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CHAPTER I 

CLASSES AND RELATIONS 

(Sections 1 — 5) 

This chapter contains the fundamental concepts and theorems of general or abstract 
set theory. In principle, no previous knowledge is required from the reader. Some 
remarks and examples are of a purely illustrative character, in which notions and pro-
positions introduced later are freely used; the reader can, of course, ignore all remarks 
and examples of this kind. On the other hand, familiarity with the basic concepts 
of set theory would considerably assist the reading of this chapter. 

Throughout the book, sets and classes will always be distinguished. Roughly 
speaking, a class will be any collection of elements, or what is currently called a set. 
Some classes will be termed sets: namely those which are not "too large", in the sense 
that they themselves may be elements of other classes. Thus a set is a special type 
of class. 

There are important reasons for introducing the notion of classes as distinct 
from that of sets. One of these is that the familiar paradoxes of set theory are then 
eliminated (e.g. those concerning the "set of all sets"). Another, more important, 
reason is that without the notion of class, the concept of a category (see Section 13), 
whose importance in various branches of mathematics is increasing, would have 
to be restricted rather artificially. 

In distinguishing between sets and classes, it would be difficult to retain the custo-
mary or naive point of view, in which the basic interrelations between sets, the set 
operations, etc., are taken as intuitively evident. However, a strictly formal axiomatic 
treatment of set and class theory would hardly be in place here, since it is not neces-
sary for the main object of this book and would require a thorough and precise 
development of the logical means and procedures used. In fact, an exposition of 
a considerable part of mathematical logic would be necessary. The method chosen 
is that of an axiomatic but nonformal development which, however, is only axiomatic 
with a certain reserve. The fundamental notions, such as "class", "to belong to", 
are, of course, not defined, but only described, i.e. their meaning is briefly indicated 
in an intuitive way. Their fundamental properties are formulated as axioms; all 
theorems are then deduced from them. In this process, ordinary logical means and 
current language are used, with only such deviations as have become natural in mathe-
matical expression (for instance, the sentence "every x possessing property P satisfies 
condition C" is taken to be true if there is no x at all possessing property P). Occasion-
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18 I. CLASSES A N D RELATIONS 

ally, the symbols => (implication) and o (logical equivalence) will be used; these are 
to be taken solely as abbreviations for " i f . . . , then . . . " and " . . . if and only i f . . . " ; 
we shall return to these symbols somewhat later. In this sense the method used is 
similar to that of the axiomatic treatment of geometry in the classical sense. 

We have said that our treatment is only axiomatic with a certain reserve; exception 
may be taken to postulate 1 A.4 which states that to every property there exists 
a class consisting of precisely those elements which possess the given property. If the 
concept of "property" is accepted as sufficiently clear, then our development of the 
foundations of class and set theory may be considered to be axiomatic. We do not 
analyse this concept since the treatment is sufficiently axiomatic for the purposes 
of this book. A formal development may be performed on well known lines, though 
some new problems may appear and possibly a slight modification of the approach 
adopted here may be necessary. 

After introducing fundamental ideas and defining further concepts (e.g. that of 
relation, defined as a class of pairs), we obtain in Section 1 a basis for the theory of 
classes, sets and relations which is, however, still only a fragment since, for example, 
the axioms of this section are satisfied if there is one class only, the void one. 

Section 2 is of an auxiliary character and concerns the so-called basic set-theore-
tical operations such as union, intersection, difference and symmetric difference. 

In Section 3, the axiom of infinity is introduced, its consequences are examined, 
and the "existence of natural numbers" is proved. The elementary arithmetic of 
natural numbers is, of course, not treated (only some basic definitions are given 
explicitly) and is assumed to be known. 

The Axiom of Choice is introduced in Section 4 in a rather strong form which dif-
fers somewhat from the usual formulation since it will be necessary to "choose" 
elements from classes and not merely from sets. In contrast to Sections 1 and 2, 
some proofs are relatively complicated here as well as in Section 3. With Section 4, 
the axiomatic exposition of set theory is completed. The reader familiar with set 
theory may pass through these paragraphs quite rapidly; however, we recommend 
a careful reading of the definitions and conventions, especially those concerning 
notation, since they will often be used later without reference (moreover, the distinc-
tion between classes and sets necessitates some slight but not unimportant changes). 

In Section 5, the cartesian product is considered in a rather detailed but essentially 
current manner. 

We shall conclude these introductory remarks with some details concerning the 
notation. 

Only two logical signs will be used: the symbol => for logical implication, and the 
symbol o for logical equivalence; they will be conceived as abbreviations for certain 
expressions of current language. 

C o n v e n t i o n . In place of expressions of the form "if A, then B" or " A implies B" 
(with the same meaning), we shall often write "A => B". 

The expression "if A, then B" will, of course, be interpreted in the manner custo-
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mary in mathematical formulation. Thus, if A and B are statements (i.e. expressions 
which are either true or not), then the statement "if A, then B" is true in the following 
cases: both A, B are true, A is not true and B is true, both A, B are not true; and the 
statement in quotes is not true if A is true and B is not. 

Convention. In place of expressions of the form "A if and only if B" or " A is 
sufficient and necessary for B" (with the same meaning), etc., we shall often write 
" A o B". 

If A, B are statements, then " A if and only if B" is true if A, B are both true or both 
not true, and is not true in the remaining cases; in other words, the statement in 
quotes is true precisely if both "if A, then B" and "if B, then A" are true. 

We shall use another convention generally adopted in mathematical texts, but 
seldom stated explicitly; it will be explained now by an example. If we wish to state 
e.g. that sin2 x + cos2 x = 1 for all numbers x, we often merely write "sin2 x + 
+ cos2 x = 1 holds" omitting the clause "for all x". We shall proceed similarly 
whenever convenient. 

Let us point out that all of the above conventions will be used throughout the 
book without reference. 

Finally, it is necessary to emphasise that we do not define the notion of identity 
and it is considered as intuitively clear. The sign " = " will be used exclusively to 
express that two objects are identical; thus if we write A = B, then A and B is the 
same object, for which two symbols, namely "A" and "B", are being used in the 
reasoning in question. 
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1. C L A S S E S A N D S E T S 

The concept of a set is probably familiar to the reader. This notion is usually 
introduced by means of a more or less detailed and suggestive description which, 
however, is not a definition in the proper sense of the word. Thus it may be said 
that a set is a collection of certain objects, the collection considered as an individual 
entity. In essence, this is the familiar "definition" of G. Cantor: "Eine Menge ist 
eine Zusammenfassung bestimmter wohlunterschiedener Objekte unserer Anschauung 
oder unseres Denkens — welche die Elemente der Menge genannt werden — zu einem 
Ganzen". We will depart from this tradition in that the concept of class will appear 
first, and the notion of set will subsequently be defined strictly (the reasons for 
distinguishing between classes and sets have been given in the Introductory Remarks 
at the beginning of the present chapter). Parallelling the traditional approach, we 
give a description of classes, but in essence, the concepts of class and of belonging 
to are the primary undefined concepts. 

A. C L A S S E S 

1 A.l. Description. A class is a collection of objects, considered as an individual 
entity. The objects are said to belong to the class considered. 

1 A.2. Convent ion. If x belongs to X, and AT is a class, we say that x is an ele-
ment of the class X, or that X contains x as an element, and write x e X or X s x. 
If x e X does not hold, we write x ^ I o r x non e X or X $ x or X non s x. 

If X is a class and every x belonging to X satisfies a given condition C, we shall 
say that A" is a class of elements satisfying C or that AT consists of elements satisfying 
C. In this sense, as usual, we shall use expressions such as "a class of sets", "a class 
of positive numbers", and so on. 

If X is a class, and x e X if and only if x is an element satisfying a given condition C 
we shall say, as usual, that X consists of all elements x satisfying C or that A" consists 
precisely of those elements which satisfy C, or else that X is (cf. 1 A.4 and 1 A.7) the 
class of all elements x satisfying C, or, finally, that X is the class of all x such that 
C is satisfied. 
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Remark. Observe that xeX means that x belongs to X and X is a class. We do 
not exclude the possibility that some x belong to some X without X, being a class 
(hence also without x being necessarily an element; cf. 1 A.3). Thus, there are a priori 
no obstacles for introducing, after an extension of the framework of the axiomatic 
system presented here, "superclasses" to which classes may belong. We do not, 
however, consider these questions further. 

1 A.3. Definition. We say that x is comprisable or that x is an element if it belongs 
to some class, i.e. if there is a class X with x eX. 

Note that all this does not assert the existence of any element (in fact, we shall 
be in this situation throughout the present section): For practical reasons it is con-
venient, but for mathematics rather irrelevant, to consider every sufficiently well-
defined materially existing object as an element. In this sense we may then speak 
of the class of all cats, of the class of all inhabitants of London (at a given instant) 
and so on. 

We remark that a class may, but need not, itself be an element. The classes which 
do belong to other classes — intuitively speaking, which are not excessively extensive 
— will be termed sets (see 1 A.9). 

1 A.4. Postulate. If P is a property, then there exists a class consisting precisely 
of those elements which have the property P. 

As noted in the Introductory Remarks, if the notion of property is taken as suffi-
ciently clear, then Postulate 1 A.4 may be considered to be an axiom. This, together 
with the Axiom of Extensionality (1 A.7), yield the usual intuitive meaning of the 
notion of class. In order to by-pass problems of mathematical logic, in this book 
we shall adopt this point of view even though it is open to several objections. 

1 A.5. There exists a class which does not contain any element. 
The proof follows from Postulate 1 A.4 on taking for P some property possessed 

by no element, e.g. the following one: x has property P if and only if x # x, i.e. if and 
only if x is not identical with x. Obviously no x (and thus no element) has property P. 

1 A.6. Definition. A class will be termed void or empty if it contains no element. 
If X = Y holds for two classes X, Y (i. e. if the classes X and Y are identical) then 

of course they contain the same elements, x e X if and only if xeY. The following 
axiom affirms that, conversely, if two classes contain the same elements then these 
classes are identical; that is, a class is "uniquely determined" by its elements. 

1 A.7. Axiom of Extensionality. If A and B are classes, and if every element of A 
belongs to B and every element of B belongs to A, then the classes A, B are identical. 

Remark. Observe that the statement obtained from this axiom by dropping the 
assumption of A, B being classes is not asserted. In other words, the axioms do not 
exclude a priori the possibility that e.g. A is a class, si is an object which is not 
a class and, for any x, x e A if and only if x is an element and x belongs to si. 
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1 A.8. Theorem. There exists precisely one void class. 
This is an obvious consequence of the Axiom of Extensionality. 
Convention. The void class will be denoted by 0. 

1 A.9. Definition. A comprisable class, i.e. a class which is also an element, will 
be called a set. 

Convention. A set will be also called a collection, usually if it consists of sets. 
Thus we shall, as a rule, speak of a collection of sets instead of a set of sets. 

Remarks. 1) Non-comprisable classes, that is classes which are not sets, are some-
times called proper classes. 2) If in Postulate 1 A.4 we take for P the property of x 
being equal to itself we obtain that there exists a class which contains all elements 
whatever. From the Axiom of Extensionality it follows that there is only one such 
class; it will be termed the universal class. 

1 A.10. We still do not know whether there exist sets. But it is already possible 
to show that there exist non-comprisable classes (classes which are not sets); in fact, 
we can give an example of such a class: the class A of all sets which are not their 
own elements, i.e. the class of all sets X with X $ X. 

Indeed, X e A if and only if X is a set and X $ X. Suppose that A is a set; then 
substituting A ioiX we have A e A if and only if A $ A which is a contradiction'. 

A reader acquainted with informal expositions of set theory may recognize here 
the familiar argument which, in the naive interpretation, leads to an antinomy; 
however, in our case we merely obtain the positive statement that a certain class is not 
a set. 

1 A.11. Convention. The symbol E{r | R} will denote the class consisting pre-
cisely of those T which are elements and satisfy condition R. 

We will assume that the preceding formulation is sufficiently clear for our purposes 
(a rigorous formulation would necessitate the introduction of notions from mathema-
tical logic). In fact, E{T| R} is merely an abbreviation for an expression in current 
language, namely "the class of all T such that R is satisfied". The expressions T 
and R may depend, actually or apparently, on further variable "parameters". The 
symbol E{r | R} generalizes the current use of E{x | R(x)} to denote the set of all 
elements x which satisfy R(x). 

Note that for every class A we have A = E{x | x e A). 
Examples. (A) E{x | x is a real number, x > 0} as well as E{x2 | x is a real 

number, x # 0} is the class of all positive real numbers. — (B) E{x | x, y are real 
numbers, x > j»} as well as E{x + y | x, y are real numbers, x > 0} is the class of all 
real numbers greater than y (this class depends on y). — (C) E{x | x, y are real 
numbers, x2y2 ^ 0} is the class of all real numbers (the class depends on y only form-
ally). - (D) E{x | x, y are real numbers, x2 + y2 + 1 = 0} = 0 for any real 
number y. — (E) E{X | X is a set, Q e X} is the class of all classes X which are elements 
and have the void class as an element, that is of all sets X such that 0 e X. Axioms 
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introduced in what follows (1 B.1,1 E.1) will imply that this class is non-comprisable; 
on the other hand, after constructing the theory of real numbers within the frame of 
set theory, we can show that the classes in all the other examples are sets. 

1 A.12. C o n v e n t i o n s . 1) If a is an element, then the class E{x | x = a) will be 
denoted by (a). Similarly, if a, b, ...,h are elements, then the class E{x | x = a or 
x = b or ... or x = h} will be denoted by (a, b,..., h). — 2) A class consisting of 
precisely one element, i.e. a class of the form (x), will be called a one-element class or 
a singleton. 

It will follow from the axiom introduced later (1 E.1) that every class containing 
only a "finite number" of elements (in particular, every one-element class) is a set. 

1 A.13. Definition. Let A and B be classes. If every element of A belongs to B, 
then we write A <= BOT B A and say that A is a subclass of B, or that A is contained 
(as a subclass) in B, or that B contains A (as a subclass), or that A is a part of B. 
If A a B and A 4= B then we say that A is a proper part or proper subclass of B. 
If A <=. B and A is a set, then we say that A is a subset of the class B. 

The following proposition is obvious. 

1A.14. If A, B are classes, then A = B if and only if both A <=. B and B <=. A; 
in particular, A cz A for any class A. If A, B, C are classes and A <= B, B c: C, 
then A <= C. 

B. R E L A T I O N S 

In mathematical reasoning (and, in fact, in any systematic reasoning) there con-
stantly occur various relations. Now we will consider the so-called binary relations 
(relations between two objects, e.g. . . . is greater than . . . . . . . is older than ...) in 
the extensional aspect; this means, roughly, that we do not distinguish relations, 
say Q and Q, such that if two objects are in relation Q then they are also in rela-
tion Q' and conversely. 

The current procedure is to introduce relations as certain sets of pairs; thus, to the 
relation (between reals) "is greater than" there corresponds the set of all couples 
x, y, where x, y are real numbers and x is greater than y. 

The strict definition of relation must therefore be preceded by a definition of pairs 
(that is, ordered pairs). The notion of a pair may, of course, be reduced to the con-
cept of set, e.g. in such a way that a pair of elements a, b is defined as the set ((a), (a, b)). 

