasi-ordered classes, then we denote by si x 38 their product (A x B, g x <t> 
where g x cr is taken in the sense of 5 C.1. 

Remark . We write 'XA instead of W9Ca if all 3Ca are equal to SC. 
Examples . (A) Consider the two-element set (0, l), endowed with the natural 

order. Then it is easy to prove that, for any set B, the ordered set (0, l)B is isomorphic 
(see 10 C.1) with <exp B, <=>. - (B) Let {Xa \ a e A) be a family of sets; let every 
exp-Xa be ordered by inclusion. Then II exp Xa is isomorphic (see 10 C.1) with 
exp (£-X"a) ordered by inclusion. 

10 B.9. Let {Xa \ ae A) be a family of quasi-ordered sets. Then IlXa is ordered 
if and only if every Xa is ordered; the quasi-order ofHXa is strict if and only if 
the quasi-order of every Xa is strict. 

We omit the obvious proof. — Observe, however, that the quasi-order of YlXa 

is not monotone, as a rule, even if the quasi-order of every Xa is monotone; if oa 

are orders, and c'a are the associated strict quasi-orders, then Uo'a is not, in general, 
the strict quasi-order associated with IIcTa. 

10 B.10. Definition. Let si = (A, g>, 3ft = <5, cr> be quasi-ordered classes, 
g being a distinguishing quasi-order (see 10 A.2). Their lexicographical product 
denoted si x lex 3ft or (A x B, g x or simply si x 38 if there is no danger 
of misunderstanding, is the class A x B endowed with the quasi-order p defined as 
follows: <a, b) p < a b ' ) if and only if either aga', a =(= a! or a = a', bob'. 

Remark . The extension of the above definition to the product of finitely many 
quasi-ordered classes is immediate. 

Example . Consider the set 2F of linear real-valued functions on the real interval 
[ 0, -» [; for / e , g e put fog if fx g gx for large x. Then a is an order on & , 
and it is easy to see that (J5", tr) is isomorphic with R x Iex R, R being the set of all 
real numbers endowed with its natural order. 

10 B.l l . The lexicographical product of finitely many ordered (strictly quasi-
ordered, monotonically ordered) classes is an ordered (strictly quasi-ordered, 
monotonically ordered) class. 

C. O R D E R - P R E S E R V I N G M A P P I N G S 

It is intuitively clear how those mappings are defined for quasi-ordered classes 
which will play a role analogous to that of homomorphisms for algebraic structs 
or continuous mappings for topological spaces; for quasi-ordered classes, such 
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mappings will preserve, in some sense, the quasi-order. On the other hand, in con-
tradistinction to the situation for algebraic structs, there are different ways of intro-
ducing "order-preserving" correspondences. For this reason, we shall give a defini-
tion of order-preserving correspondences only for the "single-valued case"; the cor-
responding property e.g. of equivalences will be described explicitly whenever it 
will be needed. 

10 C . l . Definition. Let si = <A, gy, 38 = <B, <r> be quasi-ordered classes. 
A single-valued relation f for A and B is called order-preserving (under g and o) 
or (g, o)-preserving if x e A, y e A, xgy imply ( f x ) a ( f y ) , order-reversing (under Q 
and a) or (g, o)-reversing if it is order-preserving under g and o~l (or, which is the 
same, under g - 1 and a), order-isomorphic (under g and a) or (g, a)-isomorphic 
or simply isomorphic if it is one-to-one and xgy if and only if ( f x ) o(fy). 

A single-valued correspondence / for si and 38 will be called order-preserving, 
order-reversing, order-isomorphic (or simply isomorphic or else an order-iso-
morphism) if its graph gr / has the corresponding property (under the structures g 
and a of si and 3$). An order-preserving (order-reversing) relation or correspond-
ence is called also increasing (decreasing). 

Finally, si and 38 are said to be order-isomorphic (or simply isomorphic) if there 
exists an order-isomorphism of si onto 38. 

Examples . (A) The relation card (seej 9 A.1)] is order-preserving (under <= 
and — (B) As in 10 A.4, example (B), let p be an associative composition on 
a class X. Put v = {x -* y | y = zpx for some zeX). Then v is a quasi-order on X. 
Every relation {x ->• xpa], a fixed, is (v, v)-preserving whereas a relation (x -> bpx} 
is, in general, not (v, v)-preserving. — (C) Let A be a set; for X <= A put yX = A — X. 
Then y : <exp A, <=• > -»• <exp A, c ) is order-reversing, y : <exp A, c > <exp 
is isomorphic. — (D) Denote by a the quasi-order on N obtained in the manner 
described in the example (B) above, if p. is the usual multiplication on N. Let P 
denote the set of all prime natural numbers. For any p e P and any n e N, n ^ 1, 
let cpp(n) be the largest r such that p'on, and let (p(n) = {q>p(n) \ p e P). Put A = 
= N — (0), Then it is easy to see that (p is an order-isomorphic correspondence 
on (A, <7> into <N, 

Remark . It may happen that a mapping f - . t X - t t y is simultaneously increasing 
and decreasing without being constant (e.g. any mapping of {A, Jx> into a reflexive 
quasi-ordered class is increasing and decreasing); however, if 9C is monotone 
and the quasi-order of is distinguishing, then every such mapping is constant. 

10 C.2. Let <,4, g), <B, <r>, <C, t> be quasi-ordered classes. Let \jt be a (g, o)-
preserving mapping relation for A and B, and let cp be a (a, z)-preserving map-
ping relation for B and C. Then (p o \j/ is a (g, x)-preserving mapping relation for 
A and C. 

The proof is straightforward and therefore omitted. 
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R e m a r k . There is a certain analogy between order-preserving mappings 
and homomorphisms. However, there are also striking differences. For instance, 
i f / i s a bijective order-preserving mapping, then it may happen that f~1 is not order-
preserving. A trivial example: / = J : <N, JN> ->• <N, ) . 

10 C.3. Consider an ordered class <A, g} and an equivalence X on A. It is natural 
to ask under what conditions is there an order-preserving mapping / of (A, 
onto an ordered class such that xXx' o f x = f x . We shall not give a complete 
answer, but only a necessary condition (see below) and a sufficient one (see 10 C.4). 

Let si = <A, g), 3b = <B, a> be quasi-ordered classes and let a be distinguishing. 
Let f : -* 3S be an order-preserving single-valued correspondence. Then every 
inverse fibre / _ 1 [ y ] , y e ® , is interval-like. 

P r o o f . Let fx = y,fx = y, XQZ, ZQX'. Then ya(fz), ( f z ) try and therefore fz = y, 
since a is distinguishing. 

10 C.4. Let si = <A, g ) be a quasi-ordered class. Let fbe a mapping of si onto 
a class B; let X be an equivalence on A such that xXx' o f x = fx'. Let every fibre 
of X (i.e. every inverse fibre of f ) be interval-like; suppose that if xXx', yXy', xgy, 
then either x'gy' or xXy. Let a consist of all <£, rj} such that for some x, y we have 
£ = fx, rj = f y , xgy. Then ( l) o is a distinguishing quasi-order on B, (2) / : si -* 
-* <B, oy is order-preserving, and (3) o c. <j' whenever a' is a quasi-order on B 
such that f\si-+ <B, o'} is order-preserving. 

P r o o f . Let £,<jrj, ri<j£. Choose x, y, t, z with fx = f y = rj, xgy, ft = rj, fz = 
tgz. Then yXt, hence either ygz and therefore XQZ, or yXz and therefore T] = £» 

Thus a is a quasi-order. If ¿¡en/, choose x, y, x', y' with fx = fx' = 
f y = fy' = rj, xgy, y'gx'. By the suppositions made, either yXx or ygx which 
implies xXy since / - 1 [ £ ] is interval-like; in each case £ = fx = f y = 

Clearly, f:si^> (B, a} is order-preserving. I f / : si -* <B, u ' ) is order-preserving, 
then let S,or\ and choose x, y with fx = f y = rj, xgy. Since / is order-preserving, 
&'ri. This completes the proof. 

R e m a r k s . 1) The conditions put on X above are not necessary for a to possess 
the properties in questions. For a trivial example, let A consist of three elements 
a, b, c; g = ]Au ( (a , ft)); X = )A u (<a, c), <c, a)). However, it can be shown that 
the conditions in the above proposition are necessary and sufficient in order that 
the assertions concerning a should hold "hereditarily" (in a specifiable sense). — 2) 
Let the conditions described in the proposition be fulfilled. In addition, suppose, 
for convenience, that g is reflexive. Then, for every cross-section g of / , the mapping 
g : <B, cr) <A, g> is an order-isomorphism. 

10 C.5. Observe that if a set M c N is considered as endowed with a quasi-order 
o, then, unless the contrary is explicitly stated, we shall suppose that a is the re-
striction of the natural order (on N) to M. 

Theorem. Every ordered set is order-isomorphic, for some set P, with a subset 
of the ordered set (0, l)p. 
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Proof . Consider an ordered set si = (A, ^ ) . Let P be the set of all order-pre-
serving mappings / : si -* (0, 1). Let F be the mapping of si into (0, l)p which 
assigns to any xe A the element { f x \f eP] from (0, l)p . It is easy to see that F 
is order-preserving. 

Let x be an arbitrary element of A; we are going to construct an order-preserving 
mapping fx of si into (0, l). Put X — E{z | zgx}. Let fx be a mapping of si into 
(0, 1) such that fxz = 0 if z e X, fxz = 1 if z e A — X. If UQV, fxv = 0, then VQX, 
UQX which implies fxu = 0; this proves that fx is order-preserving. 

Clearly, if xe A, y e A, and xgy does not hold, then fyy = 0, fyx = 1, fy e P 
and therefore Fx 4= Fy. Thus, F is injective. Let xe A, y e A; suppose that Fx ^ 
iS Fy in (0, l)p. Then xgy, for otherwise fyx = 1, fyy = 0 which contradicts 
Fx ^ Fy. We have proved that F~l : F\si] -* si is an order-preserving mapping. 

D. B O U N D E D N E S S 

10 D.l. Definition. Let si = <A, g} be a quasi-ordered class. Let X <= A, Y <= A. 
If for every y e Y there exists a n j c e l such that either x = y or ygx, then we shall 
say that X bounds Y from the right or that X right-bounds Y in si (or under g) 
or that X majorizes Y in si (or under g). If for every y e Y there exists an x e X 
such that either x = y or xgy, then we shall say that X bounds Y from the left 
or that X left-bounds or minorizes Y in si (or under g). If a singleton (x) right-
bounds Yin si, we shall also say that x is a right bound of Yin si (or under g) or that 
x right-bounds (or majorizes) Y in si (or under g); for a left-bounding (x), the de-
finitions are analogous. 

Finally, if X left-bounds Y under g, we shall sometimes say that X refines Y 
under g. — The words "in si", "under g", etc., will often be omitted. 

Examples . (A) Let (A, g} be a monotone ordered set. Then the collection of 
all finite sets X c A is majorized, under c:, by the collection of all ] <-, x ], x e A. — 
(B) Let si be the collection of all infinite X <= N such that N — X is infinite. Then si 
is not majorized by any countable 08 <=. si under c . 

10 D.2. Intuitively, elements of a quasi-ordered class are usually thought of as 
ordered either "from left to right" or "upwards". The terminology just introduced 
corresponds to the idea of a "horizontal" arrangement of elements. However, 
traditionally, the terminology corresponding to the idea of elements arranged 
"upwards" is used in many cases. Therefore, we shall also use terminology such as 
an "upper bound" (instead of, and more often than, "a right bound"), a "lower 
bound", etc. We will not list all terms of this kind here, using them freely instead 
of terms connected with the idea of a "left-right" arrangement. 

10 D.3. Let si = <A, g}, = <B, t> be quasi-ordered classes. Let X, Y, Z 
be subclasses of A. If X majorizes Y and Y majorizes Z, then X majorizes Z. 
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If f is an order-preserving mapping of si into 38 and X majorizes Y, then f\X\ 
majorizes / [ Y ] in 3ft. If X majorizes Y in si, U majorizes V in 3ft, then X x U 
majorizes Y x V in si x 38. 

The proof, as well as the formulation of the corresponding proposition involving 
minorization, is left to the reader. 

10 D.4. Definition. Let si = (A, g} be a quasi-ordered class. A class X c A 
is said to be right-cofinal or cofinal from the right (left-cofinal or cofinal from 
the left) in si if it right-bounds (left-bounds) A, i.e. if for any z e A there exists 
xeX such that either x = z or zgx (respectively XQZ). 

If it is clear from the context whether left-cofinality or right-cofinality is being 
considered, then we shall speak simply of a cofinal class. 

E x a m p l e s . (A) Every infinite subset of N is cofinal in <N, — (B) Let M 
be the collection of all finite subsets of N. Then the collection of all Np, p e N , 
is cofinal in <M, <=>. — (C) There is no countable right-cofinal set in <N, 

10 D.5. Let si, 3ft be quasi-ordered classes. Let fbe an order-preserving mapping 
of si into 38. Let X <=• \si\, Y t= If X is left-cofinal (respectively, right-
cofinal) in si, then f \ X ] is left-cofinal (respectively, right-cofinal) in f \ s i \ 

10 D.6. Definition. Let si = (A, g> be a quasi-ordered set. The least cardinality 
of a left-cofinal (right-cofinal) set in si (i.e. the smallest cardinal x such that x = 
= card X for some cofinal set X) will be called the left (right) cofinal character of si. 

R e m a r k . If it is clear which (whether left or right) character is considered, we 
shall speak simply of the cofinal character of si. 

10 D.7. Let si = <A, g) be a quasi-ordered set. Let a be the right cofinal char-
acter of si. Then every right-cofinal set X contains a subset Y with card Y = a. 

P r o o f . Let B c. A be cofinal, card B = a. Put xoy whenever xeX, y e B, 
xgy or x = y; put yxx whenever y e B, xeX, ygx. Since B, X are cofinal, we have 
Do = X, Dt = B. Let o* c o, x* <= r be single-valued, Dt* = B, Da* = X. 
Then clearly Y = E(t* o o*) is cofinal, card Y g card B = a. 

10 D.8. Definition. Let si = (A, g) be a quasi-ordered class. A class X a A 
will be called left-bounded (bounded from below) in si (or under g) if it is left-
bounded (in the sense of 10 D.1) by a singleton, i.e. if there exists an element x0e A 
such that x0gx for every x eX, x #= x 0 ; the definition of a right-bounded (or bounded 
from above) class is analogous. A class which is both left- and right-bounded in si 
vill be called bounded. 

Let X c A. We shall say that a e X is a smallest (least) element (or a first ele-
nent) in X under g (or a g-smallest element in X) if agx for every xeX distinct 
from a. If b e X and xgb for every xeX distinct f rom b, we shall say that a is a largest 
(greatest) element (or a last element) in X under g (or a g-largest element in X). 
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R e m a r k s . 1) In general, there may be many smallest (respectively, largest) 
elements in a quasi-ordered class (example: a class A endowed with A x A). Thus, 
if X c A, it may happen that there are many elements which are smallest (least) 
in the class of all upper bounds of X; each such element is called a least upper 
bound of X, and similarly for greatest lower bounds. We shall return to these questions 
in 10 F. However, if. the quasi-order g of A is distinguishing, then there is at most 
one smallest (respectively, largest) element in every class X <= A. — 2) Terms such 
as "largest set" (in a class of sets) which have been already used are in accordance 
with the above definition. 

10 D.9. Let si = <A, q), 38 = <B, a> be quasi-ordered classes. IfXcA,YczA, 
X left-bounds Y and is left-bounded, then Y is left-bounded. If S <=• A, T c B 
are left-bounded, then S x T is left-bounded in si x 38. If f : si -> 38 is an order-
preserving mapping and X c A is left-bounded, then f\_X~\ is left-bounded in 88. 

We omit the proof. — Observe that the proposition also holds for right-bounded 
classes and, with appropriate changes, for bounded classes. 

10 D.10. Definition. Let si = <A, Q) be a quasi-ordered class. An element 
w e A will be called maximal (respectively, minimal) in si (or under g) if x e A, 
ugx imply xgu (respectively, if x e A, xgu imply ugx). 

Remarks . 1) A largest (a smallest) element in A is maximal (minimal), but 
not conversely, in general. — 2) We have already considered maximal (minimal) 
sets in a class of sets. Their definition given in 3 B.3 is in accordance with the present 
one. 

10 D. l l . Theorem. Let si = <A, g> be a quasi-ordered set. If every monotone 
M <=. A (i.e. any M <=• A such that gM is monotone) is right-bounded, then, for 
any x e A, there exists an element m such that xgm or m = x and m is maximal 
in si. 

P r o o f . Choose xe A. Let Ji be the collection of all monotone sets M <=• A such 
that xe M. Clearly,' Ji is non-empty and monotonically additive. Therefore, by 4C.3, 
there exists a maximal set M0 e Ji. By the suppositions made, M0 is right-bounded; 
let m e A be such that xgm or x = m for any x e M0. We shall show that m is maxi-
mal. Indeed, let m' e A, mgm', m' * m. Then M 0 u (m') is monotone; since M0 

is maximal in M, we obtain m' e M0 and therefore m'gm. 

E. D I R E C T E D CLASSES 

10 E . l . Definition. Let si = (A, a} be a quasi-ordered class. If A is non-void 
and every two-element set X c A is left-bounded (respectively, right-bounded) 
in si, then we shall say that si is left-directed (respectively, right-directed). We 
shall often simply say that si is directed if it is clear from the context which typ: 
of directedness is considered, or in those statements in which "directed" is meait 
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as an abbreviation for both "left-directed" or "right-directed". If X <=. A and 
<X, axy is directed, we shall say that X is directed in si (or under a). 

Remark . Instead of speaking of a "left-directed quasi-ordered class" we shall 
speak simply of a "left-directed class", etc., instead of "a quasi-order a such that 
<A, uy is a left-directed class" we shall say briefly "a left-directed quasi-order" 
(or "a left direction"). 

Examples . (A) The class of all monotone collections of sets is left-directed 
but is not right-directed under c . — (B) The class of all finite sets is left-directed 
as well as right-directed under c . — (C) If a quasi-ordered class has a smallest 
(a largest) element, then it is left-directed (right-directed). — (D) If a r e groups, 
put ^ iQ^z whenever there exists a homomorphism of ^ onto Then Q is a left-
and right-directed quasi-order. If 6 is the set of all subgroups of a fixed group 
then Q restricted to G is, in general, right-, but not left-directed. 

10 E.2. Let si, 38 be quasi-ordered classes. If f is an order-preserving mapping 
of si onto 38 and sd is directed, then 38 is directed. If si and 38 are directed, then 
si x 38 and si xUx38 are directed. If si is right-directed and has no greatest 
element, 38 is arbitrary non-void, then sd xitx38 is right-directed. 

The proof is easy and therefore omitted. 
R e m a r k . It is evident that a subclass of a directed class need not be a directed 

class. According to 10 C.5, it is even possible to embed every ordered set into an 
ordered set which is left- and right-directed. 

10 E.3. Let <A, Q> be a quasi-ordered class. Then the class of all left-directed 
(or of all right-directed) sets X <= A is monotonically additive. 

The proof is straightforward and proceeds along well-known lines. 

10 E.4. Definition. Let si = {A, Q} be a quasi-ordered class. A non-void class X <= 
c A will be called a left filter in si (or under g, or a left Q-filter) if X is left-directed and 
right-saturated in si (i.e. if (i) for any xeX, y e X there exists a z e X such that x 
and y belong to [ z, -»• [, and (ii) [ x, -> [ c X whenever x e X). The definition 
of a right filter (in si or under Q, or a right Q-filter) is similar (a right filter under Q 
may also be defined as a left filter under g - 1 ) . 

If X is a left (respectively, right) filter under g, then we shall also say that (X, gx} 
is a left (respectively, right) filter. 

Examples . (A) The class of all finite sets is a right c-filter. More generally, a class 
of sets is a right c-filter if and only if it is additive and hereditary. — (B) In a mono-
tone quasi-ordered class, every left-saturated (right-saturated) non-void class is a 
right (left) filter. — (C) For m e N, n e N put mgn if and only if m divides n. Then 
every left g-filter is equal to some E[kn | k e N} where n e N. 

10E.5. C o n v e n t i o n . If it is clear from the context whether left or right filters 
are considered, and also in those statements in which "filter" can be replaced by 
"left filter" as well as by "right filter", we shall often speak simply of filters, etc. 



172 II. ALGEBRAIC STRUCTURES AND ORDER 

10 E.6. Let si = < A, a} be a quasi-ordered class. Then the class of all compris-
able filters is monotonically additive. 

P r o o f . The union of a monotone collection of left-directed right-saturated sets 
is left-directed by 10 E.3 and right-saturated by 10 B.5. 

10E.7. Definition. A filter M in a quasi-ordered class si = {A, g} is called 
proper if M * A, maximal if it is proper and, for any proper filter M x in A, M <= 
c M1 implies M t = M. 

10E.8. Theorem. Let si = (A, g) be a quasi-ordered set. Suppose that there 
is a largest (smallest) element in A. Let F <= A be a proper right (respectively, left) 

filter in A. Then there exists a maximal right (respectively, left) filter M in si 
such that M => F. 

P r o o f . Let b be a largest element in A. Let F be the collection of all right filters X 
in si such that X => F, b $ X. By 10 E.7, F is monotonically additive. Therefore, by 
4 C.3, there exists a filter which is maximal in F. Since every right filter containing b 
coincides with A, M is a maximal filter. 

F. J O I N A N D M E E T 

Recall that, given a quasi-ordered class si = <A, g}, an element u e A is called 
a left or lower bound of a class I c i if I c [ u , -> and an element v is called 
a right or upper bound of X c A if X <= ] «-, v ] . If a class X c: A is bounded from 
below (above), then the class of all lower (upper) bounds of X may contain a greatest 
(a least) element, i.e. a greatest lower bound (respectively, a least upper bound) 
of X. In this subsection, we consider some properties of such bounds and in particular 
orders under which every finite non-empty set has a greatest lower bound and a least 
upper bound. 

10 F. l . Definition. Let si = (A, g) be a quasi-ordered class; let X <= A. An ele-
ment u e A will be called a greatest lower bound or a meet of X in si if the following 
holds: (1) X <=. [ u, [, i.e., for any xeX, either ugx or u = x, (2) if u e A, 
X c [ u', [, then u' e ] <-, u ] , i.e. either u'gu or u' = u. An element v e A will 
be called a least upper bound or a join of X in si if the following holds: (1) X c 
C= ] <-, V ] , (2) if v' e A, X <= ] <-, V' ] , then v' e [ v, -> [. The class of all joins 
of X in si will be denoted by Sup^ X (or simply Sup X), that of all meets of X in si 
will be denoted by I n f ^ X (or simply Inf X). 

C o n v e n t i o n s . 1) If si = <A, g> is a quasi-ordered class and 3C = \xb | b eB} 
is an indexed class of elements of A, then provided there is no danger of misunder-
standing, we shall speak of a greatest lower bound, etc., of {x6} instead of that of 
E{X(,}, and we shall write Sup {x,,} instead of Sup E{x,,}. — 2) We shall sometimes 
use the abbreviations l.u.b. for "least upper bound", g.l.b. for "greatest lower bound". 

E x a m p l e s . (A) Let S be the class of all sets; consider the ordered class <S, c > . 
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Then every non-empty class X <= S has exactly one meet, namely whereas 
Inf 0 = 0 since there is no largest element in S. A class X <=. S has a join if and only 
if X is comprisable; in this case the join is unique and equal to U-^- — (B) Let M 
be a fixed set. Then in <exp M, c ) every set X cexp M has exactly one join U ^ a ^d 
exactly one meet C\MX (see 2.11). - (C) In <N, Sup 0 = (0), Inf 0 = 0; if 
0 #= X c N, then Sup X = 0 if and only if X is infinite; otherwise Sup X = (w), 
where w is the greatest number in X. — (D) If m, n are integers, put mgn if and only 
if m divides n. Then Inf 0 = (0), Sup 0 = (1, - 1 ) ; if 0 4= X e Z, X is finite, then 
Sup X consists of all least common multiples of elements of X. — (E) Let M be an 
infinite class. Put A = exp M; for xe A, y e A, put xgy if and only if either x = y 
or the set y — x is infinite whereas x — y is finite. Then si = <A, is an ordered 
class. If s e A, t e A are disjoint infinite sets, then (s, t) is bounded from above, but 
there is no join of (s, f). 

10 F.2. As shown by the above examples, the classes Inf^ X, Sup^ X may contain 
many elements or a single element or may be void. It is easy to give a condition 
(see 10 F.4) necessary and sufficient for all Inf X, Sup .XT to be singletons or void. 
Questions relating to the existence of meets and joins are far more complicated (and 
more important). We shall consider some aspects of these briefly, with a view to 
applications mainly in Chapter VI and VII. 

We add some minor remarks. — 1) Clearly, a join (meet) of X in <A, Q) is a meet 
(join) of X in (A, g-1>. — 2) It is easy to see that if gt, g2 are quasi-orders on A 
and u Jx = g2 u JA, then joins and meets of classes X c A under gt and g2 

coincide. — 3) Every non-empty Sup X or Inf X is equal to some [ a , a ]; conversely, 
Sup (a) = Inf (a) = [ a, a ]. 

10 F.3. Definition. Let si = (A, g} be a quasi-ordered class. Let X c A. If 
there exists exactly one element of A which is a greatest lower bound of X, then 
this element is called the inftmum (or the greatest lower bound or the meet) of X 
in si, and is denoted by inf^ X (or simply by inf X) or by (or simply by A^)-
If there exists exactly one element of A which is a least upper bound of X, then this 
element is called the supremum (or the least upper bound or the join) of X in si, 
and is denoted by sup^ X (or simply by sup X) or by V^X (or simply by VX). 

If X has either more than one or no greatest lower bound, we shall often say, for 
convenience, although not quite correctly, that "inf X does not exist" and simi-
larly "sup X does not exist". 

C o n v e n t i o n . If <X = {x61 b e B} is an indexed class of elements of A, we shall 
of:en denote sup^ E{x61 b e B} simply by sup^ {xb\be B) or V^{xb \ b e B} or 
also by abbreviated symbols such as sup xb, etc. A similar convention is adopted for 
i n f ^ | beB}. 

If x e A, ye A, then we shall write x v^y or simply x v y instead of V^(x, y), 
and x a ^ y or simply x Ay instead of f\j(x, y). 
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E x a m p l e s . Consider the examples f rom 10 F.1. In (A), we have \/X = (JX for 
any comprisable class of sets and f \ X = for any non-empty class of sets X ; 
there exists no infimum of 0, i.e. "A 0 does not exist". In (C), for any m e N, n e N 
m v n (respectively m A n) is the greater (the smaller) of the numbers m, n. In (D) 
sup X exists if and only if 0 e X or X is infinite (for otherwise Sup X consists of 
two elements m and — m). 

R e m a r k . We point out that the terms "supremum", "infimum", will be used only 
if there is a unique l.u.b. or g.l.b. 

10F.4. Let si = (A, g} be a quasi-ordered class. Then the following conditions 
are equivalent: (1) for any X c: A, Sup X contains one element at most, (2) for 
any X <=. A, I n f X contains one element at most, (3) g is a distinguishing quasi-
order. 

P r o o f . Let (1) be satisfied. Let x e A, ye A and let xgy, ygx. Then x e Sup (x), 
j> e Sup (x), hence, by (1), x = y. Therefore, (1) => (3), and similarly (2) => (3). -
Let (3) be satisfied. If M c A, xe Sup M, ye Sup M, then xgy (or x = y) and 
ygx (or y = x); since g is distinguishing we get x = y. Thus (3) => (1), and similarly 
(3) => (2). 

The above proposition answers the problem of the uniqueness of joins and meets. 
As for their existence, we are going to consider the important case where every finite 
non-empty set has a join or a meet or both. Complete quasi-ordered classes, defined 
by the condition that every non-empty subset has a join and a meet, will be considered 
in the following subsection. 

As for "finitely complete" classes, they will be examined in the present subsection, 
as already indicated. 

10 F.5. Definition. Let there be given a quasi-ordered class si = <A, g}. If 
every finite non-empty X c A has a join (respectively, a meet) in si, then we shall 
say that si is finitely join-complete (meet-complete). If every finite non-empty 
X c A has both a join and a meet we shall say that si is finitely complete (or 
finitely order-complete). Finally, if si is finitely complete and its quasi-order g is 
distinguishing, i.e. if s u p X and infAT exist for any finite non-void X <= A, we shall 
say that si is lattice-quasi-ordered; if, in addition, g is an order, we shall say that si 
is lattice-ordered; a comprisable lattice-ordered non-void class will be called a 
lattice (see, however, 10F.16). 

E x a m p l e s . (A) Let M be an uncountable set. Let A consist of all finite sets 
X cz M; let B consist of all finite and all uncountable sets X c M; let C consist 
of all X c M containing n elements at most, with n e N fixed, n > 0. Then 
<A, <=A) is finitely complete (even a lattice), <B, <=B) is finitely join-complete, but 
not finitely meet-complete, <C, <=c) is finitely meet-complete, but not finitely join-
complete. (B) Any of the following collections is a lattice (if endowed with <=): 
the collection of all subgroups of a given group, of all subrings of a given ring, etc. 
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Remark . Clearly, si is finitely join-complete if and only if x v y exists for any 
x, y from si. 

10 F.6. Before passing to join-stable classes, join-preserving mappings, etc., some 
remarks are added concerning the relationship of Sup^ and Supa , where 88 is 
a subclass of si, and other related questions. 

Let si = <A, g) be a quasi-ordered class. Let B <=. A, 88 = <B, gB>. Let X a B. 
It is clear that B n Sup^ X c Sup^ X and that if x e Sup^ X, y e Sup^ X, then 
xgy or x = y; in particular, if sup^ X, sup^ X exist, then either they are equal or 
(sup^ X) q (sup^ X). Similar assertions hold for Inf. It may happen that sup^ X 
is actually distinct from sup a X; for an example see 10 ex. 14. 

For these reasons it is useful to find conditions under which a subclass of a finitely 
complete class is finitely complete. 

10 F.7. Definition. Let si = <A, g} be a quasi-ordered class. A class B c A 
is called, respectively, (1) join-stable, (2) meet-stable, (3) lattice-stable in si (or 
under g) if, for any finite non-empty X <=• B, (1) every join of X belongs to B; 
(2) every meet of X belongs to B; (3) both (1) and (2) hold. 

Remark . It may happen that a class is join-stable without being meet-stable, 
and also conversely; see 10 ex. 15. 

10F.8. If a quasi-ordered class si = (.A, g} is finitely join-complete (finitely 
meet-complete, finitely complete) and B <=. A is join-stable (meet-stable, lattice-
stable respectively) in si, then <B, gB> is finitely join-complete (finitely meet-com-
plete, finitely complete respectively). 

Proo f . Consider the case of finite join-completeness. If X <=• B is finite, X 4= 0, 
then Sup^ X 4= 0 and since B is join-stable, Sup^ X <= B which proves the assertion. 
The other cases are analogous. 

Remark . The above conditions are not necessary, however, for <£, gBy to be 
finitely join-complete, etc. For instance, let <G, o) be a group and let B be the col-
lection of all sets H c G which are subgroups (under a). Consider the ordered set 
si = <exp G, <=>, which is clearly a lattice. The ordered subset 88 = <B, c B > 
is a lattice. However, in general, it is not join-stable in <exp G, <=• > since the union 
of two subgroups is not, in general, a subgroup; if H, H' are subgroups, then 
H v ^ H' = H u H' is distinct, in general, from H v &H'. 

10 F.9. Let si = </4, g) be a quasi-ordered class. Then the intersection of any 
class, as well as the union of any monotone class of join-stable (in si) subsets 
is join-stable in si, and similarly for meet-stable and lattice-stable subsets. 

The proof is left to the reader. 
10 F.10. An order-preserving mapping does not necessarily preserve joins and 

meets. For instance, consider the ordered sets si, 88 from 10 F.8, remark. Let F 
be the identical embedding of 88 into si; then F is order-preserving and meet-pre-
serving, but, in general, F(x v m y) 4= (Fx) v ^ (Fy). 
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In view of these facts, it is convenient to consider mappings which preserve joins 
or meets or both. 

Definition. Let si = <A, g}, 88 = <B, T> be quasi-ordered classes. A mapping 
F of si into 88 is called join-preserving (meet-preserving) if the following holds: 
if X c: A is finite non-empty and x is a join (a meet) of X, then Fx is a join (a meet) 
of F[X]. If F is both join- and meet-preserving, then it is called lattice-preserving. 

10 F . l l . Let si = <A, g}, 88 = <B, t ) be quasi-ordered classes. If F is a join-
preserving or meet-preserving mapping of si into S$, then F : <A, g) <B, x u Jb> 
is order-preserving. 

P r o o f . If xgy, then y is a join of (x, y), hence Fy is a join of (Fx, Fy), and there-
fore either (Fx) x (Fy) or Fx = Fy. 

R e m a r k . Clearly, if Q is a strict quasi-order on a class A containing more than 
one element, then J : <A, g u J,,) -»• <A, g) is lattice-preserving, but is not order-
preserving. 

10 F.12. Let si = <A, g>, 8b = <B, t> be quasi-ordered classes. Let F = 
= F : si -> be bijective. Then the following conditions are equivalent: (1) both 
F and F~l are join-preserving; (2) both F and F~l are meet-preserving; (3) if 
x e A, y e A, x + y, then xgy o (Fx) x (Fy). 

P r o o f . By 10 F.11, (1) => (3) and (2) => (3). - If X c A is finite non-empty and a 
is a join of X, then Fa is an upper bound of f\X~\ in B. Also let b be an upper bound 
of f\X~\ in B. Then F~lb is an upper bound of X in si, hence F~lb = a or ag(F~1b). 
If F~lb = a, then b = Fa; if not, then (Fa) xb. This proves that Fa is a join of F[X]. 

Definition. Let si, 88 be quasi-ordered classes. A bijective mapping F of si onto 
0b is called a join-isomorphism or a join-isomorphic mapping if it satisfies the above 
conditions (1) —(3). 

R e m a r k s . 1) Clearly, if si, 88 are ordered classes, then a bijective mapping F: 
si —• 88 is join-isomorphic if and only if it is order-isomorphic. — 2) Let g, a be 
quasi-orders on A. Then J: <A, g) <A, <r> is a join-isomorphism if and only if 
E u JA = A  U ¡A-

10F.13. Let si = <A, g), 88 = <B, x) be quasi-ordered classes. Let F be a map-
ping of sd onto Sb. If si is finitely join-complete (respectively, finitely meet-com-
plete, finitely complete) and F is join-preserving (respectively, meet-preserving, 
lattice-preserving), then 88 is finitely join-complete (respectively, finitely meet-
complete, finitely complete). 

P r o o f . Let xeB, y e B; choose u, v such that Fu = x, Fv = y. Let w be a join 
of u and v in si; then Fw is a join of x and y in SS. In the remaining cases, the proof 
is analogous. 

R e m a r k . In particular, if si is lattice-ordered, 88 is ordered and F is lattice-
preserving, then 88 is lattice-ordered. 
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As shown above (see 10F.8), an identical embedding of an ordered class into 
an ordered class is not necessarily join-preserving. It is convenient to give a special 
name to classes for which this embedding is join-preserving or meet-preserving, etc. 

10 F.14. Definition. Let si = <A, g} be a quasi-ordered class. A class B <= A, 
(as well as the quasi-ordered class <B, gB)) is called join-preserving (meet-preserving, 
lattice-preserving) in si (or under g) if the mapping J : <fl, gB> ->• si has the pro-
perty in question. 

Thus B a A is join-preserving in si = (A, g) if and only if, for any finite 
non-empty X cz B, every join of X in <B, gB) is a join of X in si. 

Examples . (A) Every disjoint class of sets is lattice-preserving (in a trivial 
manner) under c:. — (B) If <B, T> is an ordered class, then the class of all interval-
like sets X c Bis meet-preserving, but not join-preserving under c . 

Observe that, under a quite natural additional condition, every finitely join-com-
plete join-preserving class is join-stable (see below, 10 F.15). Therefore, join-preserving 
but not join-stable classes are often somewhat artificial, and similarly for meet-
preserving and lattice-preserving classes. Only one proposition on join-preserving 
classes is given here. Further examples and some propositions concerning join-pre-
serving classes are deferred to 10 ex. 16—19. 

10 F.15. Let si = <i4, Q) be a quasi-ordered class; let B <= A, 88 = <B, gBy. 
If si is finitely join-complete and B is join-stable in then 88 is finitely join-
complete and join-preserving in si. If the quasi-order g is distinguishing, 88 is 
finitely join-complete and join-preserving in si, then 88 is join-stable in si. 

Proof . By 10F.8, B is finitely join-complete. Let X <= B be finite non-empty. 
If w is a join of X in 88, and v is a join of X in si, then veB (since B is join-stable) 
and therefore either w = v or wgv, vgw; in both cases, clearly, w is a join of X in si; 
thus 88 is join-preserving in si. We turn to the second assertion. Let X c B be finite 
non-empty. Let v be a join of X in There exists a join w of X in 88, and since 88 
is join-preserving, w is also a join of X in A. Since g is distinguishing, every X <= A 
has one join at most; hence v = w, v e B. 

10 F.16. We are going to show that if si is lattice-quasi-ordered, then V^ , 
are commutative semi-group structures on \si\ satisfying certain further conditions; 
conversely, starting from a pair of associative commutative compositions of a special 
kind to be described below, a lattice-order is obtained. 

Definition. Let o, p be commutative associative compositions on a class A. If 
xp(xoy) = x, xo(xpy) = x for any x E A, y e A, then we shall say that <<x, 
is a lattice structure on X, and <X, cr, p~) will be called a lattice-structured class; 
if X is a non-void set, then (X, a, p) will be termed a lattice (thus we use the word 
"lattice" in a twofold sense, cf. 10 F.5). 

Remark . It is easy to show that xox = x, xpx = x holds in every lattice-struc-
tured class. 

12 — Topological Spaces 
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E x a m p l e s . (A) <(J, f)> is a lattice structure (as well as a semi-ring structure). — 
(B) Let <S be a group. Consider the set T of all subgroups of <§. If H1 e T, H2e T, 
let H ^ H z be the smallest subgroup containing both Hi and H 2 , put H ipH 2 = 
= Hl n H2. Clearly, <r , a, p} is a lattice; it is easy to show that <r , a, p) is not 
a semi-ring, in general (since the distributive law does not hold). 

10 F.17. Theorem. Let stf = <A, g> be a lattice-quasi-ordered class; let g be 
distinguishing. Then 's a lattice-structure on A. 

Let a be a commutative associative composition on a class A such that xox = x 
for any x e A; denote by g the class of all pairs <x, y> such that xoy = y Theng 
is an order, (A, g> is finitely join-complete and, for any x e A, y e A, xoy is the 
join of x and y under g. 

Let <tr, p) be a lattice structure on a class A. Then there exists exactly one order g 
on A such that, for any x e A, y e A, xoy is the join and xpy is the meet of x and y 
under g. 

P r o o f . I. Let si possess the properties indicated in the first assertion; let \J, f\ be 
written instead of \ j a n d ^ instead of g. It is clear that V and / \ are com-
mutative associative compositions. If x e A, y e A, then x ^ x v j ; , XA y ^ X, 
and hence x A (X V y) = x, x v (x A y) = x which proves the first assertion. — 
II. Let a, g possess the properties indicated in the second assertion. If <x, e g, 
<y, z ) e g, then xoy = y, yoz = z, and hence xaz = xa(yoz) = (xoy) oz = 
= yoz = z; thus g is transitive. Clearly <x, x ) e g for any x e A; if <x, y> e g, 

x) e g, then xoy = y, yox = x and therefore x = y. We have proved that g 
is an order; we shall now write ^ instead of g. It is clear that x ^ xoy, y xoy 
for any x e A, y e A; if z e A, x ^ z, y ^ z, then xaz = z, yaz = z, hence 
(xay) az = z and therefore xay ^ z. This proves that xoy is the join of x and y 
under g. We have proved that every two-element set (x, y) c. A has a join (namely, 
xoy). This implies that (A, g> is finitely join-complete. — III. We are going to 
prove the third assertion. It is easy to deduce from II that there exists exactly one 
order g (respectively, t) on A such that, for any x e A, y e A, the join of x and y 
under g (under T) is equal to xoy (respectively, xpy). To complete the proof it is 
sufficient to show that % = Q~y. Now, if xgy, then xoy = y, hence xpy = xp(xoy) = 
= x and therefore yxx\ conversely, if yxx, then ypx = x, hence yox = yo(ypx) = y 
and therefore xgy. 

G. C O M P L E T E N E S S 

10 G.l . Definition. A quasi-ordered class (A, g} is called complete (or order-
complete) if every non-empty set X <= A has a join and a meet, boundedly complete 
(or boundedly order-complete) if every non-empty right-bounded set X <= A has 
a join and every non-empty left-bounded set X c A has a meet. 

R e m a r k s . 1) Observe that we do not require the existence of a join or a meet 
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of the void set or of a non-comprisable class X <= A, and that joins and meets are 
not required to be unique. — 2) We do not define join-complete, meet-complete, 
etc., classes since they differ only slightly from complete classes (see 10 C.3). — 3) Pro-
perties of complete and boundedly complete quasi-ordered classes are closely related. 
It is easy to see that if we add two further elements to a boundedly complete class, 
"the first element" and "the last element", then we obtain a complete quasi-ordered 
class (see 10 G.5). For these reasons we shall often give statements concerning 
either complete or boundedly complete classes only, leaving to the reader the task 
of stating the corresponding propositions for the other property. — 4) Two important 
related properties, namely countable completeness and monotone completeness, 
are dealt with briefly in the exercises (see 10 ex. 20, 22). Observe that e.g. countable 
join-completeness and countable meet-completeness are essentially different. 

Examples . (A) Let S be the class of all sets. Then SP = <S, is complete. 
The class SP x SP is also complete whereas SP x lcx SP is not (e.g. if A„, n = 1, 2 , . . . , 
are non-empty sets, C\An = 0, then the set of all (An, 0 ) has no meet). — (B) <N, ^ > 
is boundedly complete, but not complete, for the set N has no join. 

10 G.2. Let si = (A, g) be a quasi-ordered class; let B <= A. Suppose that (1) 
every non-empty set X c B (every non-empty X <= B bounded from above in si) 
has a join in si, (2) every x e A is a join in si of some set X <=• B. 

Then every non-empty set X cz A (every non-empty X <=. A bounded from 
above in si) has a join in si. If si is comprisable, then si is boundedly complete. 

Analogous assertions hold if "above" is replaced by "below", "join" by "meet". 
Proof . I. I f 0 4 = Z < = A and the set X is bounded from above in si, let { Yx | x e X} 

be a family of subsets of B such that, for any x eX, the element x is a join of Yx 

in si. Put Y = U ^ - Let b be an upper bound of X in si\ then, clearly, b is an upper 
bound of Y; we may suppose that Y 4= 0; therefore, by supposition (1), the set Y 
has a join y*. Since y* is an upper bound of Yx for each x, we have xgy* or x = y* 
for every xe X. Let y' be an upper bound of X. Then, clearly, y' is an upper bound 
of every Yx, hence also of Y = U^*» and therefore y*gy' or y = y'. We have proved 
that y* is a join of X. 

II. Let si be comprisable; let X c A be bounded from below. Let Z be the class 
of all lower bounds of X. Then, by supposition, Z is a non-empty set and therefore Z 
has a join. If z is a join of Z, then clearly z is a meet of X. 

Remark . If we replace the words "bounded ... in si" by "bounded ... in 
<B, £>>" in condition (1), then we obtain a false statement. Example: A is the 
class of all finite and all uncountable sets, si = <A, <=A}, B consists of all finite 
sets. 

10 G.3. Theorem. Let si = <A, g) be a quasi-ordered set. If every non-empty 
X <= A bounded from above (respectively, from below) has a join (a meet) in si, 
then si is boundedly complete. If every non-empty X <= A has a join (a meet) 
in si, and there is a least (greatest) element in si, then si is complete. 

12« 
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This follows at once from 10 G.2. 
Remark . If is not comprisable, the assertion does not hold in general; see 

10G.1, example (A): every non-empty subset of SP x ,CI SP has a join, but SP x leKSf 
is not complete. 

10 G.4. In connection with the above theorem and remark, it seems natural 
(provided we are interested not only in sets but also in non-comprisable classes) 
to investigate quasi-ordered classes every subclass of which has a join and a meet. 
However, we have chosen completeness in the sense of 10 G.1 as the basic property 
to be examined here. The reason lies in the fact that various classes of structs and 
other related classes ordered (or quasi-ordered) in a natural way are complete but 
do not satisfy the stronger condition that every subclass is to possess a join and 
a meet. 

10 G.5. In 10 G.1 we have roughly indicated the connection between completeness 
and bounded completeness. Now we give a precise statement. 

Let si = (A, g} be a quasi-ordered class; let a be a least, and b be a greatest 
element in sd. Then the following condition are equivalent: (1) si is complete, 
(2) ] a, b [ is boundedly complete under g. 

The proof is immediate. 

10 G.6. We intend to show that it is possible to embed any quasi-ordered set si 
into a complete one, say si*. In a striking difference with analogous propositions 
concerning, for instance, metric spaces (see 41 ex. 1), uniform spaces (see 41 B), etc., 
such a completion is by no means unique if we require only that si should be 
"dense" in si*, in an appropriate sense. Of course, if more stringent requirements 
are imposed, then uniqueness (naturally up to an isomorphism) can be achieved. 

Before stating propositions concerning completion (see 10G.12), it is useful to 
introduce "complete" properties corresponding to join-stability, join-preservation, etc. 

10 G.1. Definition. Let si = <A, g> be a quasi-ordered class. A class B <= A is 
called, respectively, (1) completely join-stable, (2) completely meet-stable, (3) com-
pletely lattice-stable in s4 (or under g) if, for any non-empty set X <=• B: (l) every 
join of X belongs to B; (2) every meet of X belongs to B; (3) both (1) and (2) hold. 

We defer to 10 ex. 15, 21, 23 some remarks and examples concerning these 
concepts. 

Proofs of propositions below are omitted and the reader is invited to carry them 
out as an exercise. 

10 G.8. If a quasi-ordered class si = (A, g} is complete (respectively, boundedly 
complete) and B cz A is completely join- (or meet-) stable, then <B, gB) is complete 
(respectively, boundedly complete). 

10 G.9. Let stf = <A, g) be a quasi-ordered class. Then the intersection of any 
class of completely join- (or meet- or lattice-) stable (in si) subsets is join- (or 
meet- or lattice-) stable in si. 
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10 G.10. Definition. Let si = <A, g}, 38 = (B, t> be quasi-ordered classes; 
let F be a mapping of si into 38. Then F i s called completely join- (meet-) preserving 
if the following holds: if X cz A is a non-empty set and x is a join (meet) of X in si, 
then Fx is a join (meet) of F [X] in <F[^4], r ) . If F is both completely join-preserving 
and completely meet-preserving, then F is called completely lattice-preserving. 

If si = </4, g) is a quasi-ordered class, then a class M <=. A will be called com-
pletely join- (or meet-, or lattice-) preserving in si if the identical mapping J: 
: <M, Qm} -*• si has the property in question. 

Clearly, M is completely join-preserving in si if and only if, for any non-empty 
set X <= M, Supjy X cz Sup^ X, i.e. every join of X in M is a join of X in si. 

10 G.l l . Let si = <i4, g> be a quasi-ordered class. Let M be a class of subsets 
of A such that (1) M contains every ] <-, a [ u (a), a e A; (2) every X e M which 
is not of the form indicated in (l) is left-saturated and completely join-stable 
in si, and has no join in si. Put XxY if X e M, YE M and either X cz Y, X + Y 
or for every xeX there is an element y e Y with xgy. 

Then <M, T> is a quasi-ordered class. Let F be the mapping of si into </W, x} 
which assigns J <-, x [ u (x) to x e A. Then F is a completely join-preserving 
mapping, F : si F\si] is an order-isomorphism. 

If Z cz A, X e M, Z c X and Z is cofinal in X, then X is a join of F [Z] in <M, T>; 
in particular, every X e M is a join of F [X] in </M, T>. Finally, if XEM, Ye M 
and XTY, YXX, then either X = Y or X e F[A], YEF[A]. 