We shall proceed in a different way since, for instance, the approach mentioned 
above does not permit the formation of pairs of non-comprisable classes, i.e. classes 
which are not sets. We shall introduce pairs as a new undefined concept and assume 
appropriate axioms. This can be done in various ways; we adopt axioms which are 
similar, to a certain degree, to those valid for classes (cf. 1 A.4, 1 A.7). The intuitive 
content of the concept of a pair is clear; we have to assure in the axioms that every 
pair determines its left (first) and right (second) member (or "coordinate") and is 
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determined by them, and that a pair can be formed from any x, y (at least if x, y are 
elements or classes or pairs). There will be two more axioms; they will be discussed 
in subsequent remarks in some detail since they (as well as the entire approach 
presented here) are not current in the literature. 

1 B.l. Axioms for pairs. 
(a) For any x, y there exists a pair z such that x is a left member of z and y is a 

right member of z; 
(b) if a is a left member of c as well as of c' and b is a right member of c as well 

as of c', then c = c'; 
(c) if both a and a' are left (respectively, right) members of c, then a = a ' ; 
(d) if a is a left member of c, and b is a right member of c, than c is an element 

if and only if both a and b are elements', 
(e) no pair is a class. 

1 B.2. C o n v e n t i o n . For every x and y, the pair (uniquely determined, by axioms 
(a) and (b)) such that x is its left and y is its right member will be denoted by <x, y>. 

R e m a r k s . 1) Observe that, besides the concept of a pair, there are two more 
undefined notions, namely, of being a left (respectively, right) member of a pair. 
The first three axioms are more or less self-explanatory (it is worth-while to com-
pare (a) with 1 A.4, (b) with 1 A.7). By Axiom (c) the left (as well as the right) mem-
ber of any pair is uniquely determined. 

2) The members of a pair are not restricted in any manner; a member may be an 
element, but it might also be e.g. a non-comprisable class. Also, any pair may be 
a member of a pair, and we admit pairs such as <X, <Y, Z » or « X , Y>, Z ) or 
{{A, B}, <C, D>>, etc. (this agrees with current usage). The axioms do not even 
exclude the existence of an element a with a = <a, a>, whereupon also a = 
= <a, <a, a » = « a , a>, a> = « a , a>, <a, a » = . . . . 

3) R e m a r k to Axiom (d). It is natural to consider a pair to be an element if 
both of its members are elements. On the other hand, it seems appropriate (and per-
haps even necessary) to eliminate situations in which, e.g., (X, a> would be an ele-
ment, X being a non-comprisable class. 

4) R e m a r k to Axiom (e). This axiom is intuitively clear, since forming pairs 
is evidently an entirely different process from that of forming classes. It is not absolu-
tely necessary, however; but it eliminates the unpleasant and complicated situation 
(which is not excluded by the remaining axioms) in which some pair £ is also a class — 
and thus there would be members of ij as a pair and also elements of £ as a class. 

Now we introduce a notation for some special pairs. 

1 B.3. C o n v e n t i o n . The pair (a, (b, c)} will be denoted by (a, b, c). In 
a similar fashion, we denote (a, b, c, d) = <a, <c, d » > , <a, b, c, d, e> = 
= <a, <b, <c, id , e » » . 

A formal definition of an n-tuple of elements will be given and discussed in Section 3. 
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Note also that, in general, <a, b, c) = <<a, b), c) need not hold; e.g. <0, 0, 0 ) =(= 
4= « 0 , 0>, 0>, since <0, 0, 0> = <0, <0, 0 » has for its left (first) member the class 0, 
while « 0 , 0), 0 ) has for the left member the pair <0, 0) which is not a class by 
Axiom (e). 

The next step is the concept of relation (or rather, binary relation) in its extensional 
aspect. 

1 B.4. Definition. A class all the elements of which are pairs will be termed a relation. 
R e m a r k s . 1) Since relations are classes, we may, of course, speak of compris-

able relations (i.e. relations which are sets), of a relation contained in another one, 
and so on. — 2) A relation in the current ("logical", intensional) sense may be ter-
med a logical relation (the words "relationship", "interrelation" will also be used 
in this sense). 

E x a m p l e s . (A) An important example of a relation is the class of all pairs of the 
form <x, x> where x is any element. This relation will be termed the identity (the 
identity relation) and denoted by J. If X is a given class, then ] x will denote the class 
of all pairs <x, x> with xeX (the restriction of J to X, cf. 1 B.10). - (B) The relation 
of belonging to a set, sometimes denoted by e, is the class of all pairs <x, X} where 
x eX and X is a set. — (C) The relation of inclusion (sometimes denoted by c ) 
is the class of all pairs (X, 7 ) where X, Y are sets and X <=• Y. In all these cases 
(except ]x, X being a set) it can be shown that the relations in question are non-com-
prisable. Two more examples of this type are the following: (D) The relation 
consisting of all pairs <x, <x, y}}, where x, y are elements. — (E) The relation 
consisting of all pairs <X, Y> where X, Yare sets such that for no z, z e X and z e Y 
(the class of all pairs of disjoint sets, see 2.2). 

The following relations are sets (this will follow immediately from axioms 1 E.1 
as well as, for (H) and (J), from the definition of real numbers). — (F) The relation 
]x ifX is a set. — (G) The relation consisting of all pairs (X, Y} such that X <= Y <= A, 
where A is a given set. — (H) The relation < ("is smaller than") between real num-
bers, i.e. E{<x, y)\x,y are real numbers, x < y}. — (J) The relation consisting 
of all pairs <x, y} where x is a number from some given subset A of the reals and 
y = f(x), where / is a given real-valued function defined on A (this relation is often 
called the "graph" of / ) . 

Next we introduce some important notions and symbols connected with the con-
cept of relation. 

1 B.5. C o n v e n t i o n . If Q is a relation, then <x, Y} e Q is sometimes written as 
xgy. 

Conversely, given a symbol r and a relation Q such that <x, y} e Q if and only if 
x, y are elements and xry is true, we shall sometimes use the symbol r to denote Q, 
provided there is no danger of ambiguity. For instance the symbols e and <= will 
denote, respectively, the relations defined in examples (B) and (C) and the symbol < 
will sometimes be used to denote the relation in example (H) in 1 B.4. 
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1 B.6. Definition. Let g be a relation. The class of all x such that xgy, i.e. that 
<x, y} e g, for some y, will be termed the domain of g and denoted by Dg; the class 
of all y such that XQy, i.e. that <x, y) e g, for some x, will be termed the range of g 
and denoted by Eg. 

R e m a r k . The use of the letter E in the symbol for the range of relations may seem 
somewhat strange. However, it is motivated by the fact that if a relation g is denoted 
by the symbol {U | R} (see below, 1 B.11, 1 B.13), then E{17 | R} (see 1 A.11) denotes 
the range of g. Observe that the letter E occurs in two roles, which may be quite 
different, a priori — namely in the symbol Eg and in the symbol E { t | R}. However, 
this does not imply any ambiguities as a rule. We do not consider these questions 
any more, having in mind that the symbols E{T| R} etc. are conceived as mere 
abbreviations for certain expressions of current language as used in mathematics. 

C o n v e n t i o n . Let g be a relation; let A, B be classes. We are going to introduce 
expressions for various combinations of the properties indicated by Dg c A, 
Dg = A, Eg cz B, Eg = B. 

If Dg c A, Eg cz B we shall say that g is a relation for A and B or that g is a rela-
tion for A ranging in B. — If Dg cz A, Eg = B, we shall say that £ is a relation/or A 
ranging on B. — If Dg = A, Eg <= B, it will be said that g is a relation on A ranging 
in B or simply that the relation g is on A into B. — If Dg = A, Eg = B, we shall 
say that g is a relation on A ranging on B or simply that g is on A onto B. 

Finally, if A is a class, Dg <= A, Eg <=. A, we shall say that g is a relation in A 
(or for A). As already indicated above, if Dg = A, Eg cz A (respectively, Eg = A), it 
is said that g is a relation on A into A (respectively, onto A). 

R e m a r k . We shall not use expressions such as "g is a relation on X" since it is 
convenient to apply such expressions for special kinds of relations in a specific sense; 
see e.g. 1 C.5, 1 C.7. 

In the examples mentioned above we have the following domains and ranges: 
DJ = EJ is the universal class. E e is the class of all non-void sets. — As for D e, 
it will follow from 1 E.1 (a) that D e is equal to the universal class. — D c: = E <= 
is the class of all sets. — In example (D) the domain is the universal class, and the 
range consists of those pairs which are elements. — In example (E) the domain as 
well as the range is the class of all sets (since for every set there is another set disjoint 
with it, e.g. the set 0). — Clearly, <= and => are relations on i f onto £f denoting 
the class of all sets, e is a relation on V, the universal class, ranging on the class of all 
non-void sets. (As noted at the beginning of this chapter, the examples sometimes 
anticipate facts proved later.) 

1 B.7. Definition. If g is a relation and A is a class, then the class of all y such that 
xgy for some xe A will be termed the image of A (under g) and denoted by g[A\. 

If x is an element, then the class g[(x)], i.e. the image of singleton (x), will be called 
the fibre of g at x. 

Observe that the fibre of g at x is non-void if and only if x e Dg. 
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E x a m p l e s . (A) J[/l] = A for every class A. — (B) The class e [.4] consists of all 
sets with an element in common with A. — (C) The fibre of the relation (see 1 B.5) 
at a set A consists of all sets X with X a A and thus is identical with exp A 
(see 1 E.9). — (D) If A is the set of all positive reals then < [ 4 ] = A. 

1 B.8. Definition. If g is a relation, then the class of all <x, y} with <y, x> e g 
will be denoted by and termed the inverse relation to g or the inverse of g. 

E x a m p l e s . (A) J - 1 = J, c : _ 1 = =>. — (B) The relation e - 1 , denoted as 3 in ac-
cordance with 1 B.5, consists of all <X, x> where X is a set, xeX. — (C) If g denotes 
the relation from 1 B.4, example (J), and for every y e Q[A\, the set contains 
precisely one element, then g _ 1 is the graph (in the usual sense) of the function 
inverse to / . 

1 B.9. Definition. If g is a relation and B is a class, then the class Q~1 [B] will be 
called the inverse image of B under g. If y is an element, then f?_1[(y)], i.e. the inverse 
image of (y) under g, will be called the inverse fibre of g at _y. 

E x a m p l e . If B is a class of sets, then e _ 1 [ B ] is the class of all elements which 
belong to some set of B (the union of the class B, see 2.7). The inverse fibre of e at 
a set B is the set B itself. 

C o n v e n t i o n . Occasionally the fibre g[(x)] of Q at x will be denoted by g[x] and 
termed the image of x (under g), and similarly for 

This notation and terminology are, strictly speaking, incorrect, as shown by the 
following example. Let a, b, c be elements, A = (a), let g consist of the pairs <a, by 
and {A, c). By Definition 1 B.7, g\A\ is (f>); however, according to the convention, 
it might also be e[(-4)], i.e. (c). Nevertheless, such situations occur only rarely and, 
with suitable care, the convention may be applied. Observe that another possibility 
of ambiguity arises in connection with single-valued relations (cf. 1 D.1). 

1 B.10. Definition. Let g be a relation, and let A, B be classes. The relation consist-
ing of all <x, y} e g such that x e A will be called the domain-restriction of g to A. 
The relation E{<x, y} | xgy, y e B} will be termed the range-restriction of g to B. 
Finally, the relation E{<x, y} | xgy, x e A, y e B} will be called the restriction 
of g to A and B. 

Let a and g be relations. If a is a domain-restriction or, respectively, range-
restriction, restriction of g, then we shall say that g is a domain-extension or, respect-
ively, range-extension, extension of a. 

Instead of a domain-restriction or a range-restriction, we shall often speak simply 
of a restriction if it is clear from the context which kind of restrictions is considered, 
and similarly for extensions. The domain-restriction of g to A will be sometimes 
denoted by gA or g | A (observe, however, that a symbol like gA may also mean the 
restriction of a composition in the sense of Section 6). 

Example . Consider the relation cz (it consists of all pairs (X, Y> of sets such 
that X c Y). Let £f be the class of all singletons. The range-restriction a of c to Sf 
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consists exactly of all <(x), (x)> and all <0, (x)>. The domain-restriction of a to Sf 
coincides with 

Before proceeding further, certain abbreviations will be introduced in connection 
with the notation E{T| R} of 1 A.11. 

1 B. l l . C o n v e n t i o n . The symbol {T-> U | R} will denote the class consisting 
precisely of those pairs <T, U} which are elements and satisfy R. 

In other words, {T-> U | R} is, by definition, equal to E{<T, [/> | R}; thus, the 
introduction of a new symbol may seem unnecessary; nevertheless, the symbol 
{T-* U | R} has, at least, the advantage of being rather suggestive. 

All remarks made after the convention 1 A.11 apply also to the above symbol. 
We would like to stress that {T-> U | R} is merely an abbreviation for the following 
expression of current language: "the class of all pairs of elements T, U such that 
R is satisfied". 

Examples . (A) {x x2 | x ^ 0} is the set of pairs <x, x2> for all non-negative x, 
i.e. the graph of the function x2 defined for x ^ 0 only. — (B) {t2 -> f3 | t real} is the 
set of all pairs <i2, i3> with t real; this is the "curve" consisting of graphs of the two 
functions yfx3 and — -Jxz for x ^ 0. — (C) {AT -» Y \ X <= 7} is the inclusion 
relation introduced in 1 B.4, example (C). — (D) Obviously {x -> | x = y} = J, 
and {x -> x | x e A} = {x y \ x = y, x e A\ = lA. — (E) if Q is a given relation, 
then {X -* | X is a class} consists of all pairs (X, such that X and 
Q\X~\ are sets. 

1B.12. In accordance with 1 B.11 and 1 B.6, E{T-> U\ R} denotes the range 
of the relation {T -»• U | R}, i.e. the class of all U such that R for some T. 

Examples . (A) E{x -» x2 | x is even} is the set of squares of all even integers. — 
(B) E{x3 -»• x | x3 positive integer} is the set of cube roots of all positive integers. — 
(C) E{cos t -» sin 11 t real, tan t = 1} is the set (iV2> —2%/2)- ~ (D) If Q is a given 
relation, then E{X | X is a set} consists of all sets of the form X being 
a subset of Dg. 

The expressions {T-* U | R} and E{T-> U | R} are often unnecessarily cumber-
some, and we will abbreviate them in the following manner. 

1B.13. C o n v e n t i o n . {TU | R} will usually be written as {T-> U} if R is 
obvious from the context. The notation {U | R} is used as abbreviation for 
{T-+ U | R} provided Tis clear from the context, and {17} is written for {T -> U \ R} 
if the T, R are obvious. Similarly for E{T-> U}, E{U | R}, E{[/}. Finally, sometimes 
we shall write simply {R} instead of {T-> U \ R}, E{R} instead of E{[7 | R}. 

Remark . Observe that E{[7 | R} has the same meaning under convention 1 A.11 
as under the present one. 

Examples . (A) {x -> sin x | x is real} will be written as {x sin x} or even {sin x} 
whenever the set of reals is the obvious domain. — (B) {sin x | x > 0} is the 
"graph" (in the current sense) of the function sin defined for positive numbers only. — 
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(C) Expressions such as {y | x < y} will be used rarely; nevertheless, the meaning 
of this expression is clear: it is, of course, an abbreviation for{x ->• y\ x < y} which 
denotes the set of all <x, y> such that x < y. — (D) {x2 + 2x + 2} denotes, of 
course, if the domain of x's is clear from the context, the relation assigning to each x 
the element x 2 + 2x + 2; E{x2 + 2x + 2} is its range, that is the set of all reals 
y ^ 1 (if x varies over reals). 