P r o o f . I. Let XTY, YXZ. If X <= Y, X * Y, Y <= Z, Y + Z, then clearly XXZ; 
if X c Y, X 4= 7 and for each y e Y there exists a z e Z such that ygz, then for each 
x eX there exists a z e Z with xgz, hence XXZ; the other cases are similar. Thus, 
T is a quasi-order. 

II. Let a, b be elements of A, agb. Then xgb for every x e Fa, hence (Fa) x (Fb); 
conversely, if (Fa) x (Fb), then either agy for some y e Fb, hence agb, or Fa c Fb, 
Fa =t= Fb, hence a e Fb, a + b, agb. Thus F : si -> F[si] is an order-isomorphism. 
Let X cz A be a non-empty set and let a e A be a join of X in si. Clearly, Fa is an 
upper bound of F[X] in <M, T>. Let Z e M be an upper bound of F [X] in x). 
If Z = Fz for some z e A, then z is an upper bound of X, agz or a = z and therefore 
(Fa) xZ or Fa = Z. If not, then Z is left-saturated and completely join-stable. Since, 
for any xeX, (Fx) xZ or Fx = Z, we get Fx cz Z for every x e X, X cz Z and there-
fore, Z being completely join-stable, a eZ, from which it follows that either Fa = Z 
or (Fa) xZ. Thus Fa is a join of F [X] which proves that F is completely join-preserving. 

III. Let XeM. Clearly, (Fx) xX or Fx = X for every xeX. Now let Ye M 
be an upper bound of F [ Z ] in </M, x). If Y£ F\_A~\, then, for any xeX, either xgy 
for some y e Y, hence x e Y (for Y is left-saturated) or Fx e Y; in any case, X cz Y 
and therefore either XxY or X = Y. If Y = Fb, then b is an upper bound of AT in si, 
from which it follows that Xx(Fb) or X = Fb. This proves that X is a join of F [X] 
in <M, r ) . Let Z cz A, XeM, Z a X and let Z be cofinal in X. Clearly, X is an 
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upper bound of F[Z]. If Y is an upper bound of F[Z], then it is easy to see that Y 
is also an upper bound of hence, as shown above, XrY or X = Y. This proves 
that AT is a join of F\Z\. 

IV. If XxY, YrX, then it is easy to prove that either X = Fa, Y = Fb for some 
a E A, b e B, or X <= Y, Y <= X, hence X = Y. 

Remarks . 1) Clearly, an analogous proposition is true with joins replaced 
by meets, sets ] <-, a [ u (a) by sets ] a, [ u (a), etc. — 2) Observe that a class 
M with the properties described above exists if and only if every ] <-, a [ is compris-
able. However, the above proposition can also be extended, with appropriate changes, 
to more general cases. 

10 G.12. Theorem. Let sd = </4, g} be a quasi-ordered set. Then there exists 
a complete quasi-ordered set si* = g*) such that (1) A is identically em-
bedded in si*, i.e. A <=. A*, Q = g*; (2) if xg*y, yg*x, then either x = y or x e A, 
y e A; (3) if an element a e A is a join (a meet) of a set X <= A in si, then a is 
a join (a meet) of X in si*, (4) every x e A* is a join of A n ] <-, x ] and a meet 
of A n [ x, [ . 

P roo f . In 10 G.11, let M consist of all ] <-, a [ u (a), a e A, as well as of all 
those sets X <= A which are join-stable, have no join and fulfil the condition 
(*) X consists of all lower bounds of the set X* of all upper bounds of X. 
Then there exists a completely join-preserving mapping F of si into <M, T> 
such that F : si -* F[si] is an isomorphism. There exists a one-to-one relation g 
with Dg A, Eg = M such that gx = Fx for x e A. Put A* = Dg, g* = g~l o 
o t o g. Then assertion (1) is evident since F : sd -* F[si] is an order-isomorphism. 
Since g : si* -* </M, t> is an order-isomorphism, assertions (2) and (3) follows 
easily from 10 G.11. 

We are going to prove assertion (4). For any X e M, let P(X) = ] <-, X ], Q(X) = 
= [ * , - > [ (intervals in <M, t>). Clearly, F[A] n P(X) = F[X]; by 10 G.11, X is 
a join of F[X] in </VI, r>. It is easy to see that F[A~] n Q(X) = £ [ * * ] where X* 
is the set of all upper bounds of the set X in A. Clearly, X is a lower bound of the set 

in <M, r>. On the other hand, if YE M is a lower bound of F[X*] in <M, T>, 
then, for every z e X*, either Yt(] <-, z [ u (z)) or Y" = ] «-, z [ u (z). Therefore, 
for any y e Y, z e X*, either ygz or y = z. By property (*) of M, this implies that 
Y c X, hence YxX. This proves that A" is a meet of F[X*]. We have shown that, 
for any X e M, X is a join of F[A\ n P(X) and a meet of F[A~\ n Q(X) .This implies 
at once the assertion (4). 

If X c A is a non-empty set without a join in sd, then let Y be the intersection 
of all sets containing X and satisfying condition (*) indicated above. It is easy to see 
that Y satisfies condition (*). If z is an upper bound of X in sd, then X <=]•<-, z ], 
hence Y <=. ] z ] ; thus, upper bounds of X and Y coincide, and therefore Yhas no 
join. We have shown that Ye M\ it is easy to prove that the element Ye A* is a join 
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of X in si*. We have proved that every non-empty X c A has a join in si*. From 
this and 10 G.3 it follows that sd* is complete. 

Remark . It can be proved that si* is essentially unique. On the other hand, 
it is easy to see that a complete quasi-ordered set with properties (l) —(3) described 
in the theorem is not uniquely determined. Taking another appropriate set M, 
we may obtain an essentially different quasi-ordered set with properties (l) —(3) as 
indicated above and property (4) replaced by an appropriate substitute. 

10 G.13. For monotone quasi-ordered classes, a sharper proposition holds. 
Before stating this proposition, we shall present, for convenience, some other state-
ments concerning monotone quasi-order. 

10 G.14. A quasi-ordered class si = (A, g} is monotone if and only //"]<-, 
o ] u ] a, ->• I = A (or, equivalently, ] <-, a [ u [ a, ->• [ = A) for any a e A. 

P r o o f . "Only if" is clear. If the condition holds, let x e A, y e A, x 4= y. 
Then either y e ] <-, x ], hence ygx, or y e ] x, -*• [, hence xgy. 

10 G.15. Let sd = (A, g38 = <B, tr> be quasi-ordered classes. Let g be mono-
tone reflexive, let a be distinguishing. I f f i s a one-to-one order-preserving mapping 
of si into 38, then f~v : -*'si is also order-preserving. 

Proof . Let ( f x ) o(fy). Then ygx implies ( f y ) o(fx), hence fx = f y , x = y, xgy-
This proves the assertion. 

10 G.16. Let (A, g) be a monotone quasi-ordered class. Then B a A is cofinal 
from the left (respectively, from the right) if and only ifeither (i) B contains an element 
which is a smallest (largest) one in A, or (ii) B is not left- (right-) bounded in A. 

10 G.17. Let sd = <A, g) be a monotone quasi-ordered class. Let x e A be 
maximal (minimal). Then x is a largest (smallest) element in sd. 

Remark . It is easy to see that if, in every subclassB <= A, every maximal (minimal) 
element is a largest (smallest) one, then si is monotone. 

10 G.18. Every monotone quasi-ordered class is lattice-quasi-ordered (hence, 
left- and right-directed). 

10 G.19. Let g be a monotone distinguishing quasi-order on a class A. Then 
any X <= A is join-stable and join-preserving. 

This is clear. Observe, however, that a set X c A need be neither completely 
join-stable nor completely join-preserving. 

10 G.20. Theorem. Let si = (A, gy be a monotone quasi-ordered set. Then 
there exists a monotone quasi-ordered set sd* = </4*, g*y such that (1) sd is 
a quasi-ordered subclass of si*; (2) if £ e A*, q e A* do not belong to A, then 
£ = rj if and only if£g*r], rjg*^; (3) for any ^ e A*, £ is a join (in si*) o / ] - « - , ^ ] n y 4 
as well as a meet (in si*) of [ -* [ n A; (4) si* is complete. 

If si' = </!', g'y is a set with the properties indicated above, then there exists 
exactly one order-isomorphism f of si* onto si' such that fx = x for every x e A. 
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P r o o f . Consider the quasi-ordered set si* = <A*, Q*} described in 10 G.12. To 
prove that si* possesses all properties required, we have only to show that it is mono-
tone, for the remaining properties are asserted in 10 G.12. Now, by 10 G.12, every 
x e A* is a join of P(x) = .4 n ] •<-, x ] . It is easy to see that every P(x) is left-satur-
ated in si. Since si is monotonically ordered, the collection of all left-saturated sets 
is clearly monotone. Thus for any x e A*, y e A* either (1) P(x) <= P(y), hence 
xg*y or x = y, or (2) P(y) cz P(x), hence yg*x or y = x. This proves the monotonic-
ity of si*. 

The proof of the uniqueness of si* (up to an isomorphism) is left to the reader. 

10 G.21. The following assertions are immediate consequences of 10 G.20. 
Let si = <y4, Q) be a monotone ordered set. Then there exists a monotone 

ordered set si* = Q*} such that (i) si is an ordered subclass of si*, (ii) 
for any e A*, ^ is a join (in si*) o/] «-, £ ] n A as well as a meet (in si*) of 
[ -> [ n A, (iii) si* is complete. 

Let si = (A, g> be a monotone quasi-ordered set possessing neither a smallest 
nor a largest element. Then there exists a monotone quasi-ordered set si* = 
= {A*, Q*} such that ( l ) - ( 3 ) from 10 G.20 are satisfied, and si* has neither 
a smallest nor a largest element. 

In both cases, si* is unique in the sense indicated in 10 G.20. 

H. O R D E R E D A L G E B R A I C S Y S T E M S 

This last part of the present section is concerned with the examination of some 
ordered algebraic structs. Such structs, in particular the ordered groups, ordered 
modules, etc., are of considerable importance. However, we do not investigate them 
in this book and they will occur in the sequel only rarely, in examples and exercises. 
On the other hand, the concept of an ordered group (or ring) is quite useful for a pro-
per introduction of real numbers. Therefore, we limit ourselves to two topics here: 
first, we give exact definitions of basic concepts such as "a quasi-ordered algebraic 
struct" (in a sense not quite general, but more than sufficient for our purposes) 
along with some examples but virtually no propositions; secondly, we consider 
monotonically ordered groups briefly in order to prepare the way for the introduction 
of real (as well as complex) numbers which concludes the section. 

10 H . l . Consider the ring of rationals <Q, + , . ) , also denoted by <Q, o, /j> 
here, and the natural order on Q, denoted by ^ . Then compositions o and n are both 
compatible with this order, though in a somewhat different sense. Namely, we have 
(l) x ^ y => (xoz) ^ (yoz), but it is not true that (2) x ^ y => (xpz) ^ (ypz). 
However, the following assertion holds: (3) x ^ y, z ^ 0 => (xpz) ^ ( y f i z ) ; observe 
that assertion (3), as it stands, is meaningful only if there is a zero for the struct in 
question. 
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Thus we may try to distinguish two kinds of "compatibility" of an order (or quasi-
order) with a composition; first, a compatibility not involving other compositions 
and expressed by condition (l) above; secondly, a "compatibility" involving two 
compositions and similar to that expressed by (3); however, if the zero is not to 
appear explicitly, condition (3) has to be expressed in another form, e.g. (4) x ^ y, 
u ^ v => (xpv) + (ypu) ¿s (xpu) + (ypv) (we write + instead of a here). 

Now we are going to state the definition for internal structs limited to two special 
cases: that of one composition and that of a module-like struct with a commutative 
basic constituent. 

10 H.2. Definition. If g is an associative composition on a class X, x is a quasi-
order on X, r* = (g, T> and the compatibility condition indicated below is satisfied, 
then we shall say that g and x are compatible (more explicitly additively com-
patible) and that r* is a quasi-ordered semi-group structure on X (observe that, 
properly speaking, this expression is not correct, since, of course, x is not a quasi-
order on g); x will be termed the order-constituent of r*. If, in addition, X is a non-
empty set, we shall say that 9C = Qi, g, T> is a quasi-ordered semi-group. The com-
patibility condition in question is as follows: 

if xxy, z e X, then (xgz) x (ygz) and (zgx) x (zgy). 
Remarks . 1) The above condition implies that (xgx') x (ygy') whenever xxy, 

xxy'. — 2) We do not define explicitly expressions such as "an ordered semi-group", 
"a monotone quasi-ordered group" (or, equivalently, "a monotonically ordered 
group"), etc., since their meaning is sufficiently clear. 

Examples . (A) <N, + , <|> is a monotone ordered semi-group, <Q, + , 
is a monotone ordered group. — (B) <NN, + N , is an ordered semi-group 
(of course, it is not monotonically ordered). — (C) <u, <=> is an ordered commuta-
tive semi-group structure. Observe that X u Z c Y u Z does not imply X <= Y. 

10 H.3. Definition. Let X be a class. Let g be a commutative associative com-
position on X. Let p be a composition on X distributive with respect to g. Let x 
be a quasi-order on X. Suppose that g and x are additively compatible and that the 
following condition (in which it is written a ^ b instead of "axb or a = b") is 
satisfied: 

if x ^ y, u ^ v, then (xpv) g (ypu) ^ (xpu) g (ypv), 
then we shall say that p and x are multiplicatively compatible relative to g (or that 
p is compatible with x relative to g). 

Remark . We consider, for convenience, only the case of a commutative g. The 
general case of a multiplicative compatibility of p and x with respect to an arbitrary 
associative g is somewhat complicated; on the other hand, the case of a (possibly 
non-commutative) group structure g can be dealt with easily (as concerns a proper 
introduction of basic concepts). 

10 H.4. Definition. Let r be an internal algebraic structure on a class X, r = g0 or 
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r = <g0 , . . . , gmy, m ^ 1. Suppose that r is module-like and g0 is commutative. If (1) 
Q0 is additively compatible with x and (2) every <pk, k ^ 1, is (multiplicatively) 
compatible with r relative to g0 (observe that if m ^ 1, then this condition implies, 
according to 10 H.3, that g0 is commutative), then we shall say that r and x are 
compatible; r' = (g0,..., gm,xy will be called a quasi-ordered internal algebraic 
structure on X and x will be termed the order-constituent of r' (or also of <X', r>); 
<A", r'y will be called a quasi-ordered internal algebraic struct. 

C o n v e n t i o n . If <r> is a semi-ring structure and a, T> is a quasi-ordered 
internal algebraic structure, then we shall say that a, r ) is a quasi-ordered 
semi-ring structure and similarly in other analogous cases. Thus, we shall use 
expressions like "an ordered semi-group", "a quasi-ordered group", "a monotonic-
ally ordered ring", "a quasi-ordered module structure" (see 10 H.8), etc. 

Example s . (A) <u, n , c > is an ordered internal algebraic structure. — 
(B) <N, + , ., is a monotone ordered semi-ring, <Z, + , ., g ) is a monoto-
ne ordered ring, <Q, + , ., iS) is a monotone ordered field. 

10 H.5. Let X be a class. Let /¿> be a ring structure on X and let o denote 
the neutral element under g. Let x be a quasi-order on X. Then n is multiplicatively 
compatible with x relative to g if and only if the following holds: 

if oxx and oxy, then ox(xpy) or o = xpy. 

The proof is easy and therefore omitted. In most cases, the basic constituent 
of a module-like algebraic structure r is a commutative group-structure and there-
fore, to verify that r is compatible with a quasi-order x, the above condition will be 
used (this is simpler than that in 10 H.3). 

10 H.6. Definition. Let X be a class. Let g be a commutative associative composi-
tion on X. Let sd be a quasi-ordered internal algebraic struct (or else a quasi-
ordered class); let us denote its underlying class by A, its order-constituent (respect-
ively, if A is a quasi-ordered class, its structure) by a. Let m be an external composit-
ion over sd acting on X; let m be action-distributive with respect to g. Let x be a quasi-
order on X. Suppose that g and x are additively compatible and that the following 
condition (in which a ^ b is written instead of "a<xb or a = b", x ^ y instead 
of "xxy or x = y") is satisfied: 

if a e A, b e A, xeX, ysX, and a ^ b, x ^ y, then (amy) g (bmx) ^ 
^ (amx) g (bmy). 

Then we shall say that m and x are (multiplicatively) compatible relative to g. 
Example . Let Z be a set, X = exp Z, A = Z z . Let p consist of all <F, q>, <p[Y]> 

where Y <=. Z, <peA. Clearly, sd = (A, 0, <=.Ay is a quasi-ordered semi-group. 
Put m = o, c Ay. Then m is an external composition over A on X. It is easy to see 
that m and <=x are compatible relative to Ux-

10 H.7. Let X be a class. Let g be a commutative group structure on X and let o 
denote the neutral element under g. Let x be a quasi-order on X. 
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If m is a composition on X over si = (A,..., a) , si being a quasi-ordered 
internal algebraic struct (or a quasi-ordered class), then m is compatible with x 
relative to g if and only if the following condition is satisfied: 

if uav and oxx, then (umx) x (vmx) or umx = vmx. 
We omit the proof and observe that a remark similar to that in 10 H.5 applies here. 

10H.8. Definition. Let r be a module-like algebraic structure on a class X; let 
r = r0 or r = (r0, ..., rm>, rk being compositions (internal or external). For internal 
compositions rk, put r'k = rk; if rk is external, let r'k be the external composition (over 
a quasi-ordered internal algebraic struct or a quasi-ordered class) obtained by en-
riching rk with a quasi-order xk. Let x be a quasi-order on X. Suppose that r'0 (which 
is an internal composition) is additively compatible with x and that every r'k, k ^ 1, 
is multiplicatively compatible (in the sense of 10 H.3 or of 10 H.6) with x relative 
to t'B. Put r' = <fo,..., r'm, x). 

Then r' will be called a module-like quasi-ordered algebraic structure on X, 
and x will be called the order-constituent of r' (or of <X, r'>); the struct <X, r') 
will be called a module-like quasi-ordered algebraic struct. 

Conven t i ons , l) We have defined two kinds of "quasi-ordered algebraic 
structures" (cf. 10 H.4). We shall not introduce any more general types of such 
structures; therefore, the structures (and structs) just defined will be termed, for short, 
quasi-ordered algebraic structures (respectively, structs). — 2) Let < X , g, A, K, A) 
be a module over a ring <A, K, X), A = Da. If v is a quasi-order on A, x is a quasi-
order on X and 3C = <X, g, (a, k, X, v, t » is a quasi-ordered algebraic struct, 
then 3C will be called a quasi-ordered module (over the quasi-ordered ring <A, k, X, v>), 
and similarly in other analogous cases (see 10 H.4,.remark). — 3) Without giving 
a detailed exact definition, we observe that if r = <g0, ..., gm, t> is a quasi-ordered 
algebraic structure on X, then the structure r* obtained by deleting all quasi-orders 
from r (i.e. by deleting x and the order-constituents of the external compositions gk) 
will be termed the underlying algebraic structure of r, and (X, r*> will be called 
the underlying algebraic struct of <X, r>. — 4) If 9C and Hi are quasi-ordered alge-
braic structs, 9C* and <&* are their underlying algebraic structs and / is a homo-
morphism of 9C* into <2/*, then will be also called a homomorphism. 

10 H.9. The investigation of general properties of quasi-ordered algebraic structs 
could now proceed along similar lines as in Section 8 for algebraic structs. We 
restrict ourselves to some basic facts (sometimes using notions introduced for 
algebraic structs provided their definition can be easily extended to quasi-ordered 
algebraic structs); in particular, we omit the consideration of "exceptional" cases 
(e.g. of the possibility that the order-constituent coincides with some composition) 
similar to that in 8 A.16. 

10 H.10. Let r be an algebraic structure on a class X; let x be a quasi-order 
on X and let r and x be compatible. If Y c X and there is a restriction rY of r to 
an algebraic structure on Y, then rY and xY are compatible. 
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Definition. If r = <r(0), ...,r{m), t ) or r = (r(0\ t> is a quasi-ordered algebraic 
structure on X, r = <»-(0),..., r(m)) (or r' = r(0)), Y c X and there exists a restriction 
r.y of r' to a structure on Y, then <i"y0), ..., r t y > will be denoted by rY and called 
the restriction of r to a structure on Y. 

1 0 H . l l . Definition. Let si = (A, ..., o}, 38 = (B,..., T> be quasi-ordered 
algebraic structs; let / be a mapping of si into 38. If / : <A, cr) -» <B, r ) is order-
preserving (respectively, order-reversing, see 10 C.1) and / : si* 38* is a homo-
morphism, si* and 38* being the underlying algebraic structs of si and 38, then / 
will be called an order-preserving (respectively, order-reversing) homomorphism. 
In particular, if both / a n d / _ 1 are order-preserving homomorphisms, then / i s called 
an isomorphism. If si, 38 are quasi-ordered algebraic structs and there exists an 
isomorphism of si onto 38, then we shall say that si and 38 are isomorphic. 

Examples . (A) Consider the group <Q, + ) . For any x e Q, y e Q put fxy = 
= x . y. Then every fx: <Q, + > -> <Q, + ) is an endomorphism and every endo-
morphism of <Q, +> can be uniquely expressed in this form; clearly, fx is bijective 
unless x = 0. A mapping fx : <Q, + , -* <Q, + , is an order-preserving 
homomorphism if and only if x 0. A mapping fx : 2, -* J , where SL = <Q, + , . , ^ >, 
is a homomorphism if and only if x = 0 or x = 1; in such a case it is also order-
preserving. — (B) Let H denote the set of all endomorphisms of (Q, + for /ij e H, 
h2sH put h1oh2 if and only if hxx ^ h2x for every x e Q, x ^ 0. Then <//, + , o, c> 
is isomorphic with SL (see example (A)). 

10 H.12. Let si = <A, a, p, T> be a quasi-ordered ring. Let p* consist of all 
<fl, b, apby. Then <A, o, (p*, o, p, T>, T) is a quasi-ordered module over si. 

This is clear. 

10 H.13. Proposition und definition. Let {sib | be B} be a non-empty family 
of quasi-ordered algebraic structs of the same type, sib = (Ab, ..., rb). 
Put A = rm = n{r<A) | beB}, t = Uz„ (see 8 B.8 and 10 B.8). Then 
<.4, r(0),..., r(m), t> is a quasi-ordered algebraic struct which will be called the 
cartesian product of the family {sib} and denoted by H{sib | b e B} or Ii{sib}, etc. 

If all sib are equal to a struct si, then we write siB instead of II{b -»• si | b e B}. 
C o n v e n t i o n . Let B b ; an arbitrary non-empty set. Let si be an ordered ring. 

Let si* be the ordered module defined in 10 H.12. Then (si*)B is often called the 
ordered module of families (indexed by elements from B) of elements from si. 

Now, we proceed to questions concerning monotone ordered groups. 

10H.14. Definition. If si is a quasi-ordered algebraic struct, si = Q, ..., t>, 
then an element x e A is called positive in si if ZX(ZQX), ZT(XQZ) for every z e A; 
negative in si if (ZQX) TZ, (XQZ) TZ for every z e ^ l ; strictly positive in si if it is 
positive, but not negative; strictly negative in si if it is negative, but not positive. 

Observe that if t is distinguishing, then there exists at most one element which is 
both positive and negative, and such an element is neutral under Q. 
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10H.15. Let <& — <G, a, r> be a quasi-ordered group. If aeG and the set 
of all n-th o-powers a", n ^ 1, of a (i.e. the set of all elements a, aaa, aoaoa, ...) 
has a meet, then a is positive in <&. 

Proof . Denote by e the neutral element of <§. Let £ be a meet of the set of all a", 
n ^ 1. Then (i<ra -1) ta" for n = 1, 2, ... and therefore (£cra~l) r^, hence eza. 

10H.16. Let & be a boundedly complete ordered group. If aeG and the set 
of all n-th powers, n 1, of a is bounded, then a is the neutral element of'S. 

Proof . The set in question is bounded, hence has a meet and therefore, by 
10 H.15, a is positive. Similarly, it can be shown that a is negative. 

10 H.17. Definition. Let ^ = <G, a, T) be a monotone ordered group. We shall 
say that 'S is archimedean if, for every strictly positive x e G and every y e G, there 
exists an n e N such that yzx". 

Examples . <Q, + , is archimedean, whereas the following ordered group 
is not: <Q, + ) x <Q, + ) endowed with the lexicographical product (see 10B.10) 
of g and g . 

Remark . Let <G, cr, be archimedean. If aeG, a > 0, x e G, then there 
exists exactly one n e Z such that a" x < a"+1. 

10 H.18. Theorem. Every boundedly complete monotone ordered group is 
archimedean. 

This follows at once from 10 H.16. 

10H.19. Theorem. Every archimedean monotone ordered group ^ = <G, a, 
can be embedded into a boundedly complete monotone ordered commutative 
group. 

Proof . If there exists a smallest strictly positive element, say a, of <$, then it is 
easy to see that {n -» a"} : <Z, + , 'S is an isomorphism; <Z, + , is clearly 
a boundedly complete commutative monotone ordered group. Therefore, we con-
sider only the case when there is no smallest strictly positive element. Let 0 denote 
the neutral element of eS. For convenience, we first prove that ^ is commutative. 
Suppose the contrary; choose a, b such that aob < boa and put c = boaob~loa~i; 
then c > 0. Choose z e G with 0 < z < c; choose xeG such that 0 < x < z, 
x < CCTZ-1. Then clearly 0 < x < x2 < c. Since & is archimedean, there exist (see 
10 H.17, remark) integers m, n such that xm g a < xm + 1, x" <; b < x" + 1. Hence,. 
x ra+" g aob < xm+n + 2, xm+n g boa < xm + n + 2, c g x2, which is a contradiction. 

Now we shall write x + y instead of xay, x — y instead of xoy~L, etc. It follows 
from 10 G.21 that there exists a boundedly complete ordered set <G*, ^ ) such that 
<G, is an ordered subset of <G*, and every £ e G* is a join of J <-, £ ] n G 
as well as a meet of [ -» [ n G. 

Now, for any £ e G*, rj e G*, let <lo*r\ be the supremum of the set of all x + y, 
x e G, y e G, x g y g rj. Clearly, a* is a composition on G* and a is its restriction 
to G. It is also clear that £ g f , rj g r\' => g (£W)-
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Since, evidently, a* is a commutative associative composition and 0 is neutral under 
o*, it remains to prove that, for any £ e G*, there exist a rj e G* such that £,o*t] = 0. 

Now, if £ e G*, let X consist of all x e C , x S and let Y consist of all elements 
y = — u, u e G, u ^ Put r] = sup Y. It is clear that xeX, yeY=>x + y^0; 
hence, ^ + rj ^ 0. For any te G, t > 0, there exist xeX,ueG, u^. such that 
u — x < t; indeed, if not, we would obtain that, for any x e X, x + t ^ hence 
x + teX, and therefore x -I- nteX which contradicts the fact that G is archi-
medean. Thus, for any z < 0 there exist x eX, y e Y such that x 4• y > z. This 
shows that £ + rj = 0 and completes the proof. 

10 H.20. Theorem. Let ^,01 be archimedean monotone ordered groups. Let 0t 
be boundedly complete and possess no smallest strictly positive element. Let a 
be a strictly positive element of <S. Let x be an element of SR.. If x ^ 0, then there 
exists exactly one order-preserving homomorphism fx of <§ into Si such that fxa = x. 
If x < 0, then there exists exactly one order-reversing homomorphism fx of $ 
into SI such that fxa = x. 

P roof . I. We shall denote the underlying sets of ^ and ^ by G and R; the com-
positions (of both ^ and 01) will be denoted by + , the orders by ^ ; observe that ^ 
and 01 are commutative, by 10 H.19. The set of all homomorphisms of <G, +> into 
<R, + ) will be denoted by H and will be considered as endowed with the usual 
composition + and the order denoted by ^ and determined by hl ^ h2 o (hxx ^ 
S h2x for all positive x). — II. The uniqueness of the homomorphisms fx is shown 
quite easily; indeed, if / , / ' possess the properties in question, then h = f — f eH, 
ha = 0, h(na) = 0 for each n e Z, hx = 0 for each x e G such that 0 ^ x ^ na 
for some n e Z, hence, IS being archimedean, for all x e G. — III. We are now going 
to show that, for any x e R and any n e Z, n #= 0, there exists exactly one y e R such 
that ny = x. It is sufficient to consider the case x > 0, n > 0. Since Si is archi-
medean and there exist no smallest strictly positive z e R, there is an element 
u e R, u > 0, such that nu ^ x. Let y be the supremum of all such u. It is easy 
to prove (using the fact that Si is archimedean) that ny = x. — IV. To prove 
the existence of fx it is sufficient to examine the case x > 0. First consider the set Q 
of all z e G such that, for some m e Z, n e Z, m =t= 0, we have mz = na; clearly, 
Q is a subgroup of and, for every £ e G, £ is the join of the set of all z e O, z ^ £ 
(the easy proof of this fact is left to the reader). If z e Q, mz = na, m -j= 0, then there 
exists, according to part III of this proof, exactly one element y e R such that 
my = nx; we put cpxz = y. It is easy to see that the mapping <px : (Q, +, -*• Si 
is an order-preserving homomorphism. If Q = G, the proof is complete. If not, 
we put, for any C e G, (px£ = sup [<pxz | z e Q, z ^ £}. It is easily proved that fx = 
= cpx : -> 8R, has the properties in question. 

10H.21. Theorem. Any two boundedly complete monotone ordered groups 
without a smallest strictly positive element are isomorphic provided both contain 
more than one element. 
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P r o o f . Let 0l2 be the ordered groups in question. By 10 H.18, they are archi-
medean. Choose strictly positive elements a t of By 10 H.20 there exist order-
preserving homomorphisms fx of into ft °f i n t 0 s u c h that f1a1 = a2, 
f2a2 = at. Then g = f 2 ° f i is an order-preserving homomorphism of 0tx into 
such that gax = ax. Hence, by 10 H.20, gx = x for every xe!%v Thus f2 0 fx 

(and similarly,/! o f2) coincides with the identical mapping, and therefore f l t f 2 are 
isomorphisms. 

10 H.22. Proposition and definition. Let = (G, +, g ) be a commutative 
ordered group. Let <H, + , °> be the ring of endomorphisms of the group <G, + ) 
(cf. 6 E.13). For h1 e H, h2e H put hx g h2 if and only ifh2 — ht is order-preserving. 
Then = <H, +,o, g ) is an ordered ring; it will be called the ordered ring 
of endomorphisms of <&. The set H* of all he H of the form h = hx — h2, where 
hx e H, h2e H are order-preserving, is an ordered subring of ^C. 

P r o o f . Clearly, if hy g h2, then h2 + h g h2 + h for every he H, and if ht ^ 0, 
h2 ^ 0, then h2ohl ^ 0. Thus is an ordered ring. If h, h' belong to H*, then 
clearly h + h', h — h' belong to H*. Let h = hx — h2, h' = h3 — /t4, where ht 

are order-preserving; then h o h' = (hx 0 h3 + h2 o h4) — (ht o h4 + h2 0 h3) and 
therefore h oh' e H*. 

10H.23. Theorem. Let = <G, + , g ) be a boundedly complete monotone 
ordered group possessing no smallest strictly positive element; let a e G be strictly 
positive. Then there exists precisely one composition ¡ion G such that <G, +, ¡i, 
is an ordered ring and a is a unit under < + , fi~). The composition n is commutative 
and <G, +, p, is an ordered field. 

P r o o f . Consider the ordered ring of all endomorphisms of G (see 10 H.22) 
and its subring 3/P* = <H*, + , o, g ) consisting of all h = hx — h2 where hu h2 

are order-preserving endomorphisms. It is easy to show (using 10 H.20) that, for 
any a e G, {h -> ha} : (H*, + , -* 10 is an isomorphism. Let hx denote the endo-
morphism he H* such that ha = x. Put, for x e G, y e G, x/iy = z where z is such 
that hz = hxo hy. Then, clearly, G' = <G, + , n, is an ordered ring (since so is 
<H, + , o, g >) and a is a unit of G'. If v is a composition on G such that <G, + , v, g ) 
is an ordered ring, then, for any xeG such that x > 0, both {y -* xvy} and 
{y -*• xpy} are graphs of order-preserving endomorphisms of <8. Since xva = x = 
= x/xa, we obtain, by 10 H.20, that these endomorphisms coincide. Hence there fol-
lows v = fi. Putting xvy = ypx we get a composition v such that <G, + , v, g ) is an 
ordered ring and therefore v = p. This proves that ¡.i is commutative. Finally, it is 
easy to show, us'ng 10 H.20, that every h e H* distinct from 0 is an isomorphism. This 
implies that <G, + , p} is a field. 

10 H.24. We are now ready to introduce the real, numbers. As in other analogous 
cases (see 3 D.1, 8 E.4, 8 E.5, 8 F.8, 8 F.9), this can be done by choosing one well-
determined ordered field with the properties described e.g. in 10 H.23. However, for 
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reasons indicated in 8 F.8, and keeping in line with the procedure adopted in analo-
gous situations, we prefer an axiomatic definition. Theorem 10 H.23 will then serve 
to justify the axioms. 

10 H.25. Axioms for real numbers. 
(a) Rofd is a boundedly complete monotone ordered field; 
(b) <Q, + , . , is an ordered subfield of Rofd. 
R e m a r k . It follows at once from (a) that Rofd is isomorphic with every boundedly 

complete monotone ordered field. 
C o n v e n t i o n s . 1) The underlying set of Rofd will be denoted by R; the com-

positions and the order with which R is endowed to obtain Rofd will be denoted, 
respectively, by + R , .R, or simply by + , . , thus Rofd = <R, + , . , 
The symbol R will usually also denote the structs <R, +>, <R, + , <R, 
etc.; the exact meaning of the symbol R will usually be clear from the context. — 
2) Every element of R will be called a real number; R will be called the set of (all) real 
numbers, <R, + ) will be called the additive group of (all) real numbers and so on. 
A mapping of an (arbitrary) class M into R will also be called a real-valued function 
(or simply function) on M. 

We do not develop the theory of the ordered field R. Its elementary properties 
as well as the basic properties of elementary real-valued functions on R, etc., will be 
assumed to be known in what follows. 

10 H.26. In several places, the so-called extended real line will be needed. To 
this end we introduce the following 

C o n v e n t i o n . If SP = <S,g>is an ordered set such that (1) <R, is embedded 
in SP, (2) S = (a) u R u (/?) with OLQXQP for all x e R, then we will occasionally say 
that SP (and also S) is the extended real line; the elements a and /? will usually be 
denoted by — oo and + oo (or oo) respectively, and the extended real line will also 
be denoted by R. 

R e m a r k s . 1) In speaking about the extended real line, the real numbers will 
sometimes be termed its finite elements. Thus if M <r R, then "sup M is finite" will 
mean that sup M 6 R, so that there exists a real number a such that x ^ a for all 
x e M. — 2) The absolute value of the elements — oo and + oo of the extended real 
line, to be denoted by |— oo| and | + oo|, is defined as the element +oo. — 3) For 
some purposes it is useful to extend the addition in R to a (partial) composition 
in R, and similarly for multiplication. 

To conclude the section, we turn now to complex numbers, introducing them also 
by means of defining axioms. Complex numbers will seldom occur in the sequel; 
their elementary propsrties will be assumed to be known whenever needed. 

10 H.27. Axioms for complex numbers. 
(a) Cfd is a field; 
(b) <R, + , .) is a subfield of C fd; 
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(c) there exists an element i of the field Cfd such that (1) /'2 = — 1, (2) for any 
element £ of the field Cfd, there exist x e R, y e R with £ = x + y . i. 

C o n v e n t i o n s , l) The underlying set of Cfd will be denoted by C, the compositions 
of Cfd will be denoted by + c , . c or simply by + , . . —2) Every element of C will 
be called a complex number; the set C will be called the set of (all) complex numbers, 
Qd = ( Q + , . ) will be called the field of (all) complex numbers and so on; any 
mapping of a class M into C will be called a complex-valued function on M. As 
a rule, C will also be used to denote <C, + , . ) , etc. 

R e m a r k . The following field possesses all the properties required of Cfd in the 
above axioms. Consider the set R x R; if £ = <xx, x2>, f? = y2y belong to R x R, 
put £ + r\ = <x t + ylt x2 + y2>, £ . tj = ( x ^ ! - x2y2, xxy2 + X j ^ ) . It is easy 
to see that <R x R, + , . ) is a field; replacing every <x, 0) by x we obtain a field 
as required. — The fact just shown justifies the axioms 10 H.27. 

10 H.28. Clearly, there exists only one isomorphism of <R, + , •> onto itself, namely 
the identical isomorphism. On the other hand, if i e C, i2 = —1, and a mapping / 
assigns x — y . i to x + y . i, where x and y are real numbers, t h e n / i s a non-identical 
isomorphism of <C, + , . ) onto itself. However, it is sometimes necessary to have 
a fixed "imaginary unit", i.e. an element i such that i2 = 1; this is the case e.g. if we 
have to define the "real part" and the "imaginary part" of every complex number. 
The choice of a fixed imaginary unit may be suitably performed by adding the 
following statement as an axiom: "/ is a complex number, i2 = —1." 

13 — Topological Spaces 
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11. W E L L - O R D E R 

In this section well-ordered classes are considered and ordinal numbers are intro-
duced. Considerations involving well-ordered sets can often be replaced with advant-
age by arguments based on the maximality principle (see 4 C.1) and related theorems. 
Nevertheless, well-ordered classes as well as ordinal numbers retain a considerable 
importance. 

A. W E L L - O R D E R E D CLASSES 

11 A.l. Definition. Let (A, a} be an ordered class. If every non-empty X <= A 
has a smallest element (under a), then we shall say that a is a well-order and <A, a> 
is a well-ordered class. 

All conventions introduced in Section 10 will be used freely here: e.g. an order 
will usually be denoted by rg (even if several orders are considered at the same time), 
the strict quasi-order associated with g will be denoted by < , A will be written in-
stead of </4, etc. 

Examples . (A) Every finite monotone ordered set is well-ordered. — 
(B) <N, g ) is a well-ordered set. — (C) For any n e N, let Pn denote the set of all 
prime numbers p which divide n. Put man if and only if either card Pm < card Pn 
or card Pm = card Pn and m < n. It is easy to prove that <N, c ) is well-ordered. 

11 A.2. Theorem. A monotone ordered class 9C is well-ordered if and only if 
no subclass of 9C is order-isomorphic with <N, 

Proof . The necessity of the condition is evident. — Suppose that 9C = (X, g ) is 
not well-ordered. Let Y <= X be non-void and contain no smallest element. Then, 
for any y e Y, there exists a z e Y such that z < y. By 4 C.7, we obtain an infinite 
sequence {y„} such that y„ + 1 < y„, n = 1, 2, . . . Clearly, <E{y„}, is isomorphic 
with <N, 

11 A.3. Any well-ordered class is boundedly complete and monotone. 
The proof is left to the reader. 

11 A.4. Theorem. Every subclass of a well-ordered class is well-ordered. If 9C 
is well-ordered, Hi is ordered and there is an order-preserving mapping of 9C onto 
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then is well-ordered. The lexicographical product of two well-ordered classes 
is well-ordered. 

P r o o f . The first assertion being evident, we prove the second and third. Let F 
be an order-preserving mapping of onto HJ. Let M 4= 0 be a subclass of There 
is a smallest element x0 of f _ 1 [ M ] ; clearly, Fx0 is the smallest element of M. — If 9£, 
°y are well-ordered classes, let M c f x lex . Since 9£ is well-ordered, there is 
a smallest x 0 such that (x 0 , y ) e M for some y; since is well-ordered, there exists 
a smallest j>0 such that ( x 0 j 0 ) e M . Clearly <x0, y 0 ) is the smallest element in 

^ X lex ty• 
11 A.5. Let si = <v4, i£> be a well-ordered class. Let F be an injective order-

preserving mapping of si into si. Then F[A~\ is right-cofinal in si. 
P r o o f . Suppose that F[A] is not cofinal; then there exists an element a e A such 

that Fx < a for every xeA. In particular Fa < a and therefore, F being injective, 
F" + 1a < F"a, n = 1,2, . . . . By 11 A.2, this contradicts the fact that si is well-
ordered. 

11 A.6. Let si = <A, be a well-ordered class. Let F be an injective order-
preserving mapping of si into sd. Let F[A] be interval-like and contain the smallest 
element of si. Then F = J : si -* si. In particular, there exists no order-isomorphic 
mapping of si into a segment (see 11 A.8) of si. 

P r o o f . Suppose F 4= \ '. si si. Choose the smallest a with Fa 4= a. Then either 
Fa < a or a < Fa, i.e. F~1(Fa) < Fa; in both cases we obtain a contradiction. 

11 A.7. Theorem. Let si and 38 be well-ordered classes. Then there exists at 
most one order-isomorphism of si onto 3$. 

P r o o f . Otherwise there would exist an order-isomorphism of si onto si distinct 
from J : si -> si. This contradicts 11 A.6. 

11 A.8. C o n v e n t i o n . Let si = <A, be a well-ordered class; let x e A. 
Then the class ] <-, x [ of all elements y < x (and also the class ] «-, x [ endowed 
with the restriction of will be called a segment of si or, more explicitly, the seg-
ment of si determined by x, and will be denoted by six or Ax (if the order consi-
dered is clear from the context). 

11 A.9. Theorem. Let si, 3b be well-ordered classes. Then either si and 38 
are isomorphic or si is isomorphic with a segment of 38 or 38 is isomorphic with 
a segment of si. 

P r o o f . Let q> be the relation consisting of all <x, x e si, y e 38, such that six 

is isomorphic with 38r Then 11 A.6 implies that (p is one-to-one; clearly, if x e si, 
x' e si, then x ^ x => (px ^ <px', and, if y e 38, y' e 38, then y ^ y' => <p~ly ^ 
^ cp~1y'. It is easy to see that (1) either D<p = si or Dq> = sia for some a e A, 
(2) either E<p = 38 or Eq> = 38b for some b e 38. Suppose D<p = sia, E(p = 38b. 
Then sia and 38b are isomorphic, hence <a, fc) 6 q>, which is a contradiction. Thus, 
either D(p = si or Ecp = 38 (or both). This proves the theorem. 

13 
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11A.10. Theorem. Let si = (A, be a well-ordered class. Let C be a class 
such that, for any x e A, Ax c C implies xe C. Then C => A. 

P r o o f . Suppose A — C 4= 0. Choose the smallest a e A — C. Then Aa c C, 
hence a e C, which is a contradiction. 

11 A . l l . The above theorem as well as each of the two following statements is 
often called the principle of transfinite induction. 

(A) Let si = <A, be a well-ordered class. Let P be a given property. Suppose 
that x e A possesses property P whenever every y e Ax possesses this property. 
Then every x e A possesses property P. 

(B) Let sd = </4, be a well-ordered class; for every x e A, let S(x) be a pro-
position. Suppose that, for any x e A, S(x) holds whenever S(y) holds for every 
y e Ax. Then S(x) holds for every xe A. 

Clearly, (A) is obtained f rom 11 A.10 if the class C of all x possessing property P 
is considered, and (B) is obtained from 11 A.10 if we consider the class C of all x 
such that S(x) holds. 

Observe, however, that statements (A) and (B) are, properly speaking, propositions 
about certain propositions, and not about mathematical objects; their strictly 
mathematical counterpart is Theorem 11 A.10. 

11 A.12. Definition. Let si = <A, g ) be a well-ordered class. An element xe A 
is called a limit element of si if there is no largest element in Ax, an isolated element 
of si if Ax contains a largest element. If x e A, y e A, x < y and there is no z such 
that x < z < y, we shall occasionally say that y is the successor of x in sé. 

11 A.13. Theorem. (Transfinite Recursion Theorem, restricted form). Let si = 
= (A, be a well-ordered class every segment of which is comprisable. Let M 
be a class. Let p be a single-valued relation such that E p c M and for any xe A, 
MA' <= Dp. 

Then there exists exactly one single-valued relation f on A into M such that 
f x = pfx for every xeA, where fx is the restriction of f to Ax. 

P r o o f . For any single-valued relation h with Dh <= A and any x e A denote 
by hx the restriction of h to Ax. For any x e A let <PX denote the class of all g e MA' 
such that g y = pgy for every y < x. Clearly, if g e $x, y < x, then gy e <Py. 

Suppose that there is an xe A such that <PX contains more than one element. 
Choose the least such x. Let h e <PX, h' e <PX, h #= h'. For every y < x, hye &y, 
h'y e $y, hence hy = h'y. If x is a limit element, then h = U hy, h' = (J hy and we 

y<x y<x 

get a contradiction. If not, let z be the largest element in Ax; then h'z = hz, hz = 
= phz = ph'z = h'z, hence h = h' which is a contradiction. We have proved that 
every <PX is a singleton or void. For any xe A such that <PX 4= 0, we shall put <PX = 
= (<PM)• 

Suppose there is an x e A with <PX = 0. Choose the least such element x. If x is 
a limit element, then clearly U e <PX; if there is a largest element z in Ax, then 

y < x 
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<p(z) KJ (<z, pip(z)>) e <PX. In both cases, there is a contradiction; this proves that 
every <PX is a singleton. 

Now we put / = tp(z) u (<z, pip(z)>) or / = U <P(*) according as there is or not 
XEA 

a largest element z in The rest of the proof may be left to the reader. 
Remarks . The above theorem (also called the principle of definition by trans-

finite induction) includes, as a special case for A = N, the usual recursion theorem 
(principle of recursive construction). 

11 A.14. Theorem. (Transfinite Recursion Theorem, extended form). Let si = 
= (A, be a well-ordered class every segment of which is comprisable. Let M 
be a class. Let Q be a relation such that E j c M and, for any x e A, MAx c Dg. 

Then there exists a single-valued relation f on A into M such that fxg(fx) 
for every x e A, where fx is the restriction o f f to Ax. 

Proof . By 4 B.2, there exists a single-valued relation p <= Q such that Dp = Dg. 
Now apply 11 A.13; 

R e m a r k . This theorem differs quite essentially from 11 A.13: it is not supposed 
that Q is single-valued, and the resulting relation / is not uniquely determined; the 
use of the Axiom of Choice is quite essential. 

11 A.15. Theorem. Let si = <A, be a well-ordered class such that every Ax 

is comprisable. Let Jt be a non-empty class of single-valued relations such that (l) 
if g e Jt, then Dg is equal to A or to some Ax, x e A; (2) if h is a single-valued 
relation, Dh = A or Dh = Ax for some x e A, and the restriction of h to any 
Az, where z e Dh, belongs to Jt, then h e Jt; (3) for any g e Jt, Dg = Ax implies 
the existence of an element t, such that g u (<x, £>) e Jt. 

Then for any <p e Jt there exists an f e Jt such that Df = A, f => (p. 
Proof . Choose <p e Jt. Let V denote the universal class. For any relation h with 

Dh <= A and any z e A denote by hz the restriction of h to Az. 
We are going to define a certain relation r. If h e VA', x e Dq> and h <= (p does not 

hold, then hry for every element y. If h e VAx, x e D(p, h <=. q>, then hry if and only 
if y = <px. If he VAx, xe A — Dip, then we put hry if and only if either h e Jt and y 
is such that h u (<x, y>) e Jt or h $ Jt and y is arbitrary. 

It is easy to see that the suppositions of 11 A.14 are satisfied (with M = V). 
Therefore there exists a single-valued relation/on A such that fjr(fx), for every xe A. 
We are going to prove that / e Jt, f <p. 

Suppose that / z> <p does not hold. Choose the smallest x e Dip such that fx 4= <px. 
Then fxr(fx); on the other hand, fx = cpx, hence fx a <p and therefore, by definition 
of r, fxry if and only if y = <px. Hence fx = (px which is a contradiction. 

Suppose f $ Jt. Then, by condition (2) above, there exists an jc e A such that 
fx J(. Choose the smallest such element x. Clearly, x is isolated (otherwise 
\J{AZ | z < x} = Ax which would imply fxe Jt since all fz, z < x, belong to Jt). 
Let u be the largest element in Ax. We have fur(fu); on the other hand, since /„ e Jt, 
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we have fjry if and only if /„ u (<m, y>) e Ji. Thus fu u (<«, /«)) e Ji, i.e. fxeM 
which is a contradiction. This completes the proof. 

11 A.16. We intend to prove the well-known theorem asserting that every set 
can be well-ordered. This can be done in various ways. E.g. a rather simple proof 
is obtained if we consider a non-comprisable well-ordered class and apply 11 A.14. 

We give another proof based on the maximality principle. First we shall prove an 
auxiliary result. 