It is to be noted that abbreviated expressions, e.g. of the form {U | R}, may 
be ambiguous in certain cases. For instance {S(x, y) | R(x, y)} may mean either 
{<x, y> -»• S(x, y) | R(x, y)}, i.e. the set of pairs <<x, y>, S(x, y)> satisfying certain 
conditions, or {x S(x, y)}, i.e. the set of pairs <x, S(x, y)> satisfying given con-
ditions, with y variable (indeterminate), etc. Such difficulties can be avoided if 
abbreviations of the form E{...}, {.. .} are chosen, in each individual case, in such 
a way that the full expression can be restored from the context without ambiguity. 

C. P R O P E R T I E S O F R E L A T I O N S 

1 C. l . Definition. Let g, a be relations. Their relational composite (or merely 
composite) is the relation denoted by g o a and defined as the class of all pairs <x, y > 
such that there is a z with xtrz, zgy, i.e. such that <x, z> e a, <z, y> e Q. 

Thus for example the composite of the relations {x -> /(x)}, {y -» g(y)} is the 
relation {x -* g(/(x))}; thus we have a nice agreement with the standard definition 
of composition (superposition) of funtions (in composed mappings, operations, etc., 
the standard order of consecutively performed operations is from right to left). 
To some extent, our definition is not entirely natural: it might seem more appro-
priate to define Q 0 a as the class of x, y with XQZ, zay for some z, but this would 
disagree with standard notation for composite mappings. 

E x a m p l e s of composition of relations: (A) J o J = J, and more generally J 0 Q = 
= Q ° J = Q for every relation g. — (B) The relation < on the set of reals satisfies 
< o < = < . — (C) => o c as well as <=. 0 => consists of all pairs of sets. — (D) Let 
Q = {x -» ex | x real}; then q o f? - 1 = JP where P is the set of all positive reals. — 
(E) Let Q = {x2 x}, <JT = {x -» x}, o 2 — ~ t h e n C7X o G = <R2 o G = Q, 
but <rl =)= <j2. - (F) Obviously 0 a) <= Dcr, E(g 0 a) <= Eg for any relations 
g, a. Nevertheless, if g = {<x, y ) -> (x, y)} (see 1 A.12), then gog = g~1og~1=Q, 
thus D(g o g) = 0 #= Dg, E(g a g) = 0 + Eg. 

Next, several important types of relations will be introduced. 

1 C.2. Definition. A relation g will be called symmetric if g = g'1 (i.e. if xgy <=> 
o y^x); g will be called antisymmetric if never both xgy and ygx; g will be called 
reflexive if Dg = Eg and xgx for every x 6 Dg; g will be called irreflexive if xgx 
for no x. 
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E x a m p l e s . The identity J is a reflexive and symmetric relation. The inclusion 
relation is reflexive but not symmetric. The "inequality" relation {x -» y | x #= y} 
is irreflexive and symmetric. The relation consisting of all pairs of disjoint sets is 
symmetric but not reflexive. The relation < on the set of reals is irreflexive and anti-
symmetric. 

Using composition of relations, we will define an important concept of a transitive 
relation; properties of transitive relations will be studied in Section 10. 

1 C.3. Definition. A relation g will be called transitive if g o g <= g, i.e. if xgy and 
ygz imply xgz. 

E x a m p l e s . (A) Identity, inclusion and the relation < on the set of reals are 
transitive relations. — (B) The relation g = {x y | x, y are positive integers, y is 
divisible by x} is transitive. — All the relations just listed satisfy g o g = g. — (C) 
Consider the relation g = {X 71 Z =f= Y, X <= Y <= A}, where A is a given set; 
this relation is transitive, but g o g = g usually does not hold: taking e.g. A = (a, b), 
we obtain that (a) e Dg and (a) ^ D(g 0 g). — (D) The relation {x y | x, y are 
positive integers, y = x — k for some positive integer k} is transitive; the relation 
{x -» y | x, y are positive integers, y = x — k} where k is a given positive integer 
is not transitive. 

1 C.4. Theorem and definition. Let g be a relation. Then there exists exactly one 
transitive relation g* such that g <= g* and if g' is transitive and g c g', then g* cz g'. 
This relation g* is called the smallest transitive relation containing g. 

P r o o f . We shall say that a relation £. has property T if g cz £ and £ is transitive; 
clearly if Ç0 consists of all <x, y) such that x e Dg or x e Eg, and y e Dg or y e Eg, 
then £0 has property T. Let g* denote the class of all <x, y> belonging to every rela-
tion with property T. Then g* is a relation and clearly g <= g*. If <x, y) e g*, <_y, z> e 
e g*, then, for every £ with property T, <x, as well as (y, z> belongs to and 
therefore <x, z ) e £ being transitive. This implies <x, z ) e g*. If a relation g' is 
transitive, g c g', then g' possesses property T, hence g* c g'. 

R e m a r k . It is easy to see that the above theorem holds if "transitive" is replaced 
by "transitive reflexive" or "symmetric" or "symmetric transitive" and so on. We 
formulate explicitly one of such propositions in 1 Cv8. 

As mentioned above, we shall consider order relations in Section 10; nevertheless, 
the fundamental definitions and some notation is introduced here for convenience. 

1 C.5. Definition. A transitive relation will also be called a quasi-order; if a is 
a quasi-order and A is a class containing all (consisting of all) x such that either 
x e D<r or x e E<j, then we shall say that a is a quasi-order in A (on A). A reflexive 
quasi-order a such that xoy, yox imply x = y will be called an order. 

E x a m p l e s . (A) cz and => are orders on the class of all sets. — (B) {g a | g = 
= a o n for some /i} is a quasi-order on the class of all comprisable relations, but it 
is not an order. 
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1 C.6. C o n v e n t i o n . Let a quasi-order a in a class A be given. We shall use the 
following symbols, similar (except for a graphic difference) to those currently used 
for intervals of reals. 

If a e A, then ] a, -» [ denotes the class of all xe A such that aax but neither 
xaa nor x = a; [ a, -* [ denotes the class of all x e A such that aax or x = a; ] a [ 
denotes the class of all xe A such that xaa but neither aax nor x = a; finally, 
] <-, a ] denotes the class of all x e A such that xaa or x = a. (Observe that if a 
is an order, then J a, -»• [ = E{ac7x, a 4= x}, [ a, -> [ = E{acrx}, etc.) 

If a e A, b e A, then consistently with the above: ] a, b [ consists of all elements 
belonging both to ] a, -*• [ and ] <-, b [; ] a, b ] of all those belonging to both 
] a, -*• [ and ] <-, b ] ; the symbols [ a, b [, ] a, b [ are defined similarly. 

E x a m p l e . Consider the order relation c . Then if A is a set, [^4 ,^4] = {A), 
[ A, A [ = 0, etc. For any set B, ] *-, B ] consists of all subsets of B, and ] *-, B [ 
consists of all proper subsets. 

An important type of relation which will soon be indispensable for further develop-
ments is an equivalence relation. 

1 C.7. Definition. A relation g will be termed an equivalence if it is reflexive, sym-
metric and transitive, i.e. if xgy implies ygx, xgy and ygz imply xgz, Dg = Eg and 
xgx for x e Dg. 

We shall say that g is an equivalence on A, A being a class, if g is an equivalence 
and Dg = A. An equivalence in A is, in accordance with 1 B.6, an equivalence g with 
Dg c A. 

E x a m p l e s . (A) The identity is an equivalence relation. — (B) {<x, y} ->• 
-> <m, v} | x, y, u, v are positive integers, xv = _yu} is an equivalence. — (C) The 
inclusion relation is not an equivalence since it is not symmetric. — (D) If g is a given 
relation, then = £?[F]} is an equivalence on the class of all sets. 

R e m a r k . If Q is an equivalence, then any two fibres of g either are identical or 
have no elements in common. Conversely, if a symmetric relation satisfies this con-
dition, then it is an equivalence. 

1 C.8. Theorem and definition. Let g be a relation. Then there exists exactly one 
equivalence g* such that gag* and if g' is an equivalence, g a g', then g* c g'. 
This equivalence g* is called the smallest equivalence containing Q. 

The proof is quite analogous to that of 1 C.4 and is left to the reader. 
Relations have been introduced to express the notion of (logical) relationship in 

its extensional aspect. They are classes of pairs and every relation for classes A and B 
is a part of the class of all pairs <x, j>) where x e A, y e B. It is convenient to intro -
duce this class, denoted by A x B, at the present stage; it will be examined in detail 
later (in Section 5). The terminology in the following definitions and conventions is 
drawn from the analogy between A x B and, say, the plane expressed as a "product" 
of two replicas of the real line. 
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1 C.9. Definition. If X and Y are classes, then the class of all pairs <x, y} where 
xeX, ye Y will be termed the pair-product (or simply product) of X and Y, 
and denoted by X x Y. 

C o n v e n t i o n . If X is a class, thenX x X is sometimes called the square of X, 
and the class of all <x, x> where xeX, i.e. the relation ]x , is called the diagonal 
of the square of X. 

Example . If a is an element, X = (a) and 7is the class of all sets containing a, 
then X x 7 i s identical with the relation e (see 1 B.4, example (B)) restricted to (a). 

R e m a r k . Clearly X x Y is "the largest relation" for X and Y; more precisely, Q 
is a relation for X and Y if and only if g c X x Y. 

D. S I N G L E - V A L U E D R E L A T I O N S 

We now define single-valued relations. These are currently termed mappings; 
however, we will define mappings in another manner (see Section 7) and single-valued 
relations will then be the so-called graphs of mappings. 

1 D.l . Definition. We shall say that a relation g is single-valued at an element x 
if there exists exactly one y such that <x, y} e g. If Q is single-valued at x, then the 
(uniquely determined) element y such that <x, y} e g will be denoted by gx and called 
the value of g at x (if g is not single-valued at x, then, of course, "gx" has no meaning). 

If a relation cp is single-valued at every x e Dcp, (that is, if x e Dcp, <x, j ^ ) e cp, 
<x, y2y e cp imply yl = y2), then cp will be called single-valued (or also a mapping 
relation). 

C o n v e n t i o n s . 1) Given a symbol f and a single-valued relation cp such that y = 
= fx if and only if y = cpx, we shall sometimes use f to denote cp (cf. 1 B.5). — 2) If 
g is a relation, A and B are classes, A <= Dg and gA is single-valued, we shall say that 
g maps A into B (onto B) if g\A\ <= B (respectively, e\_A\ = B). — 3) If cp is a single-
valued relation, x e Dcp, y = cpx, we shall say that cp assigns y to x. 

E x a m p l e s . (A) The relation 3 = e _ 1 (see 1 B.8), whose domain is the class of all 
non-void sets, is single-valued at a set X if and only if X is a singleton; in this case 
we have x = B X where X = (x); in the other cases, "aX" has no meaning. — (B) Both 
relations J and ] x (for any class X) are single-valued. — (C) The relations 
{<x, y} -» x} and {<x, yy -> j>} are single-valued, but the inverse relations {x -» 

(x> {y (.x> >*)} a r e n o t - — (D) By 1 E.1, the class => [(^4)], i.e. the class 
of all sets X <= A, is a set whenever A is a set. It is easy to see that {Ji ->• => [(-X)]} 
is a single-valued relation, and its inverse is also single-valued. 

R e m a r k . If g is single-valued and cr c g, then a is single-valued. If g, a are single-
valued, then f? o cr is also single-valued. 

1 D.2. According to our definitions, there is an essential difference between 
g[(x)] and gx. The class i?[(x)], the image of the singleton (x), is defined for any 
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relation g and any element x; it is non-void precisely if x e Dg, and in general contains 
more than one element. On the other hand, "gx" is defined only if g is single-valued 
at x, and denotes a certain element. If gx is defined, then necessarily g[(x)] = (gx). 
However, for simplicity, and in accordance with current usage, we formulate the 
following convention, to be applied in unambiguous cases. 

C o n v e n t i o n . If <p is a single-valued relation and x e Dg>, then the element cpx, 
the value of <p at x, will, sometimes be called the image of x under q>. Also, if g is 
an arbitrary relation, and x is an element, the class E{_y | <x, y> 6 5} will be denoted 
and termed as follows: i?[(x)], g[x], the fibre of g at x, the image of (x) under g. 

1 D.3. Definition. A relation g is said to be a fibering relation if <x l t e g, 
<x2, y} e g implies x1 = x2 (in other words, if g - 1 is single-valued). 

The motivation of this concept is deferred to Section 7 (see, in particular, 7 C.8). 

1 D.4. Let g be a relation. Then there exists a fibering relation 1j/ and a single-
valued relation q> such that g = <p o \j/. 

Proof . Put 1¡/ = {x-> <x, y> | <x, y> eg}, q> = {<x, y} -* y | <x, y> eg}. 

1 D.5. Definition. Let g be a relation. If A c: Dg and a is a single-valued relation 
with Dcr = A such that a <= g, then a is called a section of g upon (over) A. If B <= Eg 
and t is a single-valued relation with Dt = B such that t e g - 1 (i.e. if x is a section 
of g _ 1 upon B), then t is called a cross-section of g upon (over) B. 

Observe, that, for a single-valued g, a section of g upon A coincides with the 
restriction of g to A; in other words, the restriction (more precisely: the domain-
restriction) of a single-valued g to a class X coincides with the (unique) section of 
g upon the class of all those x e D g which belong to X. 

Examples . (A) Let X, Ybe classes. Then every single-valued relation for X and Y 
is a section of X x Y, and conversely. — (B) Using the terminology and notation 
to be introduced in Section 3, we have the following example: a section (upon N) of the 
natural order rg is an infinite sequence {nfc} of natural numbers such that nk ^ Ic, 
and a cross-section (upon N) of this order is a sequence {nk} with nk ^ k. 

Remark . If g is single-valued, then a is a cross-section of g upon B <= Eg if and 
only if a is a singleton and g o o = JB. If g is a fibering relation, then a is a section 
of g upon A c Dg if and only if g - 1

 0 a = ]A. 
1 D.6. Definition. We shall say that g is a one-to-one relation if both g and g - 1 

are single-valued relations. 
C o n v e n t i o n . If (p is a one-to-one relation with domain A and range B we shall 

also say that cp is bijective on A onto B (or that cp is bijective for A and B). If (p is 
bijective on A onto itself, we shall say that <p is bijective for A. 

Examples . (A) The relation {x (x)} is bijective for the universal class and the 
class of all singletons. — (B) The relation {<x, y> -* <x, y>} is bijective for the class 
of all those pairs which are elements. — (C) The relation {x -» x2 | x a real number} 
is single-valued but it is not bijective; its restriction to non-negative reals is bijective. 

3 — Topological Spaces 
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Remark . It is easy to prove that a relation g is one-to-one if and only if there 
exists a a such that g oO and a ° g are identity relations, g o a = JEfl, a o g = JDe . 
In fact, we have a = g - 1 . 

1 D.7. Definition. A permuting relation is a one-to-one relation (p such that D<p = E<p. 
For instance, the relation in the above example (B) is a permuting one. 

1 D.8. Before proceeding further (to the axioms for sets), we shall first consider 
another aspect of the concept of a single-valued relation, leading e.g. to the notion 
of a sequence. 

Suppose that to every element of a class there is assigned an element from a second 
class and it is the latter which is of primary importance in a given context, whereas 
the former one is, in a certain sense, merely auxiliary. In point of fact, we have 
a single-valued relation which is, however, considered from a different point of view. 
In such a situation, it is useful to introduce new terms for concepts already defined, 
and even to introduce new concepts for properties which come to the forefront in 
connection with the different point of view adopted. 

1 D.9. Definition. A single-valued relation will sometimes be called an indexed 
class; a comprisable indexed class (i.e. a single-valued relation which is a set) will 
sometimes be called a family. If SC is an indexed class(and particularly if ^ is a family), 
then DSC will be called its domain of indexes (or simply domain), or its class (set) 
of indexes, and every element from DSC will be called an index of the indexed class SC\ 
elements from ESC will be called members (or values) of the indexed class (or family) SC. 
If SC is an indexed class and <$) <= SC, then we shall say that is an indexed sub-
class of SC or (provided <& is a set) that <& is a subfamily of SC. (Note that the rela-
ted terms subnet, subsequence are used in a substantially different sense, see 15 B.17.) 

Remarks . 1) We stress once more that an indexed class is a single-valued relation, 
a family is a (single-valued) comprisable relation; hence all notions introduced for 
single-valued relations are; meaningful for indexed classes (in particular, for families). 
— 2) An indexed class is a class, a family is a set, but there is a substantial difference 
between elements and members of an indexed class (family). Thus take the indexed 
class si = {X X x X}, i.e. the class of all pairs <X, X x X} where X is a set; 
then every set is an index, every set of the form X x X, X a set, is a member of si, 
but the elements of si are pairs <X, X x X) and these, of course, are not sets. — 
3) A notation of the following form will usually be used for indexed classes (in ac-
cordance with 1 B.11 and 1 B.13): {xa | a e A}. When using such a notation, we will 
always assume, unless the contrary is stated, that A is the domain of indexes, i.e. that 
"x a" is meaningful for every as A. 

Examples . (A) {.Y -» )x | X is a set} is an indexed class but not a family. — 
(B) The relation {n -* A„ \ n is a positive integer, A„ is the set of all integers greater 
than n} is a family. — (C) Let F be the set of all real-valued functions which have 
a derivative in the interval ] 0, 1 [; then { / - » / ' | / e F} is a family. 
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1 D.10. Definition. An indexed class {xa | a e A} is called constant with value z 
if it is non-void and ae A implies xa = z. It is called constant if there exists an ele-
ment z such that a e A =*> xa = z. 

Since indexed classes and single-valued relations are the same objects considered 
from different points of view, we have, in fact, already defined a constant relation 
(with value z). For convenience, we state explicitly: a single-valued relation g is called 
constant if <x, y> e g, <x', / > e g implies y = y'. 

It is clear that 0 is a constant relation and that a relation g #= 0 is constant if and 
only if Eg is a singleton. 

E. SETS 

The concept of a set has been already defined (a set is a comprisable class, i.e. 
a class X which belongs to some class 9). However, we have no means as yet to prove 
any useful propositions for sets. Thus, in fact, the notion of a set has to be properly 
introduced. This will now be done. 

1 E.l. Axioms for sets. 

(a) If x is an element then (x) is a set. 
(b) Let g be a relation and let X be a set. I f , for every x such that x e X, x e Dg, 

the class g[(x)] is a set, then the class is a set. 
(c)//X is a set, then the class of all subsets of X is a set. 

1 E.2. It may be apparent that these axioms correspond both to intuitive ideas 
(if sets are regarded as "not excessively large" classes) and also to the practice of 
mathematics in branches where set theory is applied. Indeed, a one-element class is 
assuredly "small enough" to warrant being a set; Axiom (b) requires, roughly, that 
the union (cf. Section 2) of a collection of sets again be a set — and this is intuitively 
obvious and current practice. That the class of all subsets of a given set is again a set, 
i.e. that the operation of taking all subsets remains within the scope of "not excessi-
vely large" classes, may not be as clear intuitively; but it is in complete agreement with 
procedures standard in modern mathematics. 

1 E.3. Remarks. (1) Note that the axioms listed still do not guarantee the 
existence of sets (for instance, it can be easily shown that the axioms are satisfied 
when there are no elements, and only one class, the void class). Also note that the 
axioms are satisfied (assuming the standard form of class and set theory is available) 
if the only admitted sets are all the finite classes (finite in the usual sense). — 
(2) On the other hand, we may already show that, if there exist any elements, then the 
void class 0 is a set; this follows from Axioms (a) and (b); if x is an element, g = 0, 
X = (x), then 0 = Q\X~\, hence 0 is a set. — It can be even shown (if we suppose 
that there exist some elements) that there exist "infinitely many" (in an intuitive sense) 
sets. Namely, it is intuitively clear that the sets 0, (0), ((0)), (((0))),... are mutually 
distinct. For, evidently, 0 * (0). Therefore, (0) + ((0)) and, clearly, 0 * ((0)); thus, 

3* 
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0, (0), ((0)) are different, and we may proceed with this argument indefinitely. Observe, 
however, that this reasoning as such constitutes no proof as yet. — (3) From the 
Axioms for sets it is also easily deduced that any actually given class with a "finite 
number" of elements is a set. Let us illustrate this for, say, a class (a, b) containing 
two elements. The existence of such a class implies, by the previous argument, that 0 
is a set. Let g be the relation consisting of the pairs <0, a ) and <(0), i>). The class 
X = (0, (0)) is a set by Axiom (c), since it consists of all subsets of the set (0). Since 
g[(0)] = (a), g[((0))] = (b), we conclude, by Axiom (b), that g[X] = (a, b) is a set. 

Next we will prove some simple consequences of the axioms. If q> is a single-valued 
relation, then for every x e Dq> the class <p[(x)] contains precisely one element; thus 
from Axioms (a) and (b) there follows 

1 E.4. Theorem. If <p is a single-valued relation and X a set, then is a set. 

1 E.5. Theorem. If X is a set and Y <= X, then Yis a set. 
P r o o f . Let X be a set, Y a X. According to 1 E.4, the class is a set. Ob-

viously J Y[X] = Y. 
R e m a r k . In 1 A.10, we have exhibited a non-comprisable class. This implies, by 

the above proposition, since every class is a part of the universal class, that the uni-
versal class is non-comprisable. 

1 E.6. Theorem. If X, Y are sets, then X x Y is a set. 
P r o o f . For any given element z, the relation {y <z, y>} is single-valued, hence 

if Yis a set, then (z) x Y is a set. Put g = (x -> <x, y> | x e X, y e Y}. For any x e X, 
g[(x)] = (x) x Yis a set, and therefore, by axiom (b), X x Y = g[X] is a set. 

1 E.7. Theorem. A relation g is comprisable (i.e. is a set) if and only if Dg and 
Eg are both comprisable. 

P r o o f . Let the relation g be a set. Since n = {<x, y) -»• x} is single-valued, 7t[g] = 
= Dg is a set by 1 E.4. Similarly, using {<x, y> -* y}, we obtain that Eg is a set. 
Conversely, if Dg, Eg are sets, then according to 1 E.6, Dg x Eg is a set; since 
Q c Dg x Eg, g is a set by 1 E.5. 

We shall now consider briefly two important kinds of classes of sets. 

1 E.8. Definition. Let X be a set, Y a class. Then the class of all single-valued 
relations on X into Y(i.e. of single-valued relations cp such that Dcp = X, Bcp c Y) 
will be denoted by Yx. 

This notation is motivated e.g. by the fact that if X, Y have a finite number m, 
respectively n of elements, then Yx has nm elements (cf. Section 3). 

Observe that Y0 = (0) for any class Y. 

1 E.9. Definition. If X is a class, then the class of all subsets of X will be termed the 
potency class of X or the exponential of the class X, and will be denoted by exp X. 

The motivation of the terms "potency class" and "exponential" lies in the fact 
that if X has a finite number m of elements, then exp X has 2m elements, as well as 
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in the fact (see immediately below) that (provided X is a set) exp X is "equivalent" 
to Tx, T being a two-element set. 

1 E.10. Let T = (a, b), a * b. Let X be a set. The relation {<p -> <p_ 1[a] | (p e Tx} 
is bijective for Tx and exp X. 

C o n v e n t i o n . The above relation will be called a canonical relation for Tx and 
e x p X . Observe that {<p -» <P_I[b]} will also be termed canonical for Tx and expJ i ; 
thus there are exactly two canonical relations for Tx and exp X. 

1 E . l l . The class exp X is a set if and only if X is a set. If X is a non-void set, 
and Yis a class, then Yx is a set if and only if Y is a set. 

P r o o f . For the first assertion, " i f " is the axiom 1 E.1, (c) and "only i f " is obtained 
from the fact that {x -» (x) | x e X} is one-to one on X into exp X. As for the second 
assertion, " i f " ' follows, by 1 E.5,1 E.6,from Yx <= exp (X x 7), and "only i f " fol-
lows from the following fact: if a is the relation assigning to every y the constant 
relation <py e Yx with E cpy = (y), then a is one-to-one on Y into Yx. 

Some notions concerning indexed classes (in particular, families) of sets will now 
be introduced. 

1 E.12. Definition. A family {Xa | a e A} will be called a cover if every Xa is a set 
(this definition of cover will be extended later, see 12 A.1). In a more detailed manner, 
we shall say that a family of sets 9C = {Xa | a e A} covers a set Z if every z e Z 
belongs to Xa for some a, and that it is a cover of a set Y if every y e Y belongs to 
some Xa and Xa a Y for every a e A. 

We shall consider covers in detail in Section 12 stating here only some simple facts. 

E x a m p l e s . (A) Let g be a relation. Then g = {x -> g[(x)] | x e Dg} is a cover 
if and only if g is comprisable; in this case g is a cover of Eg. — (B) Let a quasi-order 
d o n a set A be given; then { ] <-, x ] | x e A} is a cover of A whereas { ] <-, x [ | 
| x e A} is a cover, but, in general, not a cover of A. 

1 E.13. For any comprisable relation g, let g denote the relation {x -» g[(x)] | 
| x e Dg}. Then {g -> g} is a one-to-one relation on the class of all comprisable 
relations onto the class of all those families whose every member is a non-empty 
set. If X is a set, and Y is a class, then {g -*• g} maps exp (X x 7 ) onto (exp' 7)* 
where exp' Y denotes the class of all non-empty sets S a Y. 

P r o o f . We shall first prove that {g -*• g} is one-to-one. Suppose that a = g. 
Since Dg = Dg, D& = Dc, we have Dg = Do, and for any x e Dg we obtain g[(x)] = 
= c[(x)]; this implies g = a. If r is a cover every member of which is a non-empty 
set, then put g = {x -» y \ y e tx}; clearly Dg = DT (since every TX is non-void), 
and x E Dg implies g[(x)] = TX; thus g = T. The rest of the proof is left to the reader. 

C o n v e n t i o n . If g is a comprisable relation, then {i?[(x)] | x e Dg} will be called 
the cover associated with g and will be occasionally denoted by g. In general, if g 
is a relation all fibres of which are comprisable, we shall refer to (g[(x)] | x e Dg} 
as the indexed class of fibres of g, also using occasionally the symbol g. 
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If, in,addition, g is an. equivalence and A <= Dg, then the class E{g[(x)] | xe A} 
will be denoted by Afe and the relation gA, which maps A onto Ajg, will be called 
the natural (canonical) relation for A and A/g. Observe that similar symbols are 
sometimes used in a different sense; namely, if cp is a single-valued relation or a map-
ping (see 7 B.10) and A <= D|<p| (see 7 A.1, 7 B.1), then Ajtp may denote the set <p[./4]. 

Examples . (A) The relation j assigns to every element x the singleton (x). — 
(B) The indexed class of fibres of => is the relation (X —• exp X}; if A is a set, then 
the cover associated with => e j p A is equal to {X -> exp X \ X c A}. 

We add one further definition which is loosely related to covers. 

1 E.14. Definition. Let g be a relation. If a class si consists of subsets (not neces-
sarily all) of Dg, then the singb-valued relation a which assigns to every X e si 
will be called a canonical expansion of g to a class of sets (namely to si). 

Clearly, if g is a comprisable relation, and g' is its expansion to the class of all 
singletons (x) c Dg, then g' o ] = g. 
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2. U N I O N A N D I N T E R S E C T I O N 

This short section deals with basic class (conventionally set) theoretical operations, 
namely with union, intersection, difference and symmetric difference. No profound 
results are proved here, since the only aim of this section is to introduce the con-
cepts and notation necessary for the further development of our axiomatic system 
which will be used throughout the book. 

As for the union (and similarly for the intersection), three definitions are given to 
cover various situations. First we define the union of a "finite number" of classes 
(more precisely, of two classes, and then, step by step, of three, four, etc.). Then the 
union (or the intersection) of an indexed class (in particular, of a family) of sets is 
defined; evidently, this does not include the case of a "finite number" of non-compris-
able classes, as we cannot speak of an "indexed class of non-comprisable classes". 
Finally, we define the union and the intersection of a class of sets. 

2.1. Definition. Let A, B be classes. The class of all elements which belong either 
to A or to B is called the union of the classes A and B, and is denoted by A u B; 
the class of all elements which belong to both A and B is called the intersection of the 
classes A and B, and is denoted by A n B; the class of elements which belong to A 
but not to B is called the difference of the classes A and B, and is denoted by A — B; 
the class (A — B) u (£ — A) is called the symmetric difference of the classes A and B, 
and is denoted by A -f- B. If A => B, then A — B is also called the complement of the 
class B relative to A (or, if A is clear from the context, simply the complement 
of B). 

Using the notation introduced in Section 1 we have AvB = E{x\xeAoTxe B}, 
A n B = E{x | x e A and xeB}, A — B = E{x \ xe A, x $ B}, A -i- B = E{x | 
either xe A, x$ B or x$ A, xe B}. 

The difference A — B is often denoted by A \ B or A — B. Such a notation is 
useful in considerations involving algebraical operations; since they do not occur 
too often in this book, we use mainly the symbol " —" for the difference of classes. 

R e m a r k . Since relations are classes, we may, of course, speak of the union, 
intersection, difference and symmetric difference of two relations (and similarly for 
three, four, etc. relations), as well as of the union and intersection of an indexed 
class of (comprisable) relations, etc. 
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Examples . (A) If there is given a quasi-order (i.e. a transitive relation, see 1 C.5) 
on a class A, then (see 1 C.6) the intersection of ] <-, b [ and ] a, [ is equal to ] a, b [ 
for any a e A, b e A. — (B) If g denotes the inclusion relation, i.e. if g = {X -*• Y | 

c Y}, then g n g - 1 is equal to the identity relation restricted to the class of all 
sets; if 9C is a class of sets, then gx u = 3C x 9C if and only if the class 9£ is 
monotone (see 3 B.1). — (C) If g is a relation, then g u g _ 1 is the "smallest sym-
metric relation containing g" (cf. 1 C.4, remark). 

2.2. Definition. We shall say that classes A and B are disjoint (or do not meet) 
if their intersection A n B is void; if classes A and B are not disjoint, we shall say that 
they meet or intersect. 

2.3. Theorem. Let A, B, C be classes. Then the following hold: 
(a) Au B = B u A, A n B = B n A. 
(b) A u (B u C) = (A u B) u C, A n (B n C) = (A n B) n C. 
(c) A n (B u C) = ( 4 n B) u (A n C), ^ u (B n C) = ( ^ u B) n (4 u C). 
(d) yl u /I = A n ^ = A. 
(e) A - (Bu C) = (A - B)n (A - C), A - (B nC) = (A - B)v (A - C). 
(f) A -i- B = B -i- A. 
(s) (A + B) + C = A -h (B + C). 
(h) An(B + C) = (AnB) -h (An C). 
The proof follows directly from the definitions of the set operations. 
The equalities in the above theorem will be used without reference, as well as some 

other basic facts which we do not mention explicitly (such as A = (A — B) u 
u (An B), A (= A u B etc.). 

As the union and the intersection are commutative and associative (as expressed 
by (a), (b) above), the following notation will be used, as usual. 