Let A be a class. Let F be the class of all one-to-one relations <p such that (1) 
Dcp <= A, E<p c exp Dcp, (2) if xe <py, y e cpz, then x e <pz, (3) if x e D<p, y e Dtp, 
then either x e (py or y e (px, (4) if B a D<p, B 4= 0, then there exists an element 
b e B such that be (px for every xe B. 

Then (a) F is monotonically additive, (b) for any cp e F there exists exactly one 
well-order a on a subset of A such that xe (py o xoy. 

Proo f . Let Ji <=• F be a non-empty monotone collection. Put i> = U{<P | <P e 
Clearly, <= A; if X e E«i>, then X = (px for some x e A and some (p e Ji, 
hence X c Dq> a D<P which proves (1) for <P. — It is easy to show that (2) and (3) 
are satisfied for — Let B cz D3>, B 4= 0. Choose (pe Ji such that B n D(p 4= 0; 
choose be B n D(p such that b e (px, hence b e <Px = q>x, for every xe B n D (p. 
Suppose that there is a zeB such that b <Pz; then z $ D (p. Since z 6 D <P, b e D<t>, 
we get, by (3), ze<Pb = q>b and therefore, by (l), z e D(p which is a contradiction. — 
We have proved (a); assertion (b) follows immediately from (1)—(4). 

11 A.17. Theorem. On every set there exists a well-order. 
Proof . Let A be a set. Consider the class F described in the above lemma. By 

4 C.3 and 11 A.16, there is a maximal set /i in F. Suppose Dp * A; then, for any 
z e A — Dp, p' = p u (<z, Dp u (z)>) is a relation satisfying conditions (1) —(4). 
Hence p' e F, p' =) p, p' 4= p. which is a contradiction. Therefore, Dp = A and a = 
= {x -» y | x e py} is a well-order on A (see 11 A.16). 

11 A.18. Proposition and definition. If A is a set, then there exists a well-order Q 
on A, which will be called a minimal well-order on A, such that, for any well-order o 
on A, <A, Q} is isomorphic either to <A, <r> or to a segment of <A, 

Proof . There exists a well-order r on A. If card Ax < card A for every xe A, 
put g = T. If not, let 3c be the least (under T) element of A such that card Ax = card A; 
choose a bijective relation <p for A and Ax, and put q = (p~L

 01 o (p. It is easy to see 
that Q possesses the properties required. 

B. O R D I N A L S 

Now we are ready to proceed to the introduction of ordinal numbers, briefly 
called ordinals. In essence, ordinals will serve for a characterization of a well-ordered 
set irrespective of the particular nature of its elements, similarly as the cardinals 
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serve to characterize the size or the "number of elements" of a set. It is possible 
to introduce ordinals as objects assigned to well-ordered sets in such a manner that 
two such objects coincide if and only if the corresponding ordered sets are isomorphic. 
For example, we could, as in the treatment of cardinal numbers, "assign a certain 
element" to each class of mutually isomorphic well-ordered sets and ¿declare it to be 
ordinal number of every well-ordered set from this class. It is also possible to char-
acterize ordinal numbers by means of axioms in a manner similar to that adopted 
for cardinal numbers. 

We shall choose a different procedure more similar to that used for the introduction 
of natural numbers (Section 3). The starting point is the fact that any two non-com-
prisable well-ordered classes every segment of which is comprisable are isomorphic. 
It is a corollary of theorems in Section 4 that such a well-ordered class exists, and 
it is easy to see that, as soon as ordinal numbers are introduced, it can be proved 
that the class of all ordinals ordered "by magnitude" is non-comprisable whereas 
every segment of it is comprisable. Thus we can choose an "arbitrary but fixed" 
well-ordered class with the property in question and declare it to be the class of all 
ordinals. Technically, this is done by adopting appropriate axioms for ordinal 
numbers. It will then be proved that to every well-ordered set there is assigned, in 
a natural way, an ordinal number. 

Since finite well-ordered sets are isomorphic if and only if they have the same number 
of elements, it is natural to identify finite ordinals with natural numbers. This will 
be done by means of an additional axiom. 

We now proceed to perform the steps indicated above. 

11 B.l . Theorem. There exists a non-comprisable well-ordered class every 
segment of which is a set. 

P r o o f . It is easy to see that the class M of theorem 4 D.1 ordered by inclusion 
has the required property. 

11 B.2. Theorem. For i = 1, 2, let A{ be a non-comprisable well-ordered class 
every segment of which is comprisable. Then At and Az are isomorphic. 

This follows immediately from theorem 11 A.9. 

11 B.3. Axioms for the class of ordinal numbers. 
(a) Ord is a non-comprisable well-ordered class every segment of which is com-

prisable. 
(b) <N, is a segment of Ord. 

Definition. Every element of the underlying class |Ord| of Ord will be called an 
ordinal number or an ordinal; the class |Ord| itself will be called the class of (all) 
ordinal numbers. The structure (the order) of Ord will be denoted simply by ^ . 
If £ and rj are ordinals and ^ < rj, we shall say that £ is less than rj, r\ is greater 
than 
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11 B.4. Theorem and definition. If X is a well-ordered set, then there exists 
exactly one ordinal ^ such that X is isomorphic to the segment Ord4. We put ^ = 
= o r d X and say that ^ is the ordinal of the well-ordered set X. In accordance 
with 1 D.1, the single-valued relation assigning ord X to X,X being a well-ordered 
set, will be denoted by ord. 

P r o o f . The existence of £ follows from 11 A.9, the uniqueness from 11 A.6. 

11 B.5. Theorem. The relation ord possesses the following properties: 
(a) ord is a single-valued relation whose domain is the class of all well-ordered 

sets; 
(b) i f X and Y are well-ordered sets, then ord X = ord Y if and only i f X and Y 

are isomorphic; 
(c) if X is a finite well-ordered set, card X = n, then ord X = n. 
P r o o f . Assertion (a) follows immediately from 11 A.9. If ord X = ord Y = 

then both X and Y are isomorphic to Ord^ and therefore X is isomorphic to Y; 
conversely, if X and Yare isomorphic and ord X = then Yis isomorphic to Ord^, 
hence ord Y = Finally, if 3C = ( X , g ) is a finite well-ordered class and card X = 
= n, then < X , g> is isomorphic to <N„, by Axiom (b), <N„, coincides with 
the segment Ord„ and therefore n = ord X. 

R e m a r k . Clearly E ord = |Ord|, i.e. the range of ord coincides with the class 
of all ordinals. 

11 B.6. Definition. An ordinal 1; will be called finite if £ = ord X for some finite 
well-ordered set X (i.e. if Ord4 is finite); otherwise it will be called infinite. The smal-
lest infinite ordinal (which is clearly equal to ord N) will be denoted by a>0. If £ 
is an ordinal and no Ord,,, rj < is equipollent with Ord^, then £ will be called an 
initial ordinal number. 

R e m a r k s . 1) Clearly, an ordinal £ is finite if and only if £ e N. — 2) It is easy 
to see that for every cardinal x there exists exactly one initial ordinal number such 
that card Ord? = x (it is sufficient to prove that, for some ordinal IJ, card Ord, = x; 
this follows from the non-comprisability of Ord). 

11 B.7. For every ordinal £ = ord (Ord4). 

11 B.8. I f X and Y are sets and o r d Z g ord Y, then card X ^ card Y. 
The proof of these two assertions is immediate. 
The following theorem asserts that the class of all infinite cardinals as well as the 

class of all cardinals (as the reader may easily verify) ordered "by magnitude" 
is isomorphic to the class Ord, so that infinite cardinals can be "numbered" by means 
or ordinals. 

11 B.9. Theorem and definition. There exists exactly one order-isomorphic 
mapping of Ord onto the class of infinite cardinal numbers endowed with the 
natural order. The value of this mapping at an ordinal <xis a cardinal which will 
be denoted by and called the aleph of index a. 
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P r o o f . Let K be the class of all infinite cardinals; let g denote its natural order 
(see 9 B.1). According to 9 B.14, (K, g ) is well-ordered. Clearly, K is non-comprisable 
and every segment of (K, g ) is a set. Therefore, by 11 B.2, there exists exactly one 
order-isomorphism of Ord onto <K, 

R e m a r k s . 1) In view of the above theorem and definition, infinite cardinals 
are also termed alephs. — 2) The notation X0 introduced in 9 B.6 for the cardinality 
of a countable set is obviously in agreement with the above definition. — 3) It is 
easy to see (cf. 11 A.18) that, for any ordinal a, there exists exactly one ordinal 
number /?, usually denoted by <ua, such that card (Ord^) = but card (Ord,*) < 
< K j for £ < /?. Every cox is an initial number, and every infinite initial ordinal 
number /? is equal to some coa. — 4) The notation just indicated is in agreement with 
that introduced in 11 B.6 for the least infinite ordinal. — 5) Clearly, the class of all 
cardinals, as well as that of all ordinals, is minimally non-comprisable. 

11 B.10. Let x = be an aleph (i.e. an infinite cardinal). Then x < 2* (see 
9 B.2); on the other hand, clearly, is the least cardinal greater than x. Hence 
X a + 1 g 2H', for any ordinal a. As for the assertion = 2K"", called the Generali-
zed Continuum Hypothesis, cf. 9 C.8, remark 3. 

11 B . l l . Since Ord is a non-comprisable well-ordered class with comprisable 
segments, propositions 11 A.13, 11 A.14, 11 A.15 hold with s i = Ord; the name 
"Transfinite Recursion Theorem", etc., is often reserved for this special case. 
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12. C O V E R S A N D F I L T E R S 

In this section we consider two different though related concepts: covers, already 
mentioned in Section 1, and filters of sets, which may be conceived either as a special 
case of filters in the sense of 10 E.4 or as certain f)-ideals in the sense of 8 D.4. The 
role of these concepts will become more clear later in connection with topological 
questions. In this section, only some basic properties of covers and filters will be 
examined. 

A. C O V E R S 

First, we shall state basic definitions concerning covers and related notions. Some 
of these have been given in Section 1 (see 1 E.12) and are restated here for convenience. 

12 A . l . Definition. Every family of sets and every collection of sets will be called 
a cover. If X is a cover and \JX => A, we shall say that X covers A; if \JX = A, then 
X will be called a cover of A. 

If g is a comprisable relation, then X = {£>[(*)] | x e Dg} (occasionally also any 
X = {g[(x)] | x G A} with Q[A\ = Eg) is called the family of fibres of g; X as well 
as EX is also said to be associated with g. A disjoint cover X 4= 0 is called a de-
composition (of \JX) if = X whenever 0 4= <2f <= X, \J<& = \JX. 

R e m a r k . If si = </l, a ) is a struct, then a cover of A will also be called a cover 
of si, and similarly for decompositions, etc. 

E x a m p l e s . (A) For any set A, the collection of all (x), x e A, is a cover of A 
associated with }A. — (B) Let <A, g ) be a quasi-ordered set. Then X = {]«-,*] | 
| x e A} is a cover of A. Clearly, if g is reflexive, then X is the cover associated with 
the relation g - 1 . — (C) Let A be a set; let SB be a collection of non-empty subsets 
of A. For any x e A put 0tx = E { 7 6 @\xeY). Then {3SX} is a cover of - (D) 
The preceding examples are rather illustrative whereas the following one plays a cer-
tain role in algebra and topology. Let si = <v4, o, p} be a ring with unit and suppose 
that A contains more than one element. Consider the set Jt of all maximal ideals 
of si (see 8 D.19); the set Jt is not empty by 8 D.20. For any proper (i.e. distinct 
from A) ideal T of si denote by °UT the set of all those M e Jl which do not contain T. 
Consider a set ST of proper ideals of si and the cover | Te The family 
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T | t e is a cover of Ji if and only if there are Tk e ST, k = 0, ..., n, and tk e Tk 

such that t^t^o ... otn is equal to 1. Indeed, if does not cover Ji, then 
{J£T a M for some M £ Ji, and therefore the condition does not hold (since 1 $ M). 
Conversely, let {<%T | T e ¿F} be a cover of Ji. It is easy to see that the set T* of all 
t0 a ... a tn, where n e N, tk e is an ideal. Since T* is contained in no M e Ji, 
we obtain 1 e T*. 

12 A.2. Definition. A reflexive relation with domain A will be called a vicinity of 
the diagonal of the square of A or simply a vicinity on A; every reflexive relation 
will be called a vicinity. For a motivation of this terminology see 23 A.1. If a family 
9C = {Xa | a £ A} is a cover, then denotes (see 5 B.1) the set of all <a, x ) such 
that x e Xa. If 3C is a collection of sets (hence a cover), then will denote the set 
of all (X, x> where Xe9C, x eX. In both cases, Y.9C will be termed the sum of 9C. 

If 2£ is a cover, then the set (£$") o (EJ - ) - 1 (which is clearly a vicinity) will be called 
the vicinity associated with 3E and occasionally denoted by Observe that a vicinity 
associated with a cover is symmetric. 

Example . Consider the examples from 12 A.1. The associated vicinities are as fol-
lows: in (A), the diagonal ]A of A; in (B), the set of all <x, such that (x, y) is 
right-bounded; in (C), the set of all (X, Y> such that X e Ye 38, X n Y * 0. 

12 A.3. A cover, as defined in 12 A.1, may be either a family of sets or a collection 
of sets. This approach is in line with the current practice of interchanging both 
•kinds of covers. However, it makes necessary twofold definitions of many properties 
(as in 12 A.2), twofold proofs of various propositions, etc. We shall sometimes give 
statements referring explicitly to only one of the two cases, leaving to the reader the 
task of extending them to the other case. For some purposes, covers of both kinds 
will be considered simultaneously (see e.g. 12 A.4). 

We shall occasionally refer to a cover which is a family as a cover (family) using 
the expression "cover (collection)" in the other case. 

We are now going to introduce a certain natural quasi-order on the class of all 
covers. It will turn out that the relations assigning Y.9C and to a cover 9C are order-
preserving. Then some operations on covers will be introduced. 

12 A.4. Definition. Let SC, <& be covers. We shall say that 9C refines if the fol-
lowing holds: if a set X is a member or an element of 9C (according as 9C is a fa-
mily or a collection of sets), then there exists a set Y such that X a Y and Y is a 
member or an element of <W. 

Example . If A is a set, then }A refines any cover of A, and (A) is refined by every 
cover of A. 

12 A.5, The relation refines <3/} is a reflexive quasi-order on the class of all 
covers. Under this quasi-order, {Xa n Yfc} is a meet of {X„} and {Y,,}, {Xa | a e A) u 
u{Y„\b£B] is a join of {Xa | a e A], {Yb | b e B] provided A, B are disjoint. 

C o n v e n t i o n . Every class of covers will be conceived, unless the contrary is 
stated, as endowed with the restriction of the quasi-order indicated above. 
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12A.6. The mapping of the class of all covers into the class of all vicinities 
(respectively, all relations) which assigns V#T (respectively EST) to SC, is order-
preserving and completely lattice-preserving. 

Proof . We consider only the case of WX, of covers which are families and of pre-
servation of meets; the rest is left to the reader. Let | b eB} be a family of covers, 

= | a eA b } . Let 2£ be a meet of {3C(b)}. Then clearly, VJT <= fi{V#(l,)}. 
If <z, z ' ) belongs to every V%<b\ then it is clear that the collection consisting of 
exactly one set (z, z') refines every 3C(V). Therefore it also refines from which 
<z, z'> e V3f follows. We have proved that V-2T = n{V^ ( 6 )}. 

12 A.7. Definition. Let f be a cover; let M be a set. The SC-star of M (or, the 
star of M with respect to 3C) is, by definition, the set (V3E) [M], that is (i) if SC is 
a family the set of all y such that, for some a, y e Xa and Xa intersects M,(ii) 
if 9C is a collection of sets, the set of all y such that, for some X e 9£, we have y eX, 
X n M 4= 0. The ^-star of M will be denoted by st (X, M) or stT M. If 9£ is a cover, 
then every st^ (x) with x e \J9£ will be called a point-star; the family {st^- (x) | x e 
e U^"} will be denoted by St 3C. 

If 3C, are covers, consider the cover associated with (V$") o (Ei^), that is (i) 
if <W is a family {Yb \beB}, the cover {st (3C, Yb) \ be B}, (ii) if <& is a collection of 
sets, the cover {st (%, Y) \ Ye<&). This cover will be denoted by St (3E, <&). In parti-
cular, every member of St (9E, it) will be called a star of HE. 

Example . Let A be a non-empty set. Let 38 be the set of all finite non-empty 
X <= A. For every x e A, put 38x = E{Ye 38 | x e Y}; consider the cover B = 
= {38x\xeA} of 38. Then St B is the cover {E{Ye 38 \ Y n X 4= 0} | X e 38} and 
St (B, B) is the constant family {x ^ 38 \ xe A). 

12 A.8. For any cover 3E, St£" = St (%, J*), where X = If 9E, are covers, 
then the sum of St(#", <&) is equal to (V&) o (£<^), and the vicinity associated 
with St (&,<&) is equal to (W) 0 (V<&) a (W). In particular, the sum of St & is 
equal to VST, the associated vicinity is equal to (V$T) 0 (VST); the sum of St 9C) 
is equal to (V&) 0 (E^), the associated vicinity is equal to (VS£) o (V#") o (V#"). 

Proof . We only prove the assertions on St(#", <&) for the case when 3C = {Xa}, 
<& = { Yb | b e B} are families, leaving the rest to the reader. - The set E St (%, <&) 
consists, by definition, of all <ft, x> such that beB, x e st (3C, Yb), i.e. xeXa for 
some a and some z such that z e Xa, z e Yb. This implies at once that £ St (3T, <W) = 
= (VSC)o(m). The set V(St (3C, <&)) is equal (see 12A.2) to (E St (%, <&)) 
o (E st (3c, °y))~\ i.e. to (war) • (m)„(my1 „ (var)-1 = (var) „ (vaQ 0 (w). 

12 A.9. If3C, <y are covers, 9C refines <&, R, S are sets, and R <= S, then st (&, R) <= 
c st (<&, S). In particular, if 9C refines then St 3C refines St St (SC, 3C) refines 
St (<8f, <&); if 3C refines <& and T refines <&', then St (%, %') refines St (<&, <&'). 

We omit the proof. — Observe that the mapping {$T->St#"}, as well as 
\3C -* St (9C, &)}, does not preserve meets (not even finite); see 12 ex. 4. 
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12 A.10. C o n v e n t i o n . Let i be a cover; let Z be a set. Then we denote by 
Z nSC (provided there is no danger of misunderstanding) the following cover: (i) if 
SC = {Xa}, i.e. if SC is a family, the family {Z n Xa}, (ii) if SC is a collection of sets, 
the cover (collection) consisting of all Z n X, X e SC. 

We do not consider relationships between SC and Z nSC in any detail, deferring 
such considerations to those sections where properties of coverings will be really 
needed. Only some statements are given here (without proof): 

If2£ refines <3/, then AnSC refines i n f . The mapping the class 
of all covers into itself is order-preserving and completely lattice-preserving. 
The sum of A nSC is equal to )A o (2^"), the associated vicinity V(/4 n SC) is equal 
to \A o (var) o }A. 

For any cover SC, St (A n SC) <= A n StSC; namely, St (A n?E) is the domain-
restriction of An St SC to A, St (A n SC) = {A n st (SC, x) | x e A), A n St SC = 
= {An st(SC, x ) | x e U ^ } -

12 A.l l . Definition. Let SC, be covers; suppose, for convenience, that either (i) 
both SC and <W are families, SC = {Xa \ a e A}, ®J = {y6 | b e B}, or (ii) both SC and 

are collections of sets. Then we call the cover-product of SC and and denote 
by SC x <& (provided it is clear from the context that the cover-product is meant, and 
not the current product of sets or relations) the family {Xa x Yb\ (a, by e A x B} 
(case (i)), or the collection of all X x Y, X e SC, Y e <& (case (ii)). 

We do not examine the product of covers here, mentioning only some almost 
evident facts. 

Let SC, <&, SC', <&' be covers, and let SC x <&, SC' x <&' exist. If SC refines T, <W 
refines <&', then SC x refines SC' x <&'. The cover St (SC x <&) is equal to St & x 
x S t f (relational product); 1{9C x <&) is equal to x (Y/Sf) (relational 
product); x <&) is equal to (VSC) x (W<W) (relational product). 

12 A.12. Let g be a relation or a correspondence. Let HE be a cover (namely, 
either (i) a family {Xa | a e A} of sets, or (ii) a collection of sets). Then {f?[Xa] | 
| a e A} (in case (i)) or | X eSC} (case (ii)) is a cover which will be termed 
the g-image of SC. 

The following assertions are clear. 
Let Q be a relation or a correspondence. Then the mapping which assigns to every 

cover SC its g-image'W is order-preserving; the g-image of St OF refines SfS/. 
Observe that the mapping which transforms SC into the g-image of SC in general 

preserves neither joins nor meets (not even finite). 
It is clear that if / is a mapping, then we obtain as special cases of g-images, the 

/-image {/[Xffl]} of a cover {ATa} and the / " ' - image {/ - 1[Y f c]} of a cover {Yb}. 

12 A.13. Definition. Let SC, be covers. If St SC refines <W, then we shall say that SC 
star-refines <$). Clearly, the relation {SC -* | SC star-refines 'W} is a quasi-order 
on the class of all covers. 
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E x a m p l e . Let A be a non-empty set. Consider the set 38 of all finite non-
empty X a A. For any Ye 38 put JCX = E{Y | Ye 38, card (X -r Y) g 1}, JTX = 
= E{Y| Ye 38, card (X Y) ^ 2}. It is easy to see that { J f x } star-refines { ^ x } 
and even St {J/x} = Jr

x. If 38' a 38 is arbitrary, then {38' n J(x] star-refines 
{38' n A^xj, but the equality St {39' n Jix} = {38' n JVx} does not necessarily 
hold. 

R e m a r k . The quasi-order indicated above is neither distinguishing nor reflexive 
(although there exist covers ^ such that SC star-refines SC). 

12 A.M. Let SC, be covers. Then SC star-refines St SC. If SC star-refines then 
St SC star-refines St ®J, St (SC, SC) star-refines St (<&, <&). 

12 A.15. Let SC, SC1( <&, x be covers. If SC star-refines H/, then every SC± refining 
9C star-refines <&, and SC star-refines every <& t refined by <&. If SC star-refines <& and 

u then SC star-refines every meet of <& and <8If SC star-refines and SC± star-
refines <&1, then SC x SCx star-refines x <3 .̂ If A is a set and SC star-refines , 
then A nSC star-refines Ar\<&. 

The proof of both propositions above is left to the reader. 
R e m a r k . Star-refinements are quite important for various questions of general 

topology. However, it is convenient to defer their consideration, apart from some 
almost trivial facts as above, to Section 24. 

We conclude this subsection with definitions and some simple results concerning 
various kinds of "relative finiteness" of covers. An examination of these concepts 
is deferred to Section 30. 

12 A.16. Definition. Let SC, <W be covers. If every fibre of » (L<&) is finite 
(if SC = {X„}, <% = { Yb}, then this means that for any b there are only finitely many 
elements a such that Xa intersects Yb) then we shall say that SC is finite relative to <&. 
If every fibre of (ESC)~1 is finite, then we shall say that SC is point-finite. Finally, if 
SC is finite relative to SC (if SC = {Xa | a e A], then this means that, for any a' e A, 
there is only a finite number of elements a e A such that Xa intersects Xa ), then we 
shall say that SC is star-finite. 

R e m a r k s . 1) Clearly, a star-finite cover is point-finite, but not conversely. — 
2) A cover SC is point-finite if and only if it is finite relative to the cover {(x) | x e (JSC}. 
— 3) If SC refines <&, then it may happen that SC is star-finite, etc., without <& being so, 
or conversely. 

12 A.17. Let SC = {Xa | a e A}, <& = {Yb\beB} be covers. If SC, <& are finite 
relative to a cover 2£, then {Xa n Yb | a e A, b e A} is finite relative to 2C; in 
particular, if SC,<& are point-finite, then so is {Xa n Yfc}. If SC, <3/ are star-finite, 
then {Xa n Yb} is also star-finite. 

12 A.18. Let SC= {Xa \ a e A} be a cover. Let {Ab | b e B} be a point-finite cover of A. 
Put Yb = | a e Ab}, <& = {Yb \ b e B}. If SC is finite relative to a cover 2£, 
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then is also finite relative to 2£; in particular, if 3C is point-finite, then <& is 
point-finite. 

P r o o f . Let = {Zc}; for any c, let A(c) denote the set of those elements a for 
which Xa intersects Zc. Clearly, if Yb n Zc 4= 0, then Ab n A(c) 4= 0. Since A(c) 
is finite and {/I,,} is point-finite, there is only a finite number of elements b such that 
Ab n A(c) 4= 0. This proves that <3/ is finite relative to 2£. 

B. F I L T E R S 

Filters (see 10 E.4) of various kinds are of considerable importance in many topo-
logical and related questions. For instance, filters of covers (of a given set) play an 
important role (see Section 24). However, it seems that filters of non-empty subsets 
of a given set may be considered as the most important kind of filters. 

12 B.l. Let A be a set; let IF be a non-empty collection of subsets of A. Then the 
following conditions are equivalent: (1) is such that (a) l e F , Ye 3F => X n 
n Ye (b) X e X <= Y <= A => Ye 3F. (2) SF is a left filter (see 10 E.4) of 
the ordered set <exp A, c > ; (3) 3F is an ideal (see 8 D.4, 8 D.6j of <exp A, n>. 
If these equivalent conditions are satisfied, then the following properties of 2F 
are equivalent: 3F does not contain the void set; 3F is a proper filter in <exp A, <=>; 
3F is a proper ideal in <exp A, n>. 

P r o o f . We are going to show that (1) is equivalent to both (2) and (3). Clearly, 
(la) implies that 2F is left-directed, (lb) implies that SF is right-saturated in 
<exp A, c > ; conversely, if (2) is satisfied, then, clearly, (1) holds. The equivalence 
of (1) and (3) follows from the characterization of ideals of <exp A, n> given in 
8 D.6. 

12B.2. Definition. Let A be a set. A non-empty collection of subsets of A is 
called a filter on A if (i) X e f , Ye & =*> X n Ye (ii) XeF,X a y < = ^ = > 

'. If, in addition, 2F * exp A, i.e. if 0 £ then !F is called a proper filter 
on A. 

R e m a r k . This terminology deviates somewhat from the current one since we call 
"proper filters" what is usually called filters and, contrary to the usage, consider exp A 
as a filter. The terminology chosen seems to be in a better agreement with the ter-
minology concerning ideals. In addition, it seems desirable that e.g. the set of all 
neighborhoods of the diagonal in a uniform space should always be a filter, the void 
space being no exception. 

Examples . (A) If 0 =j= X c A, then the collection of all Y satisfying X o 
<= y c A is a proper filter on A. — (B) If A is an infinite set, card A = a, then the 
collection of all X c A such that card (A — X) < a is a proper filter. — (C) Let A 
be an infinite set; let {¿;a | a e A} be a family of real numbers, ^ 0. For any Y a A 
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let o(Y) denote the set of all real numbers £ {£„} where K <= Y, K is finite. Let & 
aeK 

denote the collection of all X a A such that o(A — X) is bounded (in R). Then 
either o(A) is bounded and J5" = exp A, or o(A) is not bounded and & is a proper 
filter on A. 

12 B.3. Let A be a set. The intersection of any non-empty family, as well as the 
union of every monotone family of filters (or proper filters) on A is a filter (proper 
filter, respectively) on A. 

12 B.4. Let A be a non-empty set. Let the set F(A) of all proper filters on A be 
ordered by inclusion. Then the set (^4) is the smallest element in F(A), and F(A) 
has no largest element unless A is a singleton. The ordered set F(A) is boundedly 
complete. 

Proo f . Clearly, A e 3F for any filter 3F on A, and (A) is a proper filter. If a e A, 
be A, a 4= b, then E{X | (a) e X c 'A}, E{X | (b) a X <= A} are filters and there 
is no proper filter containing them both. By 12 B.3, every non-empty subset of F(A) 
has a meet; hence, by 10 G.3, F(A) is boundedly complete. 

12 B.5. Let & be a filter on a set A.IfB<= A, then the set, denoted by B n 
which consists of all B n X, X e 2F, is a filter on B. 

We are now going to consider bases and sub-bases of filters of sets. It is convenient 
to consider a more general case, namely that of filters in a quasi-ordered class. 

12 B.6. Let <B, be a quasi-ordered class; let X <= B. Then X is left-directed 
(respectively, left-directed but not left-cofinal) if and only if the class of all y 
contained in some is a left filter (respectively, a proper left filter). 

Proof . Let Y = E{y | y e [ x, -+ [ for some x e X}. Clearly, Y is right-saturated. 
Let X be left-directed; if yu y2 belong to Y, choose xL, x2 with y, = xt or x&y;, and 
choose x e X with e [ x, -> [. Hence e [ x, -* [. Conversely, if Y is a filter, 
let xlt x2 belong to X, choose y e Y with yt e [ y, -» [ and choose xeX with y e 
e [ * , - > [ . 

It is usual and convenient to give a special name to those left-directed collections 
of sets which "generate", in the way indicated above, a filter of sets on some set A. 

12 B.7. Definition. Let 3C be a collection of sets. If A is a set, 3C <=. exp A, 3F is 
a filter on A, and SF consists of those Y <= A for which there exists a n X e f with 
X <=• Y, then we shall say that SC is a base of the filter SF (on A). We shall say that 
is a filter base (a proper filter base) on A, if there exists a filter (a proper filter) 
on A of which 9£ is a base (if there is such a filter ¿F, then it is, of course, uniquely 
determined). Finally, we shall say that 3C is a filter base, or, more explicitly, a base 
of a filter of sets if, for some set A, 3C is a base of a filter on A, and similarly for 
a proper filter base. 

It follows at once from 12 B.6 that the following holds: 
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A collection of sets £ is a filter base if and only if (*) for any X e 9C, Ye 3C, 
there exists a Z e i with Z cz X n Y; it is a proper filter base if and only i f , in 
addition, 0 does not belong to SE. 

If the above condition (*) is satisfied and A is a set, A => \}3C, then there exists 
exactly one filter on A of which 9E is a base, namely the collection of all Y a A such 
that Y=> X for some Xe3C. 

Examples. Consider the examples given in 12B.2. In (A), the singleton (X) is 
a base of the filter in question. In (B), suppose that A can be well-ordered in such 
a way that (i) card Ax < a for each segment Ax, (ii) if B is cofinal in A, then card B = 
= a; then the collection of all (A — Ax) is a base of the filter in question. 

12B.8. Let 38 = (B, Q> be a quasi-ordered class. Suppose that every non-empty 
finite left-bounded K a B has a meet. Let X cz B. Then the following conditions 
are equivalent: (l) every finite non-empty K cz X is left-bounded in 3$, (2) there 
exists a left filter in 38 containing X; (3) there exists a smallest left filter in 3$ con-
taining X. 

Proof. If (l) holds, denote by Y the class of all y such that, for some finite non-
empty K c X, the set ] «-, y ] contains a meet of K. Clearly, Y is right-saturated, 
X cz Y. Let yt e Y, i = 1, 2; let Kt cz X be finite, X; 4= 0 and let ] «-, ] contain 
a meet xt of Kt. By the suppositions made, u K2 is left-bounded, hence has a meet, 
say y. Clearly, y e Y, y is a left bound of y2). This proves that Y is a left filter. 
Now, if Z is a left filter in 3S,X cz Z, then, for any finite non-empty K <= X, there 
exists a z e Z which left-bounds K; since z left-bounds Inf K, we get Inf K cz Z. 
From this, Y <=. Z follows easily. Hence, Y is the smallest left filter containing X. 
Thus, we have proved (1) => (3). Since (3) => (2) is obvious, it remains to prove 
(2) => (1). This is, however, clear; for if Y zz> X is a left filter, then every finite non-
empty K cz X has a left bound in Y. 

Similarly as in the case considered in 12 B.6,12 B.7, it is convenient to give a special 
name to the smallest filter of sets containing a given collection of sets. 

12 B.9. Definition. Let 9C be a collection of sets. If A is a set, 9C cz exp A, and 
is a filter on A, then we shall say that 2E is a sub-base of the filter 9C (on A) provided 
the following holds: (i) F cz (ii) if is a filter on A, => then 8Fx => 

It can be easily proved that the following holds: 
If 2E is a collection of sets and A is a set, A zz> \J3C, then there exists exactly one 

filter on A of which 3C is a sub-base. This filter consists (i) if & 4= 0, of all Y cz A 
such that r W c Yfor some finite non-empty 2£ <= 9C, (ii) of a single element A if 
3C = 0. 

12 B.10. Definition. Let 3C be a collection or a family of sets. If SC is non-empty and 
#= 0 for every finite non-empty cz 9C, then 9C is called centred. A centred PI 

is also said to possess the "finite intersection property". 
The proof of the following proposition is left to the reader. 

14 — Topological Spaces 
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A non-empty collection of sets is a sub-base of a proper filter if and only if it is 
centred. 

12 B.11. Proposition and definition. Let | be B] be a family of filters of 
sets; put Ab = \}3Fb, A = II{/1(,}. The smallest filter 3F on A such that, for any 
be B,X e 3Fb, the set pr̂ "1 [AT] (consisting of all y e A such that pr6 y e X) belongs 
to !F will be called the cartesian product (more explicitly, the cartesian filter-pro-
duct) of{^b} and will be denoted by Hfiu{^b | b e B} or, provided there is nodanger 
of misunderstanding, by Ti{^b | be B) or H{^b} or W%Fb, etc. If all 3Fb are proper, 
then is also proper. b 

Proof. By 12 B.9, it is sufficient to prove that the sets pr̂ "1 [AT], X e 3Fb, form 
a sub-base of a proper filter of sets. This is clear, however. 

Remark. The reader is invited to formulate the definition of a filter-product 
(called also simply "product") ^ x n i t 2F2 or 2Fx x 3F2 of two filters (this product 
is a filter on (U-^i) x (U^2) containing all Xt x X2 where X, e 

12B.12. Proposition and definition. Let A, B be sets, let R be a correspondence 
for A and B. Let & be a filter on A. Then the set of all R[AT], X e is a base of 
a filter on B. This filter (which is determined uniquely, see 12B.7) will be called 
the ^-transform of the filter it is proper if and only if every AT e J5" intersects 
the actual domain D gr R of R. 

Proof. If Xxe&, X2 e SF, then RfATi n X 2 ] c i^AT^ n R[X2~]; hence the 
sets R[Af] form a base of a filter. If every Xe3F intersects D gr R, then i?[AT] =|= 0 
for every X e 2F. This implies that i?[AT] form a base of a proper filter. 

Remark. In particular, if / i s a mapping of a set A onto a set B, then the /-transform 
of every proper filter on A is a proper filter on B, and the /"'-transform of every 
filter on B which "intersects" f[A\ (i.e. of a filter f on B such that 0 $f[A] n [<W]) 
is a proper filter on A. 

Example. Let {A„ \ b e B} be a family of sets, A = n{y4fc}. Let | b e B} 
be a family, !Fb being a filter on Ab; put J5" = II{if'1)} (see 12 B.11). Put pb = pr,,: 
: A Ab. Then, for any b e B, is the ^-transform of &. 

We conclude this subsection by introducing the following concept. 

12 B.13. Definition. A proper filter of sets 2F is called fixed if 4= 0, free if 
n - ^ = 0-

Remarks, l) If J5" is free, then every filter B n is free (provided it is proper) 
as well as every proper filter J*\ => 8F\ however, an Ji-transform (see 12B.12) of 
SF need not be free. If iFb are proper filters and one of them is free, then Il{J%} 
is free. — 2) Every proper filter on a finite set A is fixed. If A is infinite, then there 
exist free proper filters on A; this can be proved e.g. by considering a well-order 
on A under which there is no largest element. 



12. C O V E R S A N D F I L T E R S 211 

C. ULTR AFILTERS 

12 C.l. Definition. Let A be a set. A maximal filter on A (i.e. a proper filter J5" 
on A such that if is a proper filter on A, •=> SF, then = will be also 
called an ultrafilter on A. The set of all ultrafilters on a set A will be denoted by 
ult A. 

Clearly, a fixed filter 3F on A is an ultrafilter if and only if it has a base formed 
by a singleton, i.e. if there exists an x eA such that 5F consists of all 7 with (x) cz 7 c A. 

12 C.2. Theorem. Let A be a set. If !F is a free filter on A, then there exists an 
ultrafilter on A such that => 

This follows from 4 C.3 and 12 B.3. 
We now intend to show that there exist "very many" ultrafilters on an infinite 

set, namely that there are exp exp a ultrafilters on a set A of an infinite cardinality a. 
To this end, some auxiliary propositions are necessary. 

12 C.3. Let si be a finite collection of sets. Then there exists a finite set M c (Jsi 
such that Xesi, Yesi, X*YoXnM*YnM. 

Proof. If Xesi, Ye si, X — Y 4= 0, choose an clement zXYeX - 7. Let M 
be the set of all zXY. If X esi,Yesi,X 4= 7, then either X - 7 4= 0, zXtY eM nX, 
zXiY $ M n 7, or 7 - X 4= 0, zYtX nX, zY<x e M n 7. 

12 C.4. Definition. Let be a class of sets. We shall say that is independent 
(more explicitly, inclusion-independent) if the following holds: if $£ cz 2£, <8 c 2£ 
are finite and 0& c= \j<&, then there exists a set M such that M e$£, Me<y. 

Example. Let A be a non-empty set. Let M consist of all collections Jit = 
= E{X | t e X cz A}, where t e A. Then M is independent. 

12 C.5. Let A be an infinite set; let card A = a. Then there exists an independent 
collection Jl of subsets of A such that card Jt = exp a. 

Proof. Denote by $ the set of all <K, £?y where K cz A is finite, 2£ cz exp K-
For any X e exp A let <P(X) denote the set of all (K, such that Kr>Xe%. 
It is easy to see that the cardinality of the set of all $(X) is equal to that of exp A, 
i.e. to exp a. We are going to prove that the collection F of all $(X) is an independent 
collection of sets. 

Let $ <=. exp A, <y cz exp A be finite, 3C n <& = 0. By 12 C.3, there exists a finite 
K0 cz A such that SeSC u Te 3C u <&, S 4= T=> K0 n S * K0 n T. Denote 
by 3f0 the set of all K0nX,Xe%. Clearly, Xe9C => <K0, ^T0> e <P(X). Since every 
K0 n 7, Ye<3l, is distinct from every K0 n X, X e 3C, we obtain Ye<& => <K0, ^T0> £ 
i<*>(7). Thus, r i { $ ( X ) \ X e % } is not contained in U{4>(10 I This proves 
that F is an independent collection of sets. 

Clearly, card $ = a and therefore there exists a bijective relation \p on <P onto A. 
Let Jt be the collection of all i¡>[jF\ ¿F eF. Then, evidently, Jt is an independent 
collection of subsets of A, card Jt = exp a. 

14* 
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12 C.6. Let A be a set; let Jt be an independent non-empty collection of subsets 
of A. For any SE cz Jt, denote by the collection consisting of all X e9C and all 
A — X, X e Ji, X $SE, and denote by (pSE the (uniquely determined) filter 3F on A 
such that t9C is a sub-base of 3F. Then (1) if 2E cz Jt and either HE is infinite or 
9C * Jt, then 13C is centred, hence (pSE is a proper filter; (2) if SC^ cz Jt, 2E2

 c 

HEi 4= 9C2, then there is no proper filter of sets containing both <pSEl and (pSE2. 
Proof. Let 9C e Ji, and suppose that either ?E 4= Jl or 3C is infinite. Suppose 

that t9C is not centred. Then there exist natural numbers n ^ 1, m g n, and distinct 
setsX^SE, i = 1 , . . . , n, such that no elements x belong to both all Xt, 1 g i g m, 
and all A — Xh m < i g n. If m = 0, we get | i = 1, , w} = this implies 
that every X e Ji is equal to some hence 9C = Jt is finite which contradicts the 
supposition. If m > 0, then we get 1 1 g i g m} c: | m < i ^ n} 
which contradicts the fact that Jt is independent. We have proved that t3C is centred; 
hence by 12 B.10, <p2E is a proper filter. If 9CX cz Jt, 9C2 <=. Ji, 9CX =)= SE2, suppose 
e.g. that - SE2 4= 0 and choose XeSEu X$SC2. Then X&x3Cu A - XBTSC2, 
which proves the last assertion. 

12 C.7. Theorem. Let A be an infinite set, card A = a. Then the cardinality of the 
set ult A of all ultrafilters on A is equal to exp exp a. 

Proof. By 12 C.5, there exists an independent collection of subsets of A such that 
card Ji = exp a. Let <pSE, where 2E cz Ji, have the same meaning as in 12 C.6. Then 
every <pSE is a proper filter. Hence, by 12 C.2, for any SE cz Jt there exists an ultrafilter 
3F •=> cpSE; by assertion (2) from 12 C.6, if * 9E2, => (p9£y, => <pSE2 and J^ , 
3F2 are proper filters, then & x 4= !F2. From this it follows at once that the cardinality 
of ult A is not less than that of exp Ji, that is exp exp a. On the other hand, since 
ult A cz exp exp A, we have card (ult A) g exp exp a. This proves the theorem. 

Remark. It is easy to see that if A is finite, then ult A has as many elements as A. 

12 C.8. Theorem. A proper filter on a set A is an ultrafilter if and only if 
for any X cz A either X e & or A — X e 2F. 

Proof. If ^"eultvl and X <= A, consider the collection of all X n F, f e ^ . 
Clearly, this collection is a filter base. If it is a base of OF, then X = X n A e 2F-
If not, then it is a base of exp A and therefore, for some F0 e X n F0 = 0, F0 cz 
<=. A — X, A — X e f . The proof of the inverse implication is quite easy. 

12 C.9. Theorem. Let 3F be an ultrafilter on a set A. If f is a mapping of A into 
a set B, then the f-transform of is an ultrafilter. If g is an injective mapping 
of a set C into A, then the g~1-transform of !F is either an ultrafilter (on C) or 
equal to exp C. In particular, if C cz A, then C n [#"] is either an ultrafilter 
on C or equal to exp C. 

Proof. Consider / = / : A -> B. Let SF* denote the /-transform of If Y cz B, 
then either f~1(Y)e^r, hence YeSF* or A - f~l(Y)e&, hence B - Ye !F*. 
Thus, by 12 C.8, 3F* is an ultrafilter. Consider g = g : C -» A. Let J5" denote the 
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g~ '-transform of F. If g\C\ e F, then F' is a ^'-transform of J?" where g' = g~l : 
: g[C] -> C, hence J57' is an ultrafilter. If not, then A — g[C\ e F, hence F' con-
tains the void set and therefore is equal to exp C. 

12 C.10. Definition. Let / be a mapping of a set A into a set B. Then the mapping 
of ult A into ult B which assigns to every F e ult A its /-transform (which is, by 
12 C.9, an ultrafilter on B) will be denoted by ult/. 

12 C.l l . Let f be a mapping of a set A into a set B. Then u l t / i s injective (re-
spectively, surjective) if and only if f is injective (respectively, surjective). If g 
is a mapping of B into a set C, then ult (g o / ) = (ult g) o (ult / ) . 

Proof. If Fx e ult A, F2 e ult A, Fx 4= F 2, then there exist sets Xt e F-, such 
that Xx n X2 = 0 (this follows from 12 C.8). I f / i s injective, then/ [X J nf\X2~\ = 
= 0 and therefore /-transforms of Fx and' of F2 are distinct. If / is not injective, 
then fxy = fx2 for some distinct x1; x2. Denote, for any a e A, by F(a) the ultra-
filter consisting of all X <= A with a eX. Clearly, /-transforms of F(xt) and F(x2) 
coincide. If / i s surjective, F e ult B, then let F* be the/"'-transform of !F. Since 
f[A~\ = B, we have / ~ 1 [ 7 ] 4= 0 for every Ye F. Therefore, by 12 C.2, there exists 
an ultrafilter F* such that Ye F implies / - 1 [ Y ] e F*. It is easy to show that F 
is the /-transform of F*. — The rest of the proof is left to the reader. 

12 C.12. Clearly, there exist free ultrafilters F such that = 0 for some count-
able 3C c= F. Indeed, if A is an infinite set, then there exist (see 9 B.9) sets A„, n = 
= 0, 1, 2 , . . . , such that A0 = A, for every n, A„ => An+1, card A„ = card A, and 
O K } = 0. Clearly, the A„ form a base of a free filter, say F, and by 12 C.2, there 
exists an ultrafilter F* => F on A; this ultrafilter has the property in question. 

It seems that it is not possible to prove, on the basis of the system of axioms 
developed in this book (or of any of current systems of axioms) that there exist free 
ultrafilters F lacking the above property, i.e. such that C\9C #= 0 for every countable 
3C <= F (on the other hand, no means seem to be known to disprove the existence of 
such ultrafilters). However this may be, the case of an ultrafilter F such that f ) ^ = 0 
for some countable 3C c F may be considered as "normal". 

Without going into this matter (connected with inaccessible cardinals, i.e. cardinals 
of non-accessible sets, see 4 ex. 12), we give two propositions concerning the filter-
product (see 12 B.11) of ultrafilters; the first of these propositions refers to the "nor-
mal case"; the second shows that possibly there may occur quite different situations. 

12 C.13. Theorem. Let Ft be a free ultrafilter on a set Ah i = 1,2. Suppose 
that there exist countable 9C( c Fx such that = 0, i = 1, 2. Then Fx x f m F2 

is not an ultrafilter. 

Proof . It follows at once from the suppositions that there exist infinite sequences 
of sets {B„}, {C„} such that Bn e Fu C„ e F2, B0 = Au C0 = Az, Bn => B,r + 1 and 
C„ => C„+1 for n e N, f){-Bn} = 0, H{C„} = 0- Let M denote the set of all <x, y> e 
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e A x B such that, for some n e N, x$B„, ye C„; then (A x B) — M consists 
of all <x, y} e A x B such that, for some n e N, x e B„, y $ Cn+1. 

Let X <=• A, 7 c B be sets such that X x Y <=. M. Choose y e Y and choose k 
such that y £ Ck. Then, clearly, for any x e X we have x $ Bk; this implies X n Bk = 0, 
X $ Quite similarly, it can be shown that X x Y <=• (A x B) — M implies that 
Y$ ¡F2- We have shown that, for any Z; e i = 1, 2, the set Zt x Z2 intersects 
both M and (A x B) — M. This proves, according to 12 C.8, that the filter of all 
Z a. A x B such that Z d Z, x Z2 for some i.e. the filter 
is not an ultrafilter. 

12 C.14. Let be an ultrafilter on a set A, and let 'V be an ultrafilter on a set B. 
If there exists a set U e°U such that C\<& 4= 0 whenever ^ c f " , card ^ card U, 
then °lt xnitTT is an ultrafilter. 

Proof. To prove that Hi x f iH y is an ultrafilter, it is sufficient to show that, 
for any M <= A x B, either M => X x Ffor s o m e i e t , Y e -T, or M n (X x Y) = 
= 0 for some Xe% Ye rT. For any ueM, put M„ = M[(u)]. Denote by A' 
the set of those u e A for which Mu e i/~, any by A" its complement in A. Since V 
is an ultrafilter, B — Mu e for every u e A". Two cases are possible: A' e °U or 
A" e « . I f A'eW, put X = A' n U, Y= D{M„ | ueA' n U}. Then Xe^,Yer~ 
(since CW 4= 0 whenever HI c y, card HJ g card U), and clearly M => X x Y. 
If A" e Hi, put X = A", Y = n{B - Mu\ue A" n U}. Then XeW, Ye V, and 
clearly M n (X x Y) = 0. 
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13. C A T E G O R I E S 

The situation which we are going to describe has already been considered and will 
appear very often in the sequel. There are given certain objects and certain "transit-
ions" from one object to another; if we perform successively a "transition" from a 
to b and a "transition" from b to c, then the result is a "transition" from a to c. 
An example: "objects" are sets, "transitions" are mappings. An example of a dif-
ferent kind (which has not yet been considered here): "objects" are arbitrary ele-
ments, "transitions" are pairs of elements, <a, by being conceived as a "transition" 
from a to b. 

It turns out that the situations indicated above can be usefully investigated in an 
abstract and general way, disregarding the special nature of the "objects" and "trans-
itions" in question. 

Such an investigation is the purpose of the theory of categories. The above remarks 
serve only to give a general idea of this concept and of its motivation. Its 
meaning and role will gradually become clear from the definition and subsequent 
examples. 