C o n v e n t i o n . If A, B, C are classes, then instead of A v (B u C) or (A v B) u C 
the symbol A u B u C is written, and similarly for A n B n C, A u B u C u D, 
A n B n C n D, etc. The class A u B u C is called the union of the classes A, B, C, 
etc. 

2.4. If g is a relation, A, B are classes, then g[A u B] = u g[B]; g[A n B] <= 
c g[A\ n i?[B], g[A\ — g[B] c g[A — B]; if g is a fibering relation (in particular, 
if g is one-to-one), then g\_A n B] = g[A\ n g[B], g[A\ — g[B] = g[A — B], 
If g, a are relations, then D(g u u) = Dg u Do, E(g u a) = Eg u Ea, D(g n a) cz 
c D j n Da, E(g n CT) c Eg n Ea. 

These equalities and inclusions, the proof of which is immediate, will be also used 
without reference. 

Remark . The equalities g[A n B] = n g[B], g [4 ] - g[B] = - B], 
D(g n o) = Dg n Do, E(g n cr) = Eg n E<j do not hold in general. 

We turn now the definition of the union and the intersection of an indexed class 
of sets. 
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2.5. Definition. Let SC = {Xx | a e A} be an indexed class of sets (this means that 
all Xa are sets). Then the class of all elements which belong to some Xa, that is the 
class E{x | x eXa for some a e A}, is called the union of the indexed class X and 
denoted by USC. The class of all elements which belong to each Xa, that is the class 
E{x | x e Xx for each a. e A), is called the intersection of the indexed class SC and is 
denoted by (\SC. 

2.6. Convention. Instead of \J{Xa \ ae A} or \JSC we often write \j Xa or 
OEA 

merely \JXa (sometimes even U-^i) if it is evident from the context which class of 
a 

indices is considered. We proceed similarly in more complicated cases. For example, 
instead of U{-̂ <«,i> | a£•/?}> where q is a relation, we write \j{Xx p | aq0\ or \JXx fi 

<*,/» aefi 
or (provided it is clear from the context that only a, ft satisfying agfi are considered) 
more briefly [JXaJ (or even \JXx J); instead of U{U | a e A} | /? e B} we 

write U{U or only (JU etc. Instead of the union of the indexed class 
ffsB aeA p a 

{Xa | a e A} we speak of the union of sets Xa where a runs through A. Analogous 
conventions also hold for intersections. 

Finally, we define the union and the intersection of a class of sets. 

2.7. Definition. If is a class of sets (that is, a class each element of which is 
a set), then the class of all x such that x e X for some l e y , is called the union 
of the class Sf and is denoted by (J£f. The class of all x such that x e X for each 
X e y is called the intersection of the class £f and is denoted by C)£f. 

If y is a class of sets, then, obviously, U & = UJ.f> f ) ^ = f)iy (by 1 B.4, 
example (A), denotes the indexed class [X | X e £f}); thus, definition 2.7 can be 
reduced to definition 2.5. Let us mention that there is no formal collision between 
the two definitions since (except for 0) no indexed class of sets is a class of sets (the 
elements of the former being pairs, those of the latter sets and hence not pairs). 

2.8. Remark. We observe that the method which can be used for obtaining defini-
tion 2.7 from 2.5 has a general character. It can be described as follows: if P is, 
for example, some property defined for indexed classes of sets, then we can also define 
the same property for classes of sets, namely in this way: a class A is said to 
possess a property P if and only if the indexed class {x x | x e 4̂}, that is }A, has 
the property P. 

2.9. Definition. An indexed class of sets {X a | a e A} is called disjoint if, for any 
a e A, b e A, a 4= b, the intersection Xa n Xb is void. A class of sets SC is called 
disjoint if the indexed class {Z | X e SC} is disjoint, i.e. if X n Y = 0 whenever 
X BSC, YeSC; X + Y. 

Remark. Observe that if an indexed class {X a | a e A} is disjoint, then the class 
E{X0 | a e A} of all Xa is disjoint; the converse assertion does not hold, of course. 
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Example. Let g be a relation such that all inverse fibres g 1[(x)] are sets. 
Then g is single-valued if and only if the indexed class {i?_1 [(*)]} is disjoint. 

2.10. Remark. Let A, B be sets. If a, /? are two different elements, and ^ is the 
relation which assigns A to a, B to /?, then SC is a family of sets, and, clearly, AKJ B = 
= U&, A n B = f)3> (in particular, we may put 3C = J(A,b))- Therefore it is not 
necessary to introduce the union or the intersection of two sets as a special notion; 
however, the union and the intersection of two classes (as introduced at the beginning 
of this section) cannot be expressed in this way. 

We now give a few examples concerning unions and intersections. — (A) If g is a 
relation such that every fibre g[(x)] is a set, then Eg = Ui?[(*)]• _ (B) If a is an 
order (see 1 C.5) on a non-void set A, then H{ J «-> * [ | * e A) = 0; f){ ] * ] 
| x e A} is void if A contains no "least" (relative to <r) element, and is equal to (a) 
if a is such an element. — (C) The intersection of the void class, i.e. f|0, is equal to 
the universal class. Indeed, by definition 2.7, (")0 consists of all elements x such that 
x e X for each X e f ) ; evidently, every x possesses the property that X e 0 => x e X, 
since the left-hand side of the implication never holds. 

2.11. Very often we can restrict our consideration to elements or subclasses, etc., 
of a fixed class E. With such cases in view, it is convenient to introduce some "relative" 
notions and notation. 

Convention. The complement of X relative to E (see 2.1) will sometimes be denot-
ed by X*, provided the class E is clear from the context. — Note that symbols like 
X* will also be used for various other purposes. 

Remark. The class V— X, where Fis the universal class, is sometimes called the 
"absolute complement" of X. 

Definition. If 9C = {Xa | a e A} is an indexed class of sets such that Xx <= E for 
each a e A, the class of all x e E such that xeX„ for each a e A is called the intersection 
of SC relative to E and is denoted by or 1 « e A} and so on. The relative 
intersection H e ^ of a class of sets is defined, of course, as Heiy- If it is clear from 
the context that only subclasses of a given E are considered, then we simply speak 
about the intersection (instead of the relative intersection), and write (\9C instead 
of 

Remarks. 1) Clearly, De0 = E whereas f)0 is the universal class. If considera-
tions are limited to subsets of a fixed E, then this is the only difference between f) and 
He- — 2) The reader will easily see ihat there is no reason to introduce the notion 
of a relative union. 

2.12. Theorem. Let A c E, B e E. Then 
(a) (A u B)* = A* n B*, (A n B)* = A* u B*. 
(b) (A*)* = A. 
(c) A — B = B* — A*. 
(d) A n E = A, A u E = E, A u A* = E, A n A* = 0. 
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The easy proof may be omitted. 
Remark . The above equalities (a) are called de Morgan's formulae (in a special 

form). 
We are now going to prove an assertion concerning the associativity and the com -

mutativity — in a very wide sense — of the union and intersection. First, however, 
we have to prove that the union of a family of sets is a set. 

2.13. Theorem. The union of a family (or of a collection) of sets is a set. 
Proof . Let {X a | a e A} be a family of sets. Put <a, x> e g if and only if a e A, 

xeXa. Then g[(a)] = Xtt is a set for every a e A. Thus, by 1 E.1(b), \JXa = g[A] 
is a set. a£A 

Remarks . 1) The intersection of a non-void class of sets is a set since f)Xa e Xa 
acA 

for each a e A. — 2) The union of a non-comprisable class of sets is non-comprisable, 
for we have, for any class of sets !%,!!£<=• exp \J!%\ hence if 9C is non-comprisable, 
then so is exp and therefore (J3C. 

2.14. Theorem. If {Xa | a e A}, {Ab \ b e B} are indexed classes of sets, A = \JAb, 
then U ( U x.) = u Xa, n ( n x.) = n Xms If {Xa\ ae A} is an indexed class 

bEB aeAb aeA beB aeAb aeA 
of sets, cp is a permuting relation on A, then (J Xva = U Xa, fi Xva = f ) Xa. 

aeA aeA aeA aeA 

Let us prove only the first assertion for U, the rest being similar or trivial. If x e U 
beB 

(U Xa), then, for some b e B, x e U Xa, hence xeXa for some a e Ab <= A, and thus 
aeAb aeAb 
x e [JXa. If x e U Xa, then xeXa for some aeA; since A = [J Ab, we have, for 

aeA aeA aeB 
some b e B, a e Ab and therefore x 6 U Aa. 

aeAb 

Remarks . 1) The above theorem can also be formulated as follows: If {Xa | a e A}> 
{Ab | beB} are indexed classes of sets, A = (J Ab, <p is a permuting relation on A. 

beB 
Ya = Xva, then U ( U 7a) = U Xa, and similarly for the intersection. - 2) We 

beB aeAb aeA 
defer to Section 5 the discussion of the mutual "distributivity" of the intersection 
and the union since the proof of a general theorem on this "distributivity" involves 
the Axiom of Choice (see Section 4). 

2.15. If g is a relation, then = U^IX,], and e[fl*a] c OlX]- -
This is clear. 

2.16. Theorem. Let E be a set. Let Xa <= E for each aeA. Then E - n£^a = 
= U(£ - Xa), or, in short, (fli^O* = U*a*; similarly, (U*a)* = PIe^-

These formulae are often called "de Morgan's formulae" (in the general form). 
We shall prove, for example, the first formula. Clearly, xeE — C\EXa, if and only 

if the following holds: xeE and it is not true that xeXa for every a; but this is 
equivalent to the assertion that, for some a, x e E — Xa which, of course, implies 
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and is implied by x e U(£ — X„). — Observe that for {Xa} = 0, the formulae in 
question reduce to 0 = 0, E = E. 

Definition 2.5 (respectively, 2.7) associates with every family or collection of sets 
their union. If we denote the relation {¿C (JOč} by U, then, for any collection A 
of families or collections of sets, we have U M = E{(J$f e A} (see 1 B.7); in 
a somewhat similar way, we may define A u [Stí], [si] u [38], etc. We define explicitly, 
beginning with the case of a set and a class of sets, and of two classes of sets. 

2.17. Definition. If A is a set, 38 a class of sets, then A u [38] (or [38] u A) denotes 
the class of all A u B, B e 38, and similarly for the intersection, A — [38] denotes 
the class of all A - B, B e 38, [38] - A that of all B - A, B e 38. If si, 38 are classes 
of sets, then [ s f \ u [3f] denotes the class of all A u B, [ s i ] n \Sf\ that of all A n B, 
and [ s i ] - [38] that of all A - B, where always Ae si, Be 38. 

Remarks. 1) Evidently, A u [38] = [ (4)] u etc. - 2) We must carefully 
distinguish between si u 38 and [si] u (and similarly for the intersection and 
the difference). If si, &b are classes of sets, then si yj 38 consists of all X e si and all 
Ye & whereas [ s i ] u \Sf] consists of all X u Y where X e si, Ye 3$. 

Examples. (A) If si, 38 are collections of sets, then [si] u [38] is also a col-
lection of sets (and similarly in the other cases considered) for, clearly, a = {(X, 7 ) -> 
- » X u Y j i s single-valued and [si] u [38] = <j[si x 38], - (B) If si consists of all 
singletons, then si u si = si whereas [si] u [si] consists of all singletons and all 
two-element sets. — (C) If A and B are disjoint classes, si = exp A, 38 = exp B, 
then [si] u [á?] is equal to exp (A u B) and, evidently, different from si u 38, 
provided neither A = 0 nor B = 0. — (D) If A is a set, is the class of all sets, then 
A u ] is the class of all sets X => A, and A n [iť] is equal to exp A. 

2.18. Definition. If A is a class of families (or of collections) of sets, then U[Al 
denotes the class E{U#" | 3C e A} and f | [ A ] denotes the class E{f |^ \ e A}. 

Example. If si is a class of sets, B is a set, then siB is the class of all families 
| b e B}, Xbe si, and \J[siB] is the class of all sets which may be expressed 

as the union of a family of sets from si, indexed by elements from B. 
Remark. Observe that special care is necessary when using the notation intro-

duced in 2.17 and 2.18. For instance, if si, 38 are collections of sets, then si u 38 
is a collection of sets, U [ ( s i , 38)], as defined above, is equal to (U-^, U&)> a n d 
distinct from [si] u [38]. 
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3. I N F I N I T E S E T S 

Infinite sets are one of the most fundamental objects and tools of modern mathe-
matics. The existence of infinite sets, however, is not yet guaranteed in our axiomatic 
construction; we have not even defined the notion of an infinite set. Let us remark 
that the axioms introduced so far do not at all guarantee the existence of non-void 
classes since they are certainly satisfied if there exist no elements at all and only one 
class, namely the void class. If we assume the existence of at least one element, then 
it can already be shown that there exist arbitrarily large finite (in the usual sense) 
sets, but the existence of infinite sets cannot be proved. 

We shall proceed in such a way that, after giving a definition of finite and infinite 
sets, we shall introduce an axiom (the so-called Axiom of Infinity) requiring the existence 
of infinite sets. From this axiom there will be deduced (theorem 3 C.2) the existence of 
a set endowed with a certain relation which has properties well known for natural 
numbers. This permits the proper introduction of natural numbers (see 3 D.1). We 
do not, of course, examine their properties in detail; after the introduction of natural 
numbers, only some fundamental definitions and theorems are given, and the arith-
metic of natural integers is assumed to be known in what follows. 

We are now going to introduce several notions and propositions which will be 
needed for the formulation of the Axiom of Infinity; we shall discuss them here in 
rather general terms, having in view their application in later sections. 

A. E Q U I P O L L E N T C L A S S E S 

3 A.l . Definition. We shall say that a class A is equipollent with a class B if there 
exists a relation / bijective for A and B (i.e. a one-to-one relation / with domain A 
and range B). 

E x a m p l e s . (A) Any two one-point sets are equipollent; any two two-point 
sets are equipollent, etc. — (B) The set of all natural numbers is equipollent with the 
set of all even natural numbers (e.g. the relation {n 2n} is bijective for these sets). — 
(C) The universal class is equipollent with the class of all singletons. 

3 A.2. Let A, B, C be any classes. Then 
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(a) A is equipollent with A; 
(b) if A is equipollent with B, then B is equipollent with A\ 
(c) if A is equipollent with B and B is equipollent with C, then A is equipollent 

with C. 
Proof, (a) The relation \A is bijective on A onto A. — (b) If A is equipollent with B, 

let / b e bijective for A and B; c learly, / - 1 is bijective for B and A. — (c) If A is equi-
pollent with B and B is equipollent with C, then there exists a relation / bijective 
for A and B and a relation g bijective for B and C; clearly, g o / is bijective for A 
and C. 

It follows from the above proposition that we can say that two classes A, B or three 
classes A, B, C are mutually equipollent. The following theorem is a self-evident 
consequence of 3 A.2. 

3 A.3. The relation {X -* X | X, Y are sets,X is equipollent with 7} is an equi-
valence on the class of all sets. 

3 A.4. A class equipollent with a set is a set. 
This follows at once from 1 E.4. 

3 A.5. Let Au A2, Bu B2 be any classes. Let At n A2 = 0, Bt n B2 = 0. Let At 

be equipollent with Bl and let A2 be equipollent with B2. Then u A2 is equi-
pollent with B1 u B2. 

Proof. Since A1 and Bu A2 and B2 are equipollent, there exist relations f l 3 f 2 

such that fi is bijective for A{ and Bu i = 1, 2. Clearly,/! u / 2 is a relation bijective 
for Ax u A2 and B1 u B2. 

We shall not need immediately the following two important propositions (the 
second of them follows at once from the first one), but it is suitable to introduce 
them at this place. 

3 A.6. Theorem. If A is a set and if cp is a single-valued relation for A and exp A 
(this means that D(p <z A, E(p c exp A), then E<p =(= exp A. 

Proof. Let B be the class of all x e A such that x $ cpx. Since B c. A and A is a set, 
B is a set too, hence B e exp A. It is sufficient to prove that B $ Ecp. Suppose that, 
on the contrary, BeEcp. Then there exists an element be A such that B = <pb. 
Now, by definition of B, we have x e B x $ cpx for any x e A; in particular, beBo 
o b $ cpb, which is a contradiction since <pb = B. 

3 A.7. Corollary. If X is a set, then X and exp X are not equipollent. 
Remarks. An example can be easily given where I is a proper class, cp is 

a single-valued relation on AT, E <p = exp X. It is sufficient e.g. to take for X the 
universal class and to put q>x = x if x is a set, cpx = 0 if x is an element but not 
a set. — It is obvious that every class X is equipollent with a subclass of exp-X" 
(consider the relation {x -> (x) | x e X}). 

We now proceed to define the notion of a finite class (it will turn out later that 
every finite class is a set). 
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The seemingly most simple procedure would be to define a finite set as a set which 
has a finite number (let us say n) of elements, i.e. as a set which (for a certain n) 
is equipollent with the set (1, 2, ..., n); but this would require among other things 
the introduction of natural numbers. 

Another possibility, for example, is to define finite sets, in a certain sense, induc-
tively, i.e. starting from one-element sets and adding further elements step by step 
(one element at each step); the appropriate definition would be worded something 
like this: Let us say that a class 3C of sets has the property F if (1) 0 e 9C, (2) if A e SC 
and a is an element, then A u (a) e 3C\ we shall call a set A "finite" if it belongs to 
each class which has the property F. 

This approach, however, will not be used in spite of the fact that it has several 
considerable advantages. In the axiomatic system presented here it will be more 
appropriate to use a somewhat less natural method, namely to define first the con-
cept of infinite classes by means of one of its characteristic properties. This property 
is that no finite class is equipollent with any of its proper subclasses, while on the 
other hand every infinite class X is equipollent with some subclass Y 4= X (i.e. there 
exists a bijective relation cp on X onto Y, Y <= X, Y 4= X); if X is e.g. the set of natural 
numbers, then we may put <p = { x - * x + l}. We shall take this property as a basis 
for the definition of infinite and finite classes. 

3 A.8. Definition. A class X will be called infinite if it is equipollent with a proper 
subclass. A class will be called finite if it is equipollent with no proper subclass. 

3 A.9. A subclass of a finite class is finite. 
Proof. Let Ybe finite, I c Y. Suppose that X is infinite and let us derive a contra-

diction. Since X is infinite, there exists a one-to-one relation cp such that D q> = X, 
Eq> <=. X, Ecp =|= X. Then the relation i// = <p u Jy_A is bijective for Y and Ecp u 
u ( 7 — X), and this last set is distinct from Y. Hence Yis infinite which is a contra-
diction. 

3 A.10. A class equipollent with a finite (infinite) class is finite (infinite). 
The simple proof is left to the reader. 
The following proposition is obvious. 

3 A.l l . The void class is finite. 

3 A.12. If the universal class V is not void (i.e. if elements do exist), then it is 
infinite. 

Proof. The relation / = {x (x)} is obviously one-to-one, D/ = V, E/ is the 
class of all singletons. If there exists an element a, then it is easily seen that exp (a) = 
= (0, (a)) is a two-element set, hence belongs to V but not to Ef. 

3 A.13. If A is a finite class and a is an element, then the class A u (a) is finite. 
Proof. If a e A, then the proposition is obvious. Let a $ A and suppose that 

A u (a) is infinite; it will be proved that then A is also infinite. Because A u (a) is 
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infinite, there exists a one-to-one relation / such that D/ = A u (a), E/ c A u (a), 
E/ 4= ,4 u (a). If a £ E/ or a = fa, then the restriction of / maps A onto a proper 
subclass, hence A is infinite. Therefore let fa = c, a = fb where b e A, c e A. Let us 
define a single-valued relation / ' whose domain is A thus: f x = fx for x e A — (b), 
f b = c. T h e n / ' i s obviously one-to-one, E/ ' cz A Since E/ = E f u (a), E / 4= 4 u 
u (a), we have Eif 4= A. Consequently A is an infinite class. 

R e m a r k . From the above propositions it follows that sets "finite" in the sense 
mentioned in the remarks preceding the definition 3 A.8 are finite in the sense of our 
definition. We shall return to further propositions concerning finite classes later. 

B. M O N O T O N E C L A S S E S 

It is now possible to state the basic axiom postulating the existence of infinite 
sets. First, however, we shall prove two propositions which are not yet based on the 
axiom of infinity but will be needed for deriving the consequences of this axiom. 
These propositions will prepare the way for the proof of the existence of a set which 
will "essentially" be the set of natural numbers. 

Now the procedure leading to the introduction of natural numbers will be more 
fully described. First it will be proved (Theorem 3 B.4) that, given any non-void 
class of sets sd and a single-valued relation (p on si into si such that always <pX cz X, 
the class si contains, as a subclass, a collection (i.e. a set of sets) 3b which together 
with the relation (p (or rather its restriction to 38) already satisfies, in a certain sense, 
the principle of mathematical induction; namely it contains a certain given set A 
and together with X always contains q>X as well, and at the same time it is (for given A) 
the minimal system with these properties. 

Then (theorem 3 B.5) it will be proved that, whenever any system 38 of sets together 
with a single-valued relation <p on 38 satisfy (in the above sense) the principle of 
mathematical induction, then the system 3$ has even further important properties: 
in particular, it is "well-ordered" by means of inverse inclusion, and every X e & 
is either "immediately followed" by <pX or is "the last element" (i.e. the smallest 
set) in 38. Such a system 38 consists, roughly speaking, of sets A, (pA, q>((pA), ..., 
and is either finite or infinite according to whether there does or does not exist 
the "last" element. From an intuitive point of view, 38 is, essentially, either the set 
of all natural numbers or the set (0, 1, ..., n) where n is a natural number (note that 
zero is taken to be a natural number); the set A has the role of zero, cp the role of the 
relation of succeeding, the inverse inclusion => that of the order ^ . 

We must, of course, first ascertain that such a collection ¿¡8 exists, more precisely 
that there exist 3$, A and (p with the properties mentioned. An axiom requiring the 
existence of a non-void class (and hence also the existence of sets) would be sufficient 
for this purpose. 
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Even under this assumption, however, the possibility that each collection 38 is 
finite cannot be excluded before the introduction of the axiom of infinity. It is only 
this axiom which ascertains the existence of such 38, A and <p that there is no smallest 
set in 38, and thus makes it possible to prove the existence of a set which is "essentially" 
the set of all natural numbers. This is carried out in theorem 3 C.2. 

It is clear that the set 3$ from theorem 3 C.2 satisfies the so-called Peano's axioms 
which are usually taken as a basis for the theory of natural numbers. In theorem 
3 C.5 it will then be proved (without using the Axiom of Infinity) that the set 38 from 
3 C.2 is uniquely determined "up to an isomorphism". Roughly speaking, any such 
set can therefore be chosen to serve as the set of natural numbers. 

The choice of one of such sets will be performed formally by introducing natural 
numbers axiomatically; this means that "the set of natural numbers" N, "zero" 0 
and "the successor relation" s will be undefined objects, satisfying Peano's axioms. 
Theorem 3 C.2 guarantees that such N, 0 and s indeed exist; in a more sophisticated 
way it can be said that we have constructed a model for Peano's axioms in the frame-
work of the theory of sets and proved that they are not in contradiction with the 
axioms of this theory. 

The theory of natural numbers is, of course, not built up in this book in the sense 
that known properties of natural numbers are derived from the axioms for natural 
numbers; immediately after the introduction of natural numbers and the statement 
of some basic definitions the elementary arithmetic of natural numbers will be as-
sumed to be known. Let us again remark for completeness that integers and rational 
numbers will be introduced in Section 8, and real numbers in Section 10. 

We shall now proceed to the implementation of the indicated procedure by introduc-
ing two important definitions (which in this place have a rather auxiliary character). 

3 B.l. Definition. Let be a class of sets. It will be said that 9C is monotone if for 
a n y AB3C,BB3C e i t h e r A = B o r A <=. B. 

At this stage, besides trivial examples such as the system of sets 0, (a), (a, b), only 
illustrative ones (using notions to be introduced later) can be given, for instance the 
collection of all intervals [ 0, x ] of the set of reals. 

3 B.2. Definition. Let J be a class of sets. It will be said that M is the largest 
(smallest) set in SC if M e 3C and X c M (respectively, X => M) for every X e SC. 

Remark . If there exists, in a class of sets, a largest set, then it is obviously uniquely 
determined, i.e. each class of sets has at most one largest set. Similarly for the smallest 
set. 

Examples . (A) If X is a set, then X is the largest and 0 is the smallest set in 
exp X. — (B) If A is an infinite set, then the system of all finite sets X c A contains 
no largest set. — (C) If Q is a comprisable relation, then there exists the smallest 
set in the class of all (comprisable) transitive relations a with <r => g. 

The following concept will not be used in this section, but it is closely related to, 
though substantially different from, the notion of the largest (smallest) set. 

4 — Topological Spaces 
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3B.3. Definition. Let 3C be a class of sets. We shall say that M e i is maximal 
(minimal) in 3C if there is no M1 e3C with M1 M, =t= M (respectively, with 
M t c M , M , + M). 

Examples. (A) In a class of singletons, every set is maximal and minimal, and 
similarly for any disjoint class of non-void sets. — (B) If A is an infinite set, then 
the system of all finite subsets contains no maximal set. 

Remarks. 1) Clearly, if M is the largest (smallest) set in a class then M is 
a maximal (minimal) set. — 2) As we have seen, there may exist many maximal 
(minimal) sets in a class of sets. The largest set is always the only maximal one; 
on the other hand, if there exists exactly one maximal set, it may happen that there 
is no largest set. — 3) In a monotone class, the concepts of the largest (smallest) 
set and a maximal (minimal) set coincide. 

Now we shall proceed to the theorems discussed above. 

3 B.4. Theorem. Let si be a non-void class of sets. Let A e si, let cp be a single-
valued relation with domain si ranging in si, and let (pX c X for each Xesi. 
Then there exists exactly one class 38 of sets such that 

(a0) A e 38, (a t) X e 38 => <pX e 38\ 
(b) If % c 38, A e if and <pXe^ whenever XeV, then <€ = 38. 
This class 38 is a collection and A is the largest set in 38. 
Proof. If will be said that a class 3C <= tf has property S if (l) A e3C, (2) X e 

e 3C => cpX e 9C. Let 38 be the class of all Z e si which belong to each class that has 
property S. It is obvious that 38 has property S and therefore properties (a0), (ax). 
If ^ c si contains A and satisfies the condition I e ^ = > cpX e then # has pro-
perty S and therefore necessarily # => 38. If, moreover, even <= 38, then # = 38. 
Consequently 38 also has property (b). 

It will now be shown that there exists exactly one such class 38. If 38' is another 
class satisfying conditions (a0), ( a j , (b), then obviously the class 38 n 38' also has 
properties (a0), (at); of course, 38 n 38' <=• 38, 38 n c 38', so that according to 
(b) it follows that on the one hand 38 n 38' = 38, on the other hand 38 n 38' = 38', 
so that 38 = 38'. 

Now it only remains to show that 38 is a set, and therefore a collection of sets, and 
that A is the largest s;t in 38. If r€ denotes the class of all sets X € 38 such that X <= A, 
then it follows from property (b) that % = 38. Therefore X c A for each Xe38, 
so that 38 <=. exp A. As A is a set, 38 is also a set. 

3 B.5. Theorem. Let 38 be a collection of sets, let A be a set and let <p be a single-
valued relation with domain 38 such that X e 38 => cpX <=. X. Let conditions (a0), 
(ax), (b) from theorem 3 B.4 be satisfied. Then 

(m) If X e 38, Ye 38, then either X = Y or X <= <pYor Y <=. <pX (in particular, 
the collection 38 is monotone); 

(w) If c. =(= 0, then contains the largest set; 
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(o) the relation of the inverse inclusion on 38, i.e. the relation {X Y\Xe38, 
Ye 38, X => 7} is the smallest transitive reflexive relation on 38 containing (as 
a subset) the relation <p; 

(s) if X e 38, then X => <pX, X 4= (pX except if X is the smallest set in 38; 
if XE38, Ye 38, X => Y, X 4= Y, then (pX => <pY, <pX 4= (pY except in the case when 
<pX = Y and Y is the smallest set in 38. 

P r o o f . I. First we shall prove assertion (m). Let us introduce this notation: 
if X e 38, YE 38, then XQY means that either X cz Y or (pX => Y. It will be proved 
that 

(*) if XQY, YQX, then XG((pY). 
Indeed, let XQY, YQX. If <pX => (pY, then obviously Xg(<pY). If not, then neither 

X = Y, nor (since (pY cz 7) q>X ZD Y, so that in view of XQY we have X c Y, X 4= Y, 
hence Y <= X does not hold. This, together with YQX, implies <pY z> X, hence 
XQ(<PY). 

Now let 35' be the class of all Ye 38 such that XQY for any X e 38. Moreover let 
38" be the class of all Z e 38 such that YQZ for any Ye 38'. It will be shown that 38' = 
= 38" = 38. By 3B.4, I c 4 for any X e 38, therefore also XQA for any 
X e 38. It follows that A e 38', A e 38". If Ye 38', Z e 38", then by the definition 
of 38' we have ZQY and by the definition of 38" we have YQZ; thus according 
to (*), Yg((pZ). It follows that Z e 38" => q>Z e 38". In view of condition (b) (where 
38" is taken for we have therefore 38" = 38. Now, for arbitrary ZE38, YE 38' 
we have (since Z e 38 = 38") ZQY and YQZ from which, by assertion (*), it follows 
that ZQ((pY). This means that Ye 38' => (pYE 38'. In view of (b) we obtain 38' = 38. 
Therefore, for any XE38, Ye 38 we have XQY, i.e. either X cz Yor. (pX ZD Y. (This 
already implies that 38 is monotone, because X => Y whenever (pX z> 7.) 

To conclude the proof of the assertion (m), suppose that X e 38, Ye 38, X 4= 7 
and 7 c cpX does not hold. Then necessarily X cz Y, but not 7 <= X. Since we have 
just proved (with X, 7 interchanged) that either 7 c X or <pY -•> X, we obtain 
X cz q> Y. 

II. Next we shall prove that (w) holds. Let Jl be the class of all Ye 38 that have 
this property: if 3C <= 38 and there exists l e i such that X => Y, then 9C contains 
the largest set. We shall show that Jl = 38. As A => 7 for each Ye 38 it is evident 
that A e Jl. Let Ye J{; we are going to prove that (pYe Jl. Let ¡X cz 38 and suppose 
that there exist X e3C such that X ZD q>Y. If there exists even a set ZeSC such that 
Z => 7, then 3C surely has the largest set because Ye Jl. On the other hand, if 7 cz Z 
for no Z c f , then according to part I of the proof we must have cpY => Z for each 
Z e 3C, thus, in particular, X cz cpY, hence X = (pY.lt follows that X = q>Yis the largest 
set in 9C. We have proved that YeJ( => <pYeJt. Hence indeed Jl = 38. 

Let now ^ <= 38, + 0. Then there exists a C e <€. Of course we have CeJl = 38. 
As # cz 38 and there is a set (namely C itself) in ^ containing C, there exists the 
largest set in c6. 