We shall restrict ourselves to the basic concepts and results here, since we do not 
intend to give an exposition of the theory of categories to an extent which would 
permit applications in general topology, but merely to facilitate an approach to 
various topological concepts and theorems from a general and unifying point of 
view. 

A. CATEGOROIDS 

13 A.l. Definition. We shall say that it is a partial composition in a class X if a 
is a single-valued relation, Do- c X x X, Eo <= X. 

Observe that a composition on X is a partial composition in any class Y zd X. 
Examples. (A) Let $ be a quasi-order (i.e. a transitive relation); let a consist 

of all <<£, r\y, f> where r\, £ belong to <P and, for some elements a, b, c, we have 
= <b, c), rj = <a, by, £ = <a, c). Then a is a partial composition in <P; Da 

consists of all « f t , c>, <a, b » such that <b, c> e 0, <a, by e Clearly, o is not 
a composition, unless = 0 or = (<a, a)). — (B) Let ^ be a class of comprisable 
relations. Then {<g, CT) -» g o o | e, u, q o a belong to 8$} is a partial composition 
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in 3k. — (C) Consider a class A and the set SF of all mappings / = <<p, X, Y> where 
X <= A, Y <= A are sets. Let o assign to (/, g} e x SF the element f o g provided 
it exists (see Section 7). Then a is a partial composition in SF. If S <= A is a set and £P 
denotes the set of all / = <<p, S, S> e then the "restriction of a to £F", i.e. the 
relation o n ((Sf x £F) x .9*), is a composition on ¥ and even a semi-group structure 
on i f . — (D) Let $ be the class of all homomorphisms <<p, ) where are 
groups, and let o assign to </, g} e <P x $ the homomorphism f o g provided it 
exists. Then it is a partial composition in <P. — (E) Let A, B be given classes and let 
B contain more than one element. Consider the class 2F of all comprisable single-
valued relations / such that D/ c: A, E/ <= B. Let a consist of all « / , g}, K) where 
/ , g, h belong to J5", h = / u g. Then o is a partial composition in J*"; o is not a com-
position unless A is void. Clearly Do consists of all </, g} e 3F x !F such that 
fx = gx whenever x e D / n Dg. 

Convention. If a is a partial composition, and <x, e Do, we shall denote 
by xay the unique element z such that « x , y), z) e a. — This symbol must be used 
with care, for if<x, .y>£Do, then "xay" has no meaning; in such a case, we shall 
also say, for convenience, that xay is not defined or that "xay does not exist". 

We shall use freely, with appropriate changes, various conventions introduced 
in Section 6 for compositions. In particular, if a is a partial composition in X and 
7 c X, then aY will denote the relation a n ((7 x Y) x Y). 

13 A.2. Definition. A partial composition a is called associative if it possesses 
the following property: 

If <x, e Do and <xoy, z) e Do, then z) e Do and <x, yaz) e Do, and 
conversely; if these conditions are satisfied, then (xay) az = xa(yaz). 

A partial composition o is called strongly associative if it is associative and 
<x, y~y e Do, z> 6 Do implies <x, yoz) e Do, <xoy, z) e Do. 

Clearly, if a is a composition (that is, if there is a class X such that Do = X x X, 
E a <=. X), then the associativity and strong associativity described above as well as 
the associativity in the sense of Section 6 are equivalent properties. 

Observe that the partial compositions in the above examples (A), (C), (D) are 
strongly associative. The partial composition from example (B) may be strongly 
associative or associative but not strongly associative or not associative according 
to the properties of 3k. The partial composition o in example (E) is not strongly asso-
ciative (provided A is not void) which is shown as follows: choose a e A, e B, 
b2 e B, br 4= b2, and put / , = « a , fcf>); then </i, 0> e Do, <0,/2> e Do, 0o/2 = f2 
< / i , / 2 > * d o . 

13 A.3. Definition. Let o be a partial composition. We shall say that a is neutral 
or that a is a unit element (or simply a unit) under a if (1) there exist x, y such that 
<a, x) e Do, a) e Do, (2) aax = x whenever (a, x> e Do, and yaa = y when-
ever ay e Do. 
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Examples. Consider the examples given in 13 A.1. In example (A), the units 
are precisely all elements <a, a) belonging to In (B), if Sk = exp (A x A), A 
being a class, then there is exactly one unit JA if A is a set and there is no unit if A 
is non-comprisable. In example (C), the units are mappings of the form J : X -» X. 
In example (D), 0 is the only unit. 

13 A.4. Definition. Let X be a non-void class, a a partial composition in X. 
If a is strongly associative, and for every xeX there exist unit elements (under a) 
e and e such that e'ax = x, xae" = x, then (X, cr) will be called a categoroid, 
and a will be called a categoroid structure on X. 

Remarks. 1) Clearly, a categoroid is a struct, and therefore all definitions and 
conventions introduced for structs apply to categoroids. — 2) Clearly, if (X, cr) 
is a categoroid and e is a unit under o, then <e, e) e Dcr, eoe = e. 

Consider examples from 13 A.1. — In example (A), cr is a categoroid structure on 
4> if and only if $ is reflexive. In example (C), o is a categoroid structure on F; 
it is comprisable if and only if A is a set. In example (D), cr) is a categoroid. In 
example (E), a is not strongly associative, hence o is not a categoroid structure. 

Convention. If JT* = <r> is a categoroid, then the elements of will some-
times be called morphisms of (or from) J f* or -morphisms; if x, y are morphisms 
of Jf*, we shall sometimes write x . y (or simply xy) instead of xoy. 

13 A.5. If <X, o) is a categoroid, then for every x e X there exists exactly one 
unit element e' eX such that e'ax = x and exactly one unit element e" eX such 
that xae" = x. 

Proof. Elements e', e" such that e'ax = x, xae" = x exist by the definition 
13 A.4. If e is a unit element, eax = x, then e'a(eax) "is defined" (that is (e', eax) e 
e Dcr) and therefore, by the associativity of a, <e', e} e Da; hence, e and e being 
units, eoe = e', e'ae = e, e = e . 

. Definition. If a is a categoroid structure on X and xeX, then the elements e , e" 
described above will be called the left unit and the right unit for x (under a). The 
left unit will also be called the range unit, and the right unit will also be called the 
domain unit. 

Consider the examples from 13 A.1. In example (A) with a reflexive <P, the left (right) 
unit for (a, by is <b, ft) (respectively, <a, a}). In example (C), the left (right) unit 
for <<p, X, 7 ) is J : Y -»• Y(respectively, J : X -> X). 

13 A.6. Let a be a categoroid structure on X. Then <x, e Dcr if and only if 
the right (domain) unit for x coincides with the left (range) unit for y. 

Proof. Let ex, ey be the units in question. If <x, y> e Da, then xa(eyay) "is defined" 
(i.e. <x, eyayy e Dcr), hence also xaey "is defined" and therefore, by 13 A.5, ey = 
= ex . If ex = ey = e, then <x, e> e Dcr, <e, y> e Dcr; by strong associativity, this 
implies <x, y> = <x, eery) e Dc. 
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13 A.7. Consider a class X and a partial composition a in X. If Y <=. X, put oY = 
= a n ((Y x Y) x Y). It seems natural to consider <Y, oYy as a substruct of <X, <r> 
and, in particular, to say that < Y, ¡1) is a subcategoroid of a categoroid (X, <7> 
if <Y, ¡1} is a categoroid and p = oY. However, it turns out in connection with the 
investigation of categories, that it is more expedient to define subcategoroids in 
a different and somewhat more restrictive way. 

Definition. Let si = <A, <r> and 3b = (B, ¡x) be categoroids. We shall say that 
0b = (B, py is a subcategoroid of si (or that 0b is identically embedded in si) 
if (i) p <= o, B <= A, (ii) every unit under p is a unit under a. 

Convention. If <B, /z> is a subcategoroid of si, then we shall also say that the 
class B is a subcategoroid of si. 

Examples. (A) Consider example (A) from 13 A.1; suppose that <P is reflexive. 
Every (X, oxy where Z c $ is an arbitrary non-void reflexive transitive relation 
is a subcategoroid, and every subcategoroid is of this form. — (B) Let T = (a, b), 
a 4= b. The set F = F(T, T) consists of four mappings: the identity mapping e, 
two constant mappings a, /? and a mapping y with y =)= e, y o y = s. Clearly, F endowed 
with the usual composition is a categoroid possessing exactly one unit e; it has six 
subcategoroids: F itself, (e), (e, a), (e, /J), (e, y), (e, a, /?). The set (a) as well as (ft) 
satisfy condition (i) above, but do not satisfy (ii), and therefore are not subcatego-
roids, although they are sub-semi-groups of F. 

13 A.8. Let (A, CT> be a categoroid, let 0 * B c A. If (1) xeB, ye B, <x, y> e 
e D 0 => xoy e B, (2) for every xeB, the left and right unit for x (under 0) belong 
to B, then there exists exactly one partial composition p in B such that <B, py is 
a subcategoroid of <^4, c ) . This partial composition p is equal to a n ((B x B) x 
x B). Conversely, if there exists a psuch that <B,py is a subcategoroid of <A, ay, 
then B satisfies conditions (1) and (2). 

The proof is left to the reader. 
Remark. Let <r) be a categoroid possessing exactly one unit. Then, by 13 A.6, 

Do- = X x X and therefore a is a semi-group structure, and X contains a neutral 
element under o. Clearly, Y <=. X is a subcategoroid if and only if Yis stable under a 
and contains the neutral element of X. Conversely, if a is a semi-group structure 
on X and X contains a neutral element, then <X, a) is a categoroid with exactly 
one unit. 

13 A.9. We are going to consider those mappings of categoroids which will play 
a role analogous to that of homomorphisms in the theory of algebraic structures. 
If <X, (X', a'y are categoroids, it would seem appropriate to define a single-
valued "homomorphism-relation under o and <7"' as a relation / on X into X' such 
that (fx) a ( f y ) = f(xay) whenever <x, e Do. However, we shall consider a dif-
ferent though closely related concept. 
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Definition. Let (X, cr), < Y, ¡1) be categoroids. A single-valued relation <p will 
be called covariant under a and /z (or (cr, fi)-covariant) provided (l) if x e Dip, y e 
e Dq>, <x, y> e Do, then xayeDcp, <<px, <py> e D/z, (cpx) /z (cpy) = <p(xay), (2) if 
e is a unit under a, e e Dip, then <pe is a unit under /z. 

Remark. The above definition overlaps that of 6 E.1. Namely, they are both 
meaningful if q> is single-valued, Dtp c X, Ecp c Y and semi-group structures <r 
on X and /z on Y possess neutral elements. It is easy to see that in such a case both 
properties considered ("covariant" and "stable") are equivalent. 

Examples. (A) Let 3C = (X, g} be an arbitrary categoroid. Let $ = V x V 
be the class of all pairs of elements; consider the categoroid cr) = (V x V, cr) 
described in 13 A.1, example (A). For any x eX, put fx = (e', e") where e, e" are 
the domain unit and the range unit for x under g. It is easy to see that the relation / 
is covariant under g and cr. — (B) Denote by 3F{A) the. categoroid described in 
13 A.1, example (C). If B <= A, then for every F e A), F = </, X, Y), put F* = 
= F : X n B -»• Y n B. It is easy to see that the relation {F F*} is covariant. — 
(C) Consider 3F(V), V being the universal class. If F e / ( F ) , F = </, X, Y), let F 
denote the mapping <{Z /[Z]}, exp X, exp Y>. It is easy to see that {F -> F} 
is a covariant relation. 

13 A.10. Definition. Let 9C = (X, <r), f = <Y, /z) be categoroids. A mapping 
<tp, HE, will be called a covariant functor on 3C into 'W (onto if Ecp = Y) if 1p 
is covariant under <7 and /z. 

Clearly, in the above examples we have covariant functors on 3C into ( F x F, cr), 
on A) onto 3?(B), on 3F(V) into 

13 A. l l . If 9C = Qi, cr), Of = <Y, /z) are categoroids and f is an injective co-
variant functor on SC onto then/-1 is a covariant functor. 

Proof. Let <r\u r\2> e D/z and let ^ = /£;. Let ex be the right unit for ¿^ and let 
e2 be the left unit for Z2. Suppose ¿;2> £ Dcr; then, by 13 A.6, 4= e2, hence 
fe 1 * /e2 (for / is injective). Clearly riiKfei) = i/l5 (/e2) H2 = by 13 A.6, 
this contradicts j/2> e D/z. Thus £2) e Dcr and therefore t]1nt]2 = / (^cr^) , 

= / " ' ( l i f f l j ) . — The rest of the proof is left to the reader. 

13 A.12. 1/ sd, 38 are categoroids, then 38 is a subcategoroid of si if and only 
if J : 38 si is a covariant functor on 38 into si. 

Proof. Let si = {A, cj>, 38 = <B, /z). If 38 is a subcategoroid, then B <= A, 
/z <= cr, and every unit under /z is a unit under cr. We have to prove that the relation 
JB is covariant under a and /z; but this is immediate since conditions (1), (2) in 13 A.8 
are clearly satisfied. On the other hand, if J : 38 -> si is a covariant functor, then Jfl 

is a covariant relation on B into A, from which it follows that B c A, /z <= a and 
every unit under /z is a unit under cr. 

13 A.13. Definition. Let si = (A, cr), 38 = <£, /z> be categoroids. If ip is a bi-
jective relation on A onto B and <x, y) e Dcr, z = xcry o- <1px, <py) e D/z, cpz = 
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= (<px) p (<py), then (p is called an isomorphism-relation (under o and p) and 
<ip, si, 38y is called an isomorphism functor or simply an isomorphism (on si 
onto 38). Two categoroids si and 38 are said to be isomorphic if there exists an iso-
morphism of si onto 38. 

Example. Let $ be a reflexive quasi-order. Consider the categoroid (<P, u) 
described in 13 A.1, example (A). Let 3k consist of all singletons ({a, by) c <P. 
Then {<t>, CT> and {31, p.y (where p is the composition of relations restricted to 31) 
are isomorphic. 

Let si, 38 be categoroids. A bijective mapping F of si onto 38 is an isomorphism 
if and only if F or F - 1 is covariant. 
This follows from 13 A.11. 

13 A.14. Definition. Let SC = <X, c>, HJ = <7, py be categoroids. A single-valued 
relation cp will be called contravariant under a and p or (a, p)-contravariant if 
(1) x e Dip, y e Dip, <x, y> e Do imply xoy e Dip, <ipy, ipx> e Dp, (cpy) p((px) = 
= (p(xoy), (2) if e is a unit under a, e e Dip, then (pe is a unit under p. A mapping 
<ip, SC, H/y will be called a contravariant functor on SC into Hf if its graph (p is a contra-
variant relation under a and p. 

Examples. (A) Consider the categoroid F(V) (see 13 A.9, example (B)), 
V being the universal class. If F e F(V), F = </, X, 7) , let F denote the mapping 
{Z / _ 1 [ Z ] | Z <= 7} : exp 7-»• exp X. It is easy to prove that {F F} : F(V) -»• 
-»• F(V) is a contravariant relation on F(V) into F(V). — (B) Let A be a fixed group. 
For any group G denote by h(G) the set of all homomorphisms of G into A. Consider 
the categoroid 3E equal to the class X of all homomorphisms of groups endowed 
with the usual composition of mappings. For any / e X, f : Gt -* G2, let / * denote 
the mapping of h(G2) into h(Gt) which assigns cp of to tpe h(G2). It is easy to see 
that {/ -> /*} is a (o, o)-contravariant relation which maps X into the class of all 
mappings. 

13 A.15. Definition. Let si = </4, a), 38 = <B, p) be categoroids. If cp is a bi-
jective relation on A onto B and <<x, z) e a o «ipy, <px>, <pz> e p, then <p 
is called an anti-isomorphism relation (under a and p) and <ip, si, 38y is called 
an anti-isomorphism functor (or simply an anti-isomorphism provided there is 
no danger of misunderstanding). If SC, <& are categoroids and there exists an anti-
isomorphism of SC onto 0) we shall say that SC and HJ are anti-isomorphic. 

Clearly, if SC, HI are categoroids, then f = <<p,SC,<&y is an anti-isomorphism 
if and only if both / a n d / - 1 are contravariant functors. 

13 A.16. Definition. Let it be a partial composition (in a class AT). Then the partial 
composition consisting of all <<x, _y>, z> such that <<y, x>, z) e a is called contra-
gredient (or opposite) to o. 

If a is contragredient to a, then clearly o is contragredient to a, and Do consists 
of all <x, y) such that <y, x) e Do. 
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13 A.17. Let 3C = <X, ff> be a categoroid. Let o be contragredient to a. Then 
2C = o=> is a categoroid and J : 3C -»SC as well as J : SC -* 3C are anti-
isomorphisms. Every unit under o is a unit under & and conversely, if xeX and 
e is the left (right) unit for x under o, then e is the right (left) unit for x under d. 

The proof consists in a straightforward verification of conditions indicated in the 
corresponding definitions. 

Definition. We shall say that the categoroid 3£ described above is contragredient 
(or opposite) to 3C. 

13 A.18. Let 3E, Hf, 2£ be categoroids. Let F, G be covariant or contravariant 
functors, F on SE into <&, G on <3/ into SC. Then G o F is either covariant or contra-
variant: covariant if either both F and G are covariant or both F and G are contra-
variant; contravariant if F is contravariant and G is covariant or vice versa. 

13 A.19. Proposition and definition. For i = 1, 2, let ot be a partial composition 
in a class Xt. Then the relation consisting of all « x , y}, z> such that x = <xx, x2>, 
y = y2y, z = <zu z2>, = Xj<7j'i, is a partial composition in Xx x X2. 
It will be called the compositional product of ot and o2 and will be denoted by 
ai x comp ai ( o r by ffj x o2 if there is no danger of misunderstanding). 

Remark. The compositional product of two compositions has been defined in 
6 E.9. Clearly, the present definition coincides with that given in 6 E.9 if and a2 

are compositions. 
13 A.20. Proposition and definition. For i = 1,2, let 9C^ = (Xh cr(> be a cate-

goroid. Then 9C = x X2, o1 x eomp <72) is also a categoroid. It will be called 
the product of categoroids and dC2. 

The proof is left to the reader (observe that units of 9£ are precisely those <xl5 x2> e 
e ^ x X2 such that xf is a unit of SCt). 

We omit an investigation of the product of categoroids here. Some facts are given 
in the exercises. 

B. CATEGORIES 

Categoroids satisfying certain comprisability conditions and categories, to be 
introduced below, are, in fact, equivalent concepts, in a sense which will be made 
clear somewhat later in this subsection. 

Before defining categories, we give some important examples describing them in 
a somewhat informal manner. 

13B.1. (A) The category of all sets. — Consider all sets, calling every set an 
object of the category in question. Every mapping of a set X into a set Y will be called 
a morphism; the composition of mappings (see 7 C.1) is taken as the partial com-
position, in fact a categoroid structure, on the class of all morphisms. To every 
morphism / = ((p,X, Y}, two objects are assigned, namely the sets X = D*/, Y = 
= E*/; in other words, there is a relation assigning, to every pair (X, Y> of objects, 
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those morphisms that transform X into Y. It may happen, in general, that, for certain 
X, Y, there are no morphisms from X to Y; in the case considered, this happens if 
and only if Y= 0, X * 0. — (B) The category of all groups. — Every group 
is an object, every group homomorphism is a morphism of the category in question. 
The partial composition of morphisms is defined as the composition of mappings. 
To every pair <G1( G2> of groups there are assigned homomorphisms with domain 
Gx and ranging in G2. — (C)The category of all modules over a given ring si. 
— Every j^-module is an object, homomorphisms of .«/-modules are morphisms; 
the partial composition of morphisms is defined in the usual way. To every pair 
<Mt, M2> of ¿/-modules there correspond homomorphisms with domain-carrier 
and range-carrier M2. — (D) The category of all comprisable structs 
and their arbi t rary mappings. — Every comprisable struct (i.e. every set X 
and every pair <Y, a>, Y being a set and a an arbitrary element) is an object of the 
category. Every mapping <<p, <30, where 9C and <& are comprisable structs, is a 
morphism; the partial composition is defined as the usual composition of mappings. 
It is clear that the categories described in (A), (B), (C) are subcategories (see 13 B.10) 
of this category. — (E) Let A be a non-void class and let <P be a reflexive quasi-order 
on A. Consider the following category: objects are elements of A; morphisms are 
elements of $ (more precisely, <a, by e<& is a morphism from a into b); the partial 
composition is as described in 13 A.1, example (A). 

Summing up, we can say that a category is determined by the following data: 
a class of "objects", a class of "morphisms" (which are, in most cases, mappings 
of one "object" into another), a partial composition in the class of all "mor-
phisms", and a relation which determines, for any given "objects" a, b, which 
"morphisms" are considered as "transforming a into b". 

13 B.2. According to the above consideration as well as to the current approach, 
we should define a category as a pair of classes (the class of "objects" and the class 
of "morphisms") endowed with two relations: (a) the partial composition of mor-
phisms and (b) a relation assigning to every morphism its "domain object" and "range 
object", or conversely, relating pairs <x, y) of "objects" with those "morphisms" 
which "transform x into y". A disadvantage of this approach, from the point of 
view of the present book, consists in the fact that a category conceived in this manner 
has, so to say, "two underlying classes", the class of "objects" and that of "mor-
phisms". This makes it difficult to include categories, covariant functors for cate-
gories, etc., into the general pattern of structs and their correspondences described 
in Section 7. 

Therefore we adopt a formally different definition in which it is unambiguously 
stressed that a category can and will be considered as a struct. 

13 B.3. Definition. A category is a quadruple <3>, n, A, K> such that $ is a non-
void class, N is a relation, A is a class, K is a relation, and the following conditions 
are satisfied: 
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(1) p is a strongly associative partial composition in 
(2) for every (p e $ there exist unit elements (under p) e and e' such that <<p, e) e 

e Dp, <e', <p> e Dp; 
(3) K is a relation such that \A <= DK A A x A, Ek = <P; if a, b, c, d belong to A 

and « a , by, <p> e K, « c , dy, ipy e K, then (i) if b = c, then cp> e d/i, 
« a , A Q>y BK; (ii) if b 4= c, then <p> £ D/i; 

(4) K is a fibering relation, i.e. « a , b>, <p> e k, « c , dy, (py e k implies <a, b> = 
= <c, dy; 

(5) every fibre k[<x, y>] of k is comprisable. 
13 B.4. Definition. Let X = p, A, k) be a category. Then the underlying 

class of the struct JT will be called the class of morphisms of Jf and every q> s <P 
will be called a morphism of J f . The relation p will be called the partial composition 
(of morphisms) of Jf or the categoroid structure of JT; if <p e 4>, \j/ e 3>, then <ppi> 
will be called the composite of cp and \j/ (in JT). The pair (<P, py (which is a cate-
goroid, by conditions (1) and (2)) will be called the underlying categoroid of X. 
The class A will be called the class of objects of X, and every x e A will be called 
an object of the category X. Finally, the relation K will be called the assignment 
relation of X. 

Examples. Consider example (A) from 13B.1. The category in question, 
called the category of all sets, will often be denoted by J t . Its class of morphisms con-
sists of all comprisable abstract mappings, i.e. mappings of a set into a set. Its partial 
composition consists of all « / , g>, hy where/, g, h are mappings of sets into sets, 
h = / o g. The class of objects is the class of all sets and k consists of all <<J£, Y>, 
(.cp,X, Yyy where X, Y are sets, cp is a single-valued relation, Dcp = X, E(p cz Y. 
— Consider example (E) from 13 B.1, let A be the universal class and let $ = A x A. 
The category in question will sometimes be denoted by SP. We have 8? = {A x A, 
p, A, JA x Ay where A is the universal class, p consists of all elements of the form 
< « b , c>, <a, byy, <a, c » . 

13 B.5. Definition. Let X = p, A, jc> be a category. If a e A, be A, then 
the set »c[<a, b>] will be denoted by Hom^ <a, by (the subscript X will often be 
omitted) and called the set of morphisms from a to b. If <p e <a, by = K~l<p, 
then a will be denoted by D^ip and called the domain-object of cp (in X); b will be 
denoted by E^ip and called the range-object of <p (in X); the subscript X will often 
be omitted. If a morphism <p e $ is a unit under p (see 13 A.3), then we shall say 
that (p is a unit morphism (or simply a unit) of X; if cp is a unit, D(p = Eq> = a, 
we shall say that <p is a unit at a. 