4* 
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III. In order to prove (o) we have to show that if g is a transitive reflexive relation 
with Dg = 38 (hence Eg = 38) and (X, <pX} e g for each X e 38, then X => Y=> 
=> <X, Y> eg for each Xe 38, Ye 33. Let ®J be the system of all Ye38 such that 
X => y => <X, Yy eg for each Xe38; we have to prove that = 38. As X c A 
for each X e 38 we have X => A => X = A; as g is reflexive we have (A, A} e g. 
Hence Ae<&. We shall show that Ye<& => (pYe<&. Let Ye<& and let X => cpY. 
If X = q>Y, then of course <X, cpY) = (X, X} e g. Therefore let X => <pY, X 4= q>Y; 
then it cannot happen that X a <pY, so that by (m) either X = Y or Y <= cpX and 
hence in any caseX => Y. As Ye<2/ we have (X, Y) e g; further we have <y, <pY} e g 
and because g is transitive we again have <X, cpY) e g. Consequently, in any case 
X => (pY=> (X, cpY} eg, so that (pYe®. Indeed, by property (b) <& = 38. 

IV. Suppose that X0 e 38, (pX0 = X0. Put = E{X | X e 38, X = X0}. Clearly, 
A e <8. If X e <6, then X => X0; by (m) either X = X0 or X <= cpX0 = X0 or X0 c 
c cpX. In the first two cases, we get X = X0, hence cpX = cpX0 = X0 and therefore 
<pX => X0, in the third case, cpX => X0 also. Thus X e => cpX e ^ from which 

= 38 follows. Hence X 3 X0 for every X e 38. — The proof of the second asser-
tion in (s) follows directly from (m) using the first one, and may be left to the reader. 

Remark . Let us notice that, as we have shown in part III of the foregoing proof, 
for any X e 38, Ye 38 we have X => cpY, X 4= (pY=>X =) Y. This of course means 
that, for arbitrary Ye 38, there exists no Z e 38 with Y 4= Z 4= cpY, Y => Z => cpY. 
If X e 38, X # cpX (i.e. i f X is not the smallest set in 38), then <pX is the largest set 
in the collection oi Z e 38 such that Z c X, Z 4= X; hence cpX "follows X im-
mediately" in the ordering of the set 38 by inverse inclusion. 

C. A X I O M O F I N F I N I T Y 

We are now going to introduce the Axiom of Infinity; its meaning has already 
been explained in this section. 

3 C.l. Axiom of Infinity. There exists an infinite set. 

3 C.l. Theorem. There exists a collection of sets 38, a set A, and a single-valued 
relation a with domain 38 such that 

(a0) A e 38\ (a t) X e 38 => <JX e 38\ 
(b) If % c 38, Ae<€ and X e <6 => aX e <€, then <€ = 38 \ 
(c0) if X e 38, then aX =1= A; (c t) if X e 38, Ye 38, X ± Y, then oX * <x Y; 
(d) if Xe@, then aX <= X, aX 4= X. 
Such a collection 38 is infinite. 

Proo f . Let A be an infinite set. According to Definition 3 A.8, there exists 
a one-to-one relation ty with the domain A such that Ei// cz A, Ei¡/ = *I/[A] 4= A. 
Let us put si = exp A; for X e si (i.e. for X (= A) let us put (pX = "/'[^J if [̂-X ]̂ <= 
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<= X and (pX = 0 in the remaining cases. Then the assumptions of theorem 3 B.4 
are satisfied, so that there exists a collection 38 c stf with properties (a0), (a t), (b) 
indicated in 3 B.4. Now, let <6 be the collection of all those X e 38 for which 
ip[X~\ <= X. Obviously A e V. If YeV, then <pY = i c Y, hence 
e <A[Y] = (pY; therefore we have Yet? => cpYec€. By property (b) from 3 B.4 
it follows that <€ = @ and hence ij/[X~\ c X for each X e38. 

Now, let <j denote the restriction of the relation (p to 38; it is clear that 38 and a 
satisfy the assumption from 3 B.5. If we prove that there is no smallest set in 38, 
then assertions (a0) — (d) of the present theorem will follow from 3 B.5. 

Let be the set of those X e 38 for which aX 4= X; we have to prove that <€ = 
= 38. Because ^[A] 4= A we have A e <€. Further, {X is a one-to-one 
relation. If we had ^[^[Xj] = ^[X], then we would also have ^[X] = X, from 
which it would follow that <pX 4= X => cp((pX) 4= <pX, hence that X e => <pX e 
By property (b) in Theorem 3 B.4 indeed # = 38. 

Finally, the collection 38 is an infinite set because a is a one-to-one relation and 
Da = 38 but Ec 4=38 because A $ Ea. 

3 C.3. R e m a r k . As noted previously in this section, the system 38 in theorem 
3 C.2, from an intuitive point of view, is "essentially" the set of natural numbers. 

The natural numbers are frequently characterized by means of Peano's axioms; 
the basic notions are: a set N ("the set of natural numbers"), an element 0 ("number 
zero"), and a single-valued relation s, the so-called "relation of following" or the 
"successor relation" (sx is "the number following x"); the axioms are usually given 
in various equivalent formulations closely resembling conditions (a), (b), (c), (d) 
from 3 C.2. We shall choose one of these formulations and introduce, for brevity, 
the following 

3 C.4. C o n v e n t i o n . If N is a set, 0 is an element, s is a single-valued relation 
with domain N and 

(a0) OeJV; ( a ^ x e N=>sxe7V; 
(b) if for any set M c J V we have 0 e M and x e M => sx e M, then M = N; 
(c0) sx = 0 for no xeN; (c t) for x e TV, ysN, x 4= y we have sx 4= 
then we shall say that Peano's axioms are satisfied by N, 0, s (more precisely, by 

the triple <N, 0, s>). 
The main meaning of theorem 3 C.2 lies in asserting that there exist 38, A, a 

satisfying Peano's axioms; moreover, ^ is a collection of sets, A is a set, and the 
relation a has some special features, namely aX <=• X holds for every X e 38 (this 
is not implied by Peano's axioms), and the smallest order containing a coincides 
with the relation of inverse inclusion. This situation offers certain advantages, for 
simultaneously with the construction of a set which is essentially the set of natural 
numbers, its "natural" order is obtained. 

Let us remark in addition that it would not, of course, be sufficient to replace, 
in Peano's axioms, axiom ( c j by the axiom xeN =>sx 4= x which would cor-
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respond to the property aX 4= X from 3 C.2; such a weakened system of axioms 
is satisfied e.g. by putting N = (0, 1, 2), sO = 1, si = 2, s2 = 1. On the other hand, 
it is, of course, possible to derive the property x e N => sx 4= x from Peano's axioms. 
The proof may bs left to the reader. 

We shall now show that any two triples 0 t , s ^ , <N2, 02, s2> satisfying 
Peano's axioms are "isomorphic" in a sense described below. 

We are emphasizing that although the axiom of infinity is necessary to the proof 
of the existence of a set satisfying Peano's axioms, in the proof of theorem 3 C.5 
below, i.e. of the assertion that any two such sets (if they exist) are "isomorphic", 
no use is made of the axiom of infinity. 

3 C.5. Theorem. Let Peano's axioms be satisfied by N1} 01; sx as well as by N2, 
02 , s2. Then there exists exactly one bijective relation f for N1 and N2 such that 
/0 i = O2 and f o sl = s2 of (i.e. f(six) = s2(fx) for every x e Nj). 

Proof. Let us say that a set F <= x N2 has property S if <01; 02> e F and 
<x, ji) e f => s2y> e F. Let / be the class of all those <x, y} e N t x N2 

which belong to each set F c Nt x N2 which has property S (i.e. / is the intersection 
of the collection of all sets F which have property S). We shall prove that the relation / 
has the needed properties. It is obvious that / has property S, i.e. <0l5 02> e / and 
<x, y} e f => (stx, s2y> e f . Hence e D/; if x e D/, then for a suitable 
y> y} e/> therefore <5^, s2y> e / so that s t x e D/; it follows by property (b) 
in 3 C.4 that D/ = Nt. Similarly it may be shown that Ef = N2. 

Now we shall prove that / is a single-valued relation. Let us denote by M the set of 
all x e such that <x, y> e f , <x, / > ef => y = we shall show that M = N 
Suppose that 0 M (and let us derive a contradiction); then there exists z e N2, 
z 4= 02 such that <0ls z ) e f . Let us consider the set / ' = / — (<0!, z>). This set has 
property S. Indeed, it is obvious that <01; 02> e / ' ; furthermore, if <x, Y) e / ' , then 
<s1x,s2y> ef and because, by property (c0), we have s t x 4= 01( we also have <stx, s2y}e 
e f . This is a contradiction because <0!, z} ef and therefore <01; z ) must belong 
to every set with property S. Hence we have ascertained that 0 x e M. Now, let 
x e M; we want to prove that sxx e M. Suppose that, on the contrary, SjX ^ M. 
Let yeN2 be such that <x, y} e / ; let z e N2, <sxx, z> e f , z 4= s2y (the existence 
of such a z follows from the assumption s,x $ M). Let us put/" = / — ( < S J X , z>); we 
assert that/" has property S. According to (c0),s xx we have s ^ + 0 t and therefore 
<0l5 02> e/". Further <u, v) e / " => (sLu, s2v) e /"; indeed, should it happen that 
<u, u> e/", ( s ^ , s2v> then in view of (s tu, s2v) e / we should have (stu, s2v> = 
= ( s ^ , z), hence stu = s tx, s2v = z. According to the property (ct) it would 
follow that u = x and therefore (since x e M) also v = y; hence z = s2y which 
constitutes a contradiction. We obtain M = so that / is single-valued. The reader 
will easily see that quite similarly/ - 1 = 1 is also single-valued. 

Now, let x e N j . Because D/ = Nu there exists a y such that <x, y> e f . Since / 
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has property S, we have <SiX, s2y> e / . Since / is one-to-one, we can write y = fx, 
Siy = /(si*); hence s2(fx) = / ( s^ ) . 

Now suppose that g is bijective for Ni and N2, gOt = 02 and g o = s2 o g. 
Then <0!, 0 2 ) e g; if y = gx, then, as a consequence of g ^ x ) = s2(gx), <s1x, s2y) = 
= <S!X, g(six)> e g. Thus g has property S, hence f <=• g which implies, g being 
single-valued, / = g. 

3 C.6. If JVl5 01; sx satisfy Peano's axioms, then the smallest reflexive transitive 
relation containing sx (cf . 1 C.4) is an order (see 1 C.5). Moreover, if N2, 02, s2 

satisfy Peano's axioms and f is a bijective relation for and N2 satisfying the 
conditions from 3 C.5, then, for any xeiVj, yeNu <x, y> e t1 if and only if 
( f x , f y } e t 2 where is the smallest reflexive transitive relation containing st. 

Proof. It is convenient to prove the second assertion first. Denote by ii the set 
of all <x, y} eNx x such that </x, /y> e t2. It is easy to see that is a reflexive 
transitive relation, t\ => (since < / x , / ( s ^ ) ) = </x, s2(/x)>). From this it follows 
that ii => thus <x, e </x, /y> e t2. The proof that <Jx,fy> et2=> <x, y ) e 
e is quite analogous. — To prove that tL is an order, consider 88, A and a indicated 
in 3 C.2. Then, using assertion (o) from 3 B.5 and the assertion just proved, and denot-
ing by / the "isomorphism" relation for N1 and ¿8, we get that, for any x e Nt, 
y e Nx, <x, y} e tx if and only if fx => f y . This proves that tt is an order (for if 
<x, y> e tu <y, x> e tu then fx => f y , f y <= fx, hence fx = f y , x = y). 

Remark. Before passing to natural numbers we point out that if TV, 0, s satisfy 
Peano's axioms, then every x e N , except 0, is a successor; or, more precisely, s[N] = 
= N — (0). This follows at once from property (b) if we take as M the set consisting 
of 0 and all sx. 

D. NATURAL N U M B E R S 

We have proved in the preceding theorems that there exists an "essentially unique" 
triple <iV, 0, s> satisfying Peano's axioms. Natural numbers are essentially determ-
ined by these conditions and the only question is to fix in some way one such triple. 
It would be possible to exhibit it effectively, in a sense. It is, for example, possible 
to state precisely and to prove a proposition which — roughly speaking — asserts 
that the set N of all elements 0, (0), ((0)), . •., the element 0 and relation {x (x) | 
| x e i V } satisfy Peano's axioms; we would, therefore, declare as natural numbers 
the elements 0, (0), ((0)),..., which would be, of course, denoted 0, 1, 2, . . . . We shall 
use another procedure which in a certain sense better expresses the fact that for our 
purpose the only things that matter are the mutual relations between natural num-
bers and not the nature of these numbers as individual elements; for we shall choose 
the triple <N, 0, s) "fixed but arbitrary". This can be performed conveniently 
in such a way that we shall state properties known from Peano's axioms as axioms 
for certain three fixed elements denoted N, 0,..s. 
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3 D.l. Defining axioms for natural numbers. 

(0) N is a set, 0 is an element, s is a single-valued relation with domain N; 
(a0) 0 e N; (a t) if x e N, then sx e N; 
(b) i / M c N , OEM, and x e M => sx e M, then M = N; 
(c0) x e N => sx 4= 0; ( c j if x e N, y e N, x 4= y, then sx 4= sy. 
Every x e N will be called a natural number and N will be called the set of natural 

numbers, s will be called the relation of following or the successor relation for 
natural numbers; if x e N, then sx will be called the successor of the number x. 

C o n v e n t i o n . We shall denote sn also by n + 1 (see also 3 E.1, remark). 
R e m a r k . We observe once more that, by the procedure we have chosen, N (i.e. 

the set of natural numbers) is uniquely determined; it is a certain fixed set about 
whose properties we are, however, unable to say more then what follows from the 
axioms. 

We shall now define the ordering for natural numbers using proposition 3 C.6 
which means, essentially, that the ordering from the set "model" 38, constructed 
in theorem 3 C.2, is "transferred" to natural numbers. 

3 D.2. Definition. The smallest reflexive transitive relation in N containing s 
(which is an order by 3 C.6) will be called the natural order on N. If <x, y> belongs 
to this natural order, then we shall say that x is not greater than y (in symbols, x ^ y). 
Instead of x ^ y, x 4= y, we write x < y. Other well known symbols and expressions 
such as x ^ y, x > y, x is greater than y, etc., are defined in the familiar way. 

R e m a r k . The following statements follow at once from theorems contained in the 
preceding subsection: if x e N, y e N, then either x < y o r x = y o r x > y ; 0 ^ x 
for every x e N; if M c N, M 4= 0, then there exists a (unique) ae M such that 
a ^ x for every x e M; if x < y, then sx < sj>. 

3 D.3. Definition. If p e N, then the set of all natural numbers less then p will 
be denoted by Np. Each family whose domain is N will be called a sequence (infinite), 
and each family whose domain (the set of indices) is, for a suitable natural p, equal 
to Np, will be called a finite sequence (of length p). 

An infinite sequence {'ak | k e N} is often written as {at}™=0. For a finite sequence 
{afc | ke N p + 1 } the symbol {ajJ£=0 is frequently used and, sometimes, if a0, ..., ap 

are actually given, also the symbol {a0, ..., ap}.Thus, e.g. {a} = (<0, a}), {a, b} = 
= « 0 , a ) , <s0, b}). 

3 D.4. If A is class, p a natural number, then the class of all finite sequences 
of length p, whose members belong to A, will be frequently denoted by Ap (instead 
of the symbol >4N,> as introduced in 1 E.8). 