Examples. If / is a morphism of Jt, then D / = D*/, Ef = E*/; if A, B are 
objects of Jt (i.e. sets), then Hom^ <A, By = F(A, B). — If <p is a morphism of 8P, 
then (p = <Dcp, E<p>. — If a, b are elements, then Hom^, <a, b) = (<a, b>). 

13B.6. Let X = p, A, be a category. If (p is a morphism of X, e' is 
the left (i.e. range) unit for cp, and e" is the right (i.e. domain) unit for <p, then 
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D<p = De" = Ee", Ecp = De = Ee'. If cp and ¡¡/ are morphisms of X, then <<p, e 
e D/x if and only if Dq> = Eij/. If a is an object of X, then there exists exactly 
one unit at a; consequently, {x -*• Dx} is a bijective relation on the class of all 
units of X onto the class of all objects of X. 

13 B.7. Proposition and definition. Let X = n, A, k> and X' = fx', A', k'> 
be categories. If x is a (fx, ¡x')-covariant single-valued relation with Dt => <P, then 
there exists exactly one relation x on A into A! such that cp e Hom^ <a, by if 
and only if x<p e Hom^, (xa, xby. This relation x is single-valued. It will be called 
the associated (with x) relation for objects of X and X'. 

Proof. Let <p, i¡/ be morphisms of X, D<p = Di j / . Then the right unit e for (p 
coincides with the right unit for ij/ (see 13 B.6), De = D(p = Dip. Clearly, re is the 
right unit (in X') for t ( p as well as for ti/c and therefore D(tcp) = D(te) = D ( t i ¡ / ) . 

Now, we put fa = D <p where <p is a morphism with D<p = a (e.g. (p may be the 
unit at a). The rest of the proof is left to the reader. 

13 B.8. Definition. Let X = n, A, and X' = <<£', p!, A', x'y be categories. 
A mapping <t, X, X'y will be called covariant or a covariant functor if t : -*• 

n'y is covariant (see 13 A.10); contravariant or a contravariant functor 
if t : <<£, fiy <£>', n'y is contravariant (see 13A.14); an isomorphism functor 
(or simply an isomorphism) if x : (<P, -> ¡x'y is an isomorphism functor (see 
13 A.13); an anti-isomorphism functor (or simply an anti-isomorphism) if x : 
: p.y -> (<&', /x'y is an anti-isomorphism functor (see 13 A.15). Two categories X, 
X' will be called isomorphic (respectively, anti-isomorphic) if there exists an iso-
morphism (an anti-isomorphism) of X onto X'. 

Remarks. 1) If X X2, X3 are categories, fx = {xt, Xt, X2y, f2 = 
= <t2, X2, X3y are covariant functors, then f3 = f2 »fi is a covariant functor. 
Denote by xi the relation associated with x; in the sense of 13 B.7; it is easy to see 
that f 3 = x2 o x1. — 2) Clearly, a mapping / of a category X into a category X' 
is an isomorphism if and only if both / and / - 1 are covariant functors. — 3) It 
is to be pointed out that if X = n, A, rc), X' = /i, A', K'y are categories, 
then the relation for objects of X and X' associated with J is bijective for A and 
A! but is not, of course, an identical relation in general. 

Conventions. If X = \i, A,\cy, X' = (<!>', p.', A', K'y are categories, 
then a (fi, ¿i')-covariant relation x will also be called (X, X')-covariant; if Dt => <P, 
then the relation f described in 13 B.7 will also be called (X, X')-associated with x 
or with / = x : X -*• X'. 

13 B.9. Theorem. Let X* = <<P, /z> be a categoroid. Then X* is an underlying 
categoroid of a category if and only i f , for any ae$, /? e $ the class of elements 
<p e4> such that <a, cpy e Dp, (cp, fiy e D^, is comprisable. If Xlt X2 are catego-
ries, and X\, X* are the underlying categoroids of Xu X2, then a mapping 
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F : X! X2
 l's an isomorphism if and only if F : X* -> X* is an isomor-

phism. In particular, if X*, X* coincide, then X X 2 are isomorphic. 

Proof. I. Let X* = (<P, p} be a categoroid. Let A denote the' class of all units 
of X*. Let K consist of all <<a, b}, Q>y such that a e A, b e A, (p e <P, a is the domain 
unit and b is the range unit for cp. It is easy to see that conditions (l) —(4) from 13 b. 3 
are satisfied and that condition (5) is fulfilled if and only if the condition of the pre-
sent theorem is satisfied. The rest of the proof is left to the reader. 

Remark. In view of the theorem just proved, terms and symbols introduced 
for categoroids (for categories) will often be tacitly considered as also defined for 
categories (respectively, for categoroids). 

13 B.10. Definition. Let X = <<P, p, A, K>, X' = P, A', K') be categories. 
If <<P', p'} is a subcategoroid of p}, A' <= A and K <=. K, then we shall say that 
X' is a subcategory of X. 

For example, as mentioned in 13 b.1, example (d), the category of all sets, as 
well as the category of all groups and of all sd-modules (see 13 b.1), is a subcategory 
of the category of all structs. 

13 B. l l . Let X be a category; let $ by the class of morphisms and let A be the 
class of objects of the category X. Let c A' <= A. Then the following con-
ditions are necessary and sufficient for the existence of a subcategory X' of X 
such that 4>' is the class of morphisms and A! is the class of objects of X': 

(1) is a subcategoroid of which means that: 
(la) 4= 0; (lb) if <pt e <p2 e <<pl5 <p2> e Dc, then the composite of (pL 

and (p2 belongs to (lc) if <p e <P', then the left as well as the right unit for cp 
(in J f ) belongs to <P. 

(2) Á consists of all a e A such that the unit at a (in X) belongs to 
If these conditions are satisfied then there exists exactly one subcategory of X 

for which is the class of morphisms and A' is the. class of objects. 
Proof. Let (1) and (2) be satisfied. Put p' = (($' x $') x <P') n p, and let K' 

be the range-restriction of K to <P'. It is easy to show that Jf' = p,' A', k'> is 
a subcategory of X. The rest of the proof is left to the reader. 

Definition. The category X' described above will be called the subcategory of X 
generated by and A'. 

13 B.12. Definition. Let X = <4>, p, A, k) be a category. A subcategory X' = 
= p, A', k') of X will be called a full (more explicitly, morphism-full) sub-
category if a 6 A', be A', <a, BY = K~ 1(p implies <p e it will be called an object-
full subcategory if A' = A. 

If X = p, A, k> is a category and 0 4= A' c A, then there exists exactly 
one full subcategory X' of X such that the class of objects of X' is equal to A'. 

Proof. It is sufficient to put í>' = K[A' x A'~\ and to use proposition 13 b.11. 

15 — Topological Spaces 
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Convention. Let x = p, A, k> be a given category. If <=• $ is a subcate-
goroid, that is if conditions (la), (lb), (lc) from 13 B.11 are satisfied, then the sub-
category generated by <P' and A will be called the (object-full) subcategory generated 
by or also, not quite correctly, "the category of all cp e <P'" (e.g. we speak of the 
"category of all injective homomorphisms of abelian groups"). If A' <= A, then 
the subcategory generated by A' and <P' = K[A' x A'] will be called the (morphism-
full) subcategory generated by A! or also, not quite correctly, "the category of all 
a e A"' (e.g. we speak of the "category of all finite groups" provided the category 
of all structs described in 13 B.1, example (D) is considered as given). 

Examples. Consider the category of all sets (see 13 B.1, example (A)). The 
category of all subsets of a given set A is comprisable. The category of all singletons 
is isomorphic with the category 3P (see 13 B.4, examples). The category of all map-
pings of the form J : X -> Y is isomorphic with a category, the underlying categoroid 
of which is of the form <<£, <r> described in 13 A.1, example (A), where <P = 
= {X Y\X <= r}. 

13 B.13. To conclude this subsection, we are going to carry over to categories 
some definitions introduced for categoroids in 13 A.17, and 13 A.20. 

Proposition and definition. Let X = p., A, k> be a category, let ji be contra-
gredient to p and let lc consist of all ((a, b}, <p} such that <<b, a), e K. Then 
(<P, fi, A, k> is a category, it will be called contragredient or opposite to X. 

13 B.14. Proposition and definition. For i = 1, 2, let .if t = ph Ah k;> be 
a category. Then x <P2, PX x „mp/*2> x K)> where K consists of all 
<«f l i . a2y, <¿1, i>2»> <>1. <Z>2» such that <a(, ¿¡> jc;<pb i = 1, 2, is a category. 
It will be called the product of categories Xt and and will be denoted by X j x 
x C/E2. 

C. PROPERTIES OF M O R P H I S M S 

We shall now consider some properties of morphisms (of a given category) which 
are related to the property (of elements of a class endowed with a composition) of 
being invertible (see 6 B.10) or virtually invertible (see 6 B.11), and which correspond 
to the properties (of mappings) of being injective or surjective. 

13 C.l. Definition. Let X* = <<i>, p> be a categoroid. If <<!;, q) e Dp and ^ . rj 
is a unit (in X*), then we shall say that £ is a left inverse of R\ ('in JF*) and that TJ 
is a right inverse of £ (in Jf*). If X = (<P, p, A, k> is a category, then we shall say 
that a is a left (right) inverse of [3 in if a is a left (right) inverse of ¡3 in the cate-
goroid p). 

If £ e and there exists an r\ such that . tj is a unit (i.e. if ^ is a left inverse of some 
rj), then we shall say that £ is a left inverse (in JT* or in X) or that £ possesses a right 
inverse (in X* or in X). Similarly, if e 0 and there exists a £ such that £ . ^ is 
a unit, we shall say that £ possesses a left inverse or that £ is a right inverse in J f . 
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We avoid the use of terms "left-invertible", "right-invertible" which may be 
confusing. 

13 C.2. A morphism may possess none, one, or many left (right) inverses. Howe-
ver, the following proposition holds: 

If X* is a categoroid, a, r\ are morphisms of X*, £ is a left inverse and rf 
is a right inverse of a, then £ = rj. Consequently, if a has a left as well as a right 
inverse, then it possesses exactly one left and exactly one right inverse, and these 
inverses coincide. 

Indeed, £ = £ . (a . q) = (£ . a). ?/ = //. 

13 C.3. Examples. (A) Consider the category Jl of all sets (see 13B.1, 
example (A)). If / , g are mappings (of sets into sets) and fa g is a unit (in Jl), then 
f(gx) = x for every x eDg and therefore g is injective, / i s surjective. It is easy to see 
that, in .M, a mapping / i s (l) a left inverse (in other words, possesses a right inverse) 
if and only if it is surjective, (2) a right inverse if and only if it is injective. — (B) Con-
sider the category 'S of all groups (see 13 B.1, example (B)). If cp, yjf are morphisms 
of and <p a \// is a unit morphism, then it is easy to see that ¡¡/ is injective, cp is sur-
jective. Let i¡/ = \/t : G H, cp = cp : H G; put A = ^[G], B = <p-1[0]. It 
is easy to prove that A, B are subgroups of H, that B is invariant (see e.g. 8 D.8) 
and that every x e H may be uniquely expressed as a composite of u and v, u e A, 
v e B. Thus an injective homomorphism need not be a right inverse in if e.g. H 
has no non-trivial invariant subgroups, then a morphism ^ : G ->• H is a right 
inverse in ^ if and only if either G contains exactly one element or xj/is an isomorphism. 

13 C.4. Definition. Let X be a category. A morphism cp of JT will be called an 
isomorphism (or an invertible morphism) of X (or of the underlying categoroid 
X*) if there exists a morphism ip such that (p . \p, \j/. cp are unit morphisms. If this 
is the case, then the morphism xp (which is unique, by 13 C.2) will be called the inverse 
of cp and will be denoted by cp'1. 

Remark. The word "isomorphism" is used in a twofold sense here: it means 
either a morphism satisfying certain condition or a certain mapping of a category 
onto another one. If a misunderstanding seems possible, we shall use terms "iso-
morphism-functor" and "invertible morphism". 

Convention. A left (right) inverse in a category X will also be called a left 
(right) semi-isomorphism of X. 

The proof of the following propositions is left to the reader. 

(a) A morphism is an isomorphism if and only if it is a left as well as a right semi-
isomorphism. 

(b) If X and X are contragredient categories, then every left (right) semi-iso-
morphism of X is a right (left) semi-isomorphism of X. 

(c) If X is a subcategory of X, then every left (right) semi-isomorphism of X 
is a left (right) semi-isomorphism of X. 

15* 
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The converse assertion does not hold, however. Example: the category of all 
injective mappings of sets. 

13 C.5. Let <p and i¡/ be morphisms of a category and let cp . ij/ exist. If <p and if/ 
are left (respectively, right) semi-isomorphisms, then <p . \j/ is a left (respectively, 
right) semi-isomorphism; if <p . \j/ is a left (respectively, right) semi-isomorphism, 
then i// is a left semi-isomorphism (respectively, (p is a right semi-isomorphism). 

The proof is left to the reader. 

13 C.6. Definition. Let p be a partial composition in a class X. An element xeX 
is called idempotent under p (or in <X, /x>) if <x, x> e Dp, xpx = x. 

If (p and are morphisms of a category Jf and (p . \j/ is a unit, then i¡i. <p is 
idempotent. A semi-isomorphism (left or right) is idempotent if and only if it is 
a unit morphism. 

Proof. If <p . [¡/ is a unit, then (ij/ . (p). (t]/ . <p) = t// . (q>. i/c). <p = \j/ . <p. Let <p 
be a left semi-isomorphism, <p . <p = <p; choose i/r such that <p . i/c is a unit. Then 
<p . (<¡9 . ij/) = (p, ((¡p . <p). \j/ = cp . if/, hence (p = <p . ty. 

13 C.7. Definition. Two objects a and b of a category X are called isomorphic 
in X if there exists an isomorphism (p with Dcp = a, Eq> = b. 

Examples. In the category of all sets, two sets X, Y are isomorphic if and only 
if card X = card Y. In this category, the following assertion holds: if there exists 
a left (right) semi-isomorphism from X to Y as well as a left (right) semi-isomorphism 
from Yto X, then X and Fare isomorphic. In the category of all groups, this asser-
tion is not valid. 

13 C.8. Now we introduce, in a somewhat informal manner, the category of quasi-
ordered sets and some of its subcategories which, besides being quite important 
in themselves, yield various useful examples. 

The category of all quasi-ordered sets is a subcategory of the category of all structs; 
its objects are quasi-ordered sets, and the morphisms from a quasi-ordered set A 
to a quasi-ordered set B are mappings <<p, A, B} such that if xgy, then (cpx) o(<py) 
or cpx = cpy, where Q is the quasi-order of A, a is the quasi-order of B. Thus every 
order-preserving mapping of A into B is a morphism, but a morphism is not neces-
sarily an order-preserving mapping. 

The following useful subcategories of the category of all quasi-ordered sets may 
be mentioned: the category of all order-preserving mappings, the category of all 
lattice-preserving mappings, the category of all completely lattice-preserving map-
pings, the category of all ordered sets, the category of all monotone ordered sets, 
the category of all well-ordered sets. 

It is easy to prove that, in the category of all monotone ordered sets, a morphism 
is a right semi-isomorphism if and only if it is a surjective mapping, and an injective 
order-preserving mapping / o f X into a well-ordered set Y is a left semi-isomorphism 
if and only if f\X\ either possesses a least element or is cofinal in Y. 
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13 C.9. Definition. A morphism cp of a category Jf will be called a monomor-
phism (of J f ) if 11 = rj whenever £ and t] are morphisms of X and <p . £ = cp . rj; 
it will be called an epimorphism (of X) if S, = r\ whenever £ and q are morphisms 
of Jf and £ . (p = rj. (p. 

Examples. (A) In the category of all sets, monomorphisms coincide with injec-
tive mappings, epimorphisms with surjective mappings. — (B) In any category of 
structs (this means, in every subcategory of the category of all structs as defined in 
13 B.1, example (D)) every injective mapping is a monomorphism and every sur-
jective mapping is an epimorphism. Indeed, supposing <p . £ = cp . rj, £ + rj, we get 
D*£ = D*rj, 4= qa for some a e |D*£] and therefore (p(£a) 4= <p(ya), which is 
a contradiction. — (C) There are important categories of structs for which the 
converse holds, that is (i) monomorphisms are injective, (ii) epimorphisms are sur-
jective mappings. As a matter of fact, (i) seems to hold in all categories of algebraic 
structs occurring "in practice". However, (ii) does not hold even for semi-groups. 
Indeed, let <p = J : <N, +> <Z, + >; let rj be homomorphisms of <Z, +> 
onto a semi-group J f , and suppose £ . tp = rj. cp. Then (denoting by 4- the composi-
tion of Jt>) we get £ ( - 1 ) = £ ( - 1 ) + 1,1 + »,(-1) = ( f ( - I ) + f l ) + r,(-1) = 
= t](— 1), hence £( — n) = r\( — n) for any n e N ; thus, £ = r\. — (D) Consider 
the category of all ordered sets. Then a morphism <p is a monomorphism (an epi-
morphism) if and only if it is an injective (surjective) mapping. Indeed, let, for 
instance, cp : (A, Q} -> <B, a) be an epimorphism and suppose that cp is not sur-
jective. Choose be B — <p[A]; let B be embedded in <B*, cr*> where B* = B u (ft*), 
ft* non e B, and let o* consist of (i) all <x, e o, (ii) all <ft*, y> where boy, y 4= ft, 
(iii) all <x, ft*) where xob, x 4= ft, (iv) the element <ft*, ft*). Let r} be mappings 
of <£, CT> into <£, o*}, & = t]z = z for z 4= ft, £ft = b, tjb = ft*. Then rj are 
morphisms, £ . (p = r\. cp, £ 4= rj. 

Remark. The concept of a right semi-isomorphism is too narrow to cover, 
in "practically" important cases, all mappings currently considered as embeddings 
("isomorphic mappings into"); cf. 13 C.3, example (B). On the other hand, the broader 
concept (see 13 C.12) of a monomorphism seems too wide (e.g. in the category of 
ordered sets, J : <A, Jx) -> <A, CT> is a monomorphism and an epimorphism, for 
any set A and any order a on .4). An analogous remark applies for left semi-iso-
morphisms and epimorphisms. 

13 C.10. Let cp and ip be morphisms of a category X and let (p . ip exist. If (p 
and ip are monomorphisms (respectively, epimorphisms), then <p . \p is a mono-
morphism (respectively, an epimorphism). If <p . \p is a monomorphism (respectively, 
an epimorphism), then ip is a monomorphism (respectively <p is an epimor-
phism). 

Proof. If <p, ip are monomorphisms, let ((p . \p) . t, = (cp . \p). rj-, then <p . (\p. £) = 
= (p. (\p . T]), hence ip . £ = \p .rj and therefore = rj. If <p. ip is a monomorphism, 
let ip . £ = \p . ri; then (p . ip . E, = <p . ip ,r\, hence Z = q. 
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13 C. l l . Let X and X be contragredient categories. Then every monomorphism 
(epimorphism) of X is an epimorphism (a monomorphism) of X. 

This proposition' (the proof of which is immediate) makes it possible to obtain 
propositions on epimorphisms from propositions on monomorphisms and vice versa, 
as well as to perform proofs, in many cases, for monomorphisms or for epimorphisms 
only (such a "duality" also holds for left and right semi-isomorphisms, as indicated 
in 13 C.4, and for strong monomorphisms and strong epimorphisms, see below, 
13 C.16). 

13 C.12. Let X be a category. Every left (right) semi-isomorphism cp of X 
is an epimorphism (a monomorphism) of X. I f , in addition, cp is a monomorphism 
(an epimorphism), then it is an isomorphism. 

Proof. Let cp be a left semi-isomorphism; let cp, \¡/ be a unit. If £ . cp = r]. cp, 
then ^ . cp . \¡/ = r¡. cp . \¡/, hence £ = r¡. If, in addition, cp is a monomorphism, let e 
be the right unit for cp. Then cp . \j/ . cp = cp = cp . e, hence, cp being a monomorphism, 
we have i¡/ . cp = e. 

13 C.13. If X is a category, X' is a subcategory of X and cp e X' is a mono-
morphism (an epimorphism) of X, then cp is a monomorphism (an epimorphism) 
of X'. 

This is clear. — Observe that the converse does not hold, in general. 

13 C.14. Definition. If cp is a monomorphism as well as an epimorphism of a cate-
gory X, then cp is called a bimorphism of X. 

Examples. (A) In the category of all ordered sets, bimorphisms coincide 
with bijective order-preserving mappings (see 13 C.9, example (D)), but a bimor-
phism need not be an isomorphism (see 10 C.2, remark). — (B) It can be proved 
that, in the category of all groups, bimorphisms and isomorphisms coincide. — 
(C) In the category of all semi-groups, J : <N, + ) <Z, + ) is a bimorphism. 

Remark. Clearly, if cp is a bimorphism of X, then it is also a bimorphism of 
the contragredient category X, 

13 C.15. Let cp and \¡/ be morphisms of category X and let cp . t// exist. If cp, \¡/ 
are bimorphisms, then cp . \¡/ is also a bimorphism. If cp . \j/ is a bimorphism, 
then cp is an epimorphism and \¡/ is a monomorphism; i f , in addition, i¡/. cp is 
also a bimorphism, then cp and i¡/ are bimorphisms. 

13 C.16. Definition. A morphism cp of a category X will be called a strong 
monomorphism of X if(l) cp is a monomorphism, (2) if t] are monomorphisms 
cp = t\. £ and ^ is an epimorphism, then £ is an isomorphism. A morphism i¡/ of 
a category X will be called a strong epimorphism of X if (1) is an epimorphism, 
(2) if r¡ are epimorphisms, \j/ = rj. £, and r¡ is a monomorphism, then r¡ is an iso-
morphism. 

Remarks. 1) Every right semi-isomorphism is a strong monomorphism (see 
below, 13 C.17) and, evidently, every strong monomorphism is a monomorphism, 
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and similarly for epimorphisms. — 2) In some important cases (see the example 
below), strong monomorphisms (epimorphisms) correspond to the concept of em-
bedding (respectively of mapping onto a "quotient", cf. e.g. 8C.12), whereas the 
concept of a monomorphism or epimorphism is, as pointed out, too wide, that of 
a semi-isomorphism too restrictive. — 3) It is easy to see that a strong monomor-
phism of X is a strong epimorphism of the contragredient category X and vice 
versa. 

Example. Consider the category of all semi-groups. It is clear that mono-
morphisms, strong monomorphisms and injective homomorphisms coincide. 
As we know (13 C.9, example (C)) an epimorphism need not be a surjective mapping. 
Let / = strong epimorphism. Put = is clearly a semi-
group. Then f y = f : & -*• is an epimorphism (since it is a surjective mapping), 
f2 = J : f [ @ ] is clearly an epimorphism, and / = f2 ° fi- Hence fy is an 
isomorphism and therefore a surjective mapping. We have shown that, for the cate-
gory of all semi-groups, strong epimorphisms and; surjective homomorphisms 
coincide. 

13 C.17. Every left (right) semi-isomorphism is a strong epimorphism (strong 
monomorphism). 

Proof. Let \j/ be a right semi-isomorphism, let i¡t. cp be a unit. Let q> = rj. 
where rj are monomorphisms and, in addition, £ is an epimorphism. Then ij/ ,rj. ^ 
is a unit, ^ .?/ .£ = hence, £ being an epimorphism, t, . \j/ . rj is a unit and there-
fore ip . q is an inverse of £ is an isomorphism. The rest of the proof is omitted 
in view of 13 C.16, remark 3. 

Remark. We observe that, in fact, we have proved more than was asserted; namely 
we have shown that every right semi-isomorphism <p possesses the following pro-
perty: 

(*) if <p = rj. £ where £ is an epimorphism, then £ is an isomorphism. 
Clearly, every monomorphism satisfying condition (*) is a strong monomorphism. 

An analogous remark applies, of course, for epimorphisms. 

13 C.18. Let a, /?, y be morphisms of a category X, let a = /? .y and let a be 
a strong monomorphism. If fi is a monomorphism, then y is a strong monomor-
phism; if y is an epimorphism, then ¡3 is a strong monomorphism. An analogous 
assertion holds if a. is supposed to be a strong epimorphism. 

The proof is left to the reader. 
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