We have, of course, A0 = (0). The set of all (infinite) sequences with values in A 
is denoted, of course, by according to 1 E.8. 

R e m a r k . We shall occasionally use the symbol Ap, where A is a class, p e N, 
to denote a class Ap where P is a set equipollent with Np. 
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3 D.5. As is well-known, in the whole of mathematics a very important part is 
played by the so-called principle of mathematical induction which is usually formul-
ated something like this: 

(*) Let P be a property. Suppose that 0 has property P, and that for each 
n e N the following holds: if n has property P, then the successor sn of the number n 
also has property P. Then every n e N has property P. 

(If, as usual, we write P(n) to express that n has property P, then this assertion 
may be written briefly as follows: if P(0) and, for any n e N, P(n) implies P(sn), then 
P(n) for every n e N.) 

The formulation (#) belongs rather to logic since, as it stands, it bears on a variable 
(indefinite) property. A mathematical expression of the principle of mathematical 
induction can be stated thus: 

(**) Let M c N be a set, let 0 e M, and let n e M ^ s n e M for any n e N. 
Then M = N. 

This is, however, our axiom (b) for natural numbers; it is also evident that the 
formulations (*), (**) are equivalent. Therefore, we shall also use the principle of 
mathematical induction in the form (*). 

R e m a r k . We can, of course, state the principle of mathematical induction for 
the sets Np, for instance thus: Let 0 have the property P and for n e Np let the fol-
lowing hold: if n has the property P, then sn has the property P; then each n e Np + 1 

has the property P. — We omit the proof which can be performed e.g. by means of 
property P' defined as follows: n e N has property P' if and only if either n e N p + 1 

and n has property P, or n £ N p + 1 . 
Let us now proceed to the so-called principle of construction by mathematical 

induction or, more precisely, to the principle of recursive construction. We shall state 
(and prove) here only one theorem (and its corollary) connected with this principle. 
For a further theorem based on the Axiom of Choice see Section 4. 

Intuitively, the question is this: there are given an element aQ and a rule by means 
of which an+1 is uniquely determined whenever a0, au ..., an are known; it is asserted 
that this so-called recursive rule uniquely determines an infinite sequence a0 , au a2, 

3 D.6. Theorem. Let Abe a class. Let cp be a single-valued relation with E<p c A, 
and for each ne N let A" c Dep. Then there exists exactly one sequence {a„ | n e N} 
such that, for every natural n, a„ = (p{ak \ k e N„}. 

P r o o f . Let us denote by SP the class of all finite sequences {ak \ Ice Np} with 
values in A and such that ak = (p{at | i e N t} for k e Np. In the first place we shall prove 
that Tp = Sf n ^4pis a singleton for each p e N . Suppose that, on the contrary, the set 
of those pe N which do not possess this property, is non-void; let h be its least element. 
Surely h = 0 is false because evidently S? n A0 = (0). Then there exists (see 3 C.6, 
remark), an element j e N such that h = s j . Then T} is a singleton. Let {bt \ ie N,} e 
e Tj. Let us put bj = cp{bi | i e N^}; then obviously {bf | i e N,,} e SP, hence SP n 
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n Ah 4= 0. Let also {c; | i e NA} e ST. Then obviously fi = | i e Ny} e^, y = 
= {cj | i e Nj} e y and = cpfi, Cj = (py. Since 7} is, by our assumption, a single-
ton, we have ft = y, hence bj = Cj. This is a contradiction. 

We have proved that, for each p e N , Tp is a singleton. Put Tp = (ap), 
ap = {aPtk \ k e Np}. Now, let p e N, q e N, p ^ q. We have Tq = | k e N j ) . 
By the definition of £P we have, obviously, {a9>fc | k e Np} e Tp; because Tp is a one-
element set, we have, therefore, {aqJi | k e Np} = [apk \ k e Np}, so that ap c aq. 
Hence for any k < p, k < q, aPik = aQik holds. 

For any n e N let us now put an = a n + l n. In view of what we have just proved 
we also have a„ = aqi„ for any q > n. For each n e N we have, therefore, {ak | k e 
e N„} e T„, since ak = ak+ltk = a„ k for each k e N„. By the definition of £P we have, 
therefore, a„ = (p{ak | k e N„} for each n e N. 

It remains to show that if [bn | n e N} is any sequence such that b„ = (p{bk | k e N„} 
for each n, then an = b„ for all n e N. Let such a sequence be given. Then 
{bk | k e N„} e T„ for each n £ N. Since [ak | k £ N„} £ Tn and Tn is a singleton, we 
have ak = bk for each k £ N„; because this holds for each n e N, the proof is finished. 

3 D.7. Corollary. Let A be a class. Let aeA. Let <p be a single-valued relation 
on A into A. Then there exists exactly one sequence {ak | k e N} such that a0 = a 
and an+1 = q>a„ for n e N. 

For the proof it is sufficient to put <p*{ak \ k e Nn + 1} = cpan for {ak | k e N„+1} s 
e An+1, (p*<D = a and to use the preceding theorem on the relation cp*. 

Example. Let fc # 0 be a given natural number. Let the set A consist of all pairs 
of the form <n, p> where n e N, p £ (0,1). Let i¡/l = 0, il/0 = 1. Let us define on A 
a single-valued relation (p thus: q>(n, p> = <sn, p> in the case sn 4= k, <p(n, p) = 
= <sn, \j/p)> in the case sn = k. Then according to the above corollary there exists 
a sequence {a( | i e N} such that a0 = <0, 1>, an + 1 = cpa„. If we put ngk if and only 
if a„ has 1 as its second member, then Q = {n k | n < k}. 

E. OPERATIONS O N N A T U R A L N U M B E R S 

We have introduced the natural numbers in an exact way but we have not yet 
defined the basic operations with these numbers — addition, multiplication, etc. 
A systematic development of the theory of natural numbers would not suit the charac-
ter of this book and would considerably lengthen our exposition. Therefore we shall 
only indicate how addition, multiplication and powers can be introduced; the proofs 
of the theorems on which this introduction is based will not be carried out, and 
we shall indicate the proof in the case of addition only as an example. All current 
concepts and theorems of the arithmetic of the natural numbers will be assumed 
to be known. 
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3 E. l . Theorem and definition. There exists exactly one single-valued relation 
on N x N with range in N such that if we denote by x + y the element assigned 
by this relation to <x, then we have, for any m, ne N, 

(1) m + 0 = m; 
(2) m + sn = s (m + n). 

This relation will be called addition ( f o r natural numbers) and it will be said that 
x + y is the sum of the numbers x and y. 

We shall briefly indicate the proof of this theorem. In the first place let us choose 
a fixed m £ N. According to 3 D.7 there exists exactly one sequence Am = 
= {am,k | k e N} such that amfi = m, ami5„ = sam>„. Let us put m + n = am>„. 
If, furthermore, m e N, n e N are arbitrary, then we put again m + n = amn where 
am n belongs to a uniquely determined Am. Thus we have defined a relation (let us denote 
it by + ) with the required properties. Finally let / be a single-valued relation on N 
with similar properties, i.e. /<m, 0) = m, /<m, sn> = s /<m, n>; we shall show 
t h a t / = + . Suppose that, on the contrary, there are m e N, n e N so that /<m, n> 4= 
4- m + n. Then there exists the smallest n in N which has this property. Obviously 
n #= 0, so that there exists a p e N such that n = s p. But /<m, p) = m + p, so that 
/<m, n) = /<m, s p} = sf(m, p> = s (m + p) = m + sp = m + n, which is a con-
tradiction. 

R e m a r k . If, as usual, we put 1 = sO, then for each meN we have sm = m + 1, 
in accordance with the notation introduced in 3 D.1, convention. The symbol s 
will be used only occasionally in the following and we shall usually write m + 1 
instead of sm. 

3 E.2. Theorem and definition. There exists exactly one single-valued relation 
on N x N with values in N such that, denoting by x. y (or more concisely xy) 
the element assigned to <x, y> by this relation, we have, for any m e N , n e N, 

(1) m . 0 = 0; 
(2) m . (n + 1) = m . n + m. 

This relation will be called multiplication ( f o r natural numbers) and it will be 
said that xy is the product of the numbers x and y. 

3 E.3. Theorem and definition. There exists exactly one single-valued relation 
on N x N with values in N such that, denoting by xy the element assigned to <x, 
by this relation, we have, for any m e N , n e N, 

(1) m° = 1; 
(2) mn + 1 = m", m. 

It will be said that xy is the power with the base x and exponent y. 
We shall now show that there is a very close relationship between the operations 

(addition, multiplication, exponentiation) on natural numbers described above 
and some of the operations in set theory. 

First, we give some lemmas. 
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3 E.4. Every Np, p e N, is a finite set. 
This follows at once, by induction, from 3 A.13. 

R e m a r k . We have no means as yet to prove that every finite class is equipollent 
with some Np. 

3E.5. If p e N, q e N, p 4= q, then Np and are not equipollent. 

P r o o f . We have either p < q or q < p. Consider the first case. Then clearly 
Np is a proper subclass of hence by 3 E.4, and Np are not equipollent (other-
wise N9 would be infinite). 

3 E.6. Definition. If A is a class, we shall say that A has p elements if A is equi-
pollent with Np. 

R e m a r k . By 3 E.5, for any class A there is at most one p such that A has p 
elements. 

3 E.7. Definition. If a class A has n elements, n e N, we shall call n the cardinality 
or power or number of elements of the class A, and denote it by card A. — If A is 
a class and there is an n e N such that A has n elements, we shall say that A has 
a finite number of elements. 

R e m a r k . Every set which has a finite number of elements is finite (by 3 E.4). 
However, we are not able, at this stage, to prove the converse (see 4 C.9). 

3 E.8. Theorem. Let A, B be classes. Suppose that A has a elements, B has b 
elements. Then 4 u B has a + b elements provided A and B are disjoint; A x B 
has ab elements, AB has ab elements and exp,4 has 2" elements. 

P r o o f . I. Clearly, <p = {x->x + b\ xe Na} maps N0 onto Na+fc — Nfc. Let / 
be bijective on A onto Na, g be bijective on B onto N6. Then (<p o f ) u g is bijective 
on A u B onto Na+(>. — II. To prove the second assertion it is sufficient to show 
that (*) Na x N6 is equipollent with Naf). Choose arbitrarily a e N; the assertion 
(*) is evident for b = 0. Suppose that it holds for a certain b. Evidently, Na x N,,+1 = 
= (Na x N„) u (Na x (b)), N a ( b + 1 ) = Nai) u (Na( i>+1) - Na6). Now, N a ( i + 1 ) - Nafr 

is clearly equipollent with Na. This, together with the assumption on b shows that 
(*) holds for b + 1. This proves the theorem. — III. Let us write, in this proof, 
N(x) instead of Nx. We are going to prove that (**) (N(a))N(i,) is equipollent with 
N(a6). Let a be fixed. Clearly, (**) is true if b = 0. Suppose that it holds for a certain b. 
Then clearly (N(a))N ( 6 + 1 ) is equipollent with N(a)N(6) x N(a); on the other hand, 
N(ab + 1) = N(a 6 . a) is, as already shown, equipollent with N(a6) X N(a). From 
this it follows that (**) holds for b + 1. This proves that (**) holds for all natural 
numbers a, b. Now, let / be a one-to-one relation on A onto N(a), g a one-to-one 
relation on B onto N(b). Then the relation {(p -* f o (p o g~l \ tp e A8} is clearly 
one-to-one, with domain AB and range N(a)N(6). The rest of the proof is left to 
the reader. 
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F . M U L T I P L E T S 

We shall now examine some additional questions concerning, in particular, 
"iterations" of relations, as well as sequences and multiplets. 

First, let us introduce one auxiliary definition. 

3 F.l . Definition. Let a = {ak | k e Np}, /J = {b, | / E N j be finite sequences. 
Then the family A U {¿,-P | / E N p + ? — Np},, which is clearly a sequence equal 
to {ch\he Np+9}, where ch = ah for h e Np, ch = 6,,_p for h e Np+9 , h $ Np, is 
said to be obtained from a by the apposition of ¡3 (from the right) or from /? by the 
apposition of a ( f r o m the left) and it will be denoted, if no misunderstanding is 
likely to arise, by a . /? or a/?. 

For instance, {a, b, c} {d, e) = [a, b, c, d, e} (cf. 3 D.3). 

3F.2. Definition. If g is a relation, fee N, k ^ 1, then the relation consisting 
of all <x, y> for which there exists a sequence {z; | i e Nft + 1} such that z0 = x, 
zk = y and i E Nk => <z(, z i + 1 > e g, will be called the /C-th power of the relation g 
and will be denoted by the symbol gk when there is no danger of ambiguity. 

Remark . The notation introduced above is inconsistent with 3 D.4, according 
to which gk is the class of all sequences 1 i e Nft} such that e g. Nevertheless, 
it will always be clear from the context in what sense gk is being used. 

3 F.3. If g is a relation, h e N, k e N, h ^ 1, k ^ 1, then gh+k = gk „ gh. 

Proof . If (a, b) e gh, (b, c} e gk, then there exist finite sequences £ = 
= {x; | i e N A + 1 } , rj = { y j \ j e N T + 1 } such that x0 = a, xh = b, y0 = b, yk = c, 
and i e NA => <x;, x i + 1 > eg, j e N t => (yp yJ+1> eQ . Put S,' = {x; | i e Nh}, ( = 
= . rj (see 3 F.1), and £ = {z; | i e NA + t + 1}. Then z0 = a, zh+k = c, and i e 

=> <z;, zi + 1}eg. The rest of the proof is left to the reader. 

3 F.4. Theorem. Let g be a relation. Let a consist of all <x, y) for which there 
exists a finite sequence {z( | i e N p + 1 } such that p ^ 1, z0 = x, zp = y and i e Np => 
=> <z;, z i + 1 ) E g. Then a is the smallest transitive relation containing g (see 
1 C.4); in other words, <r is transitive, a => g, and if o' is transitive, a' => g, then 
a' •=> a. If T = t7 u JDfluEe, then x is the smallest reflexive transitive relation con-
taining g. 

Proof . Clearly, c gk for k = 1, 2, 3 , . . . . If (a, b) e <r, <b,c}ecr, then 
(a, b)egh, (b,c)egk for some natural h ^ 1, k ^ 1, and therefore, by 3 F.3, 
<a, c) e gh+k c o. Thus o is transitive. 

If a' ZD g is transitive, let <a, b) e a. Then there exists a finite sequence 
| i e N m + 1} with XQ a, xm — b and i e Nm => x i + 1̂ > E g. Since o' ZJ g, 

we have <x,-, x i + 1 ) e a ' for each i e N r Since a' is transitive, this implies, by an 
easy inductive reasoning, that <A, by e a'. The assertion concerning T is an immediate 
consequence. 
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Remark. The relation a consists, evidently, of all <x, such that (x, j/) e 
for some natural k ^ 1. Of course, it cannot be said that "a = | fc e N, fc ^ 1}" 
because the relations gk need not be sets. 

3 F.5. Definition. If g is a relation, A is a class, then A is said to be saturated 
(or closed) under g if A. 

Examples. (A) A set M c N is saturated under s if and only if either M = 0 
or M = N — Np for some pe N. — (B) A class si of sets is saturated under the 
relation => if and only if it can be expressed in the form si = (j{exP X | X e 38} . 

3 F.6, If A is a class and g is a relation, then there exists exactly one class B 
containing A, saturated under g and such that if B' => A is saturated under g, 
then B' => B. 

Proof. Let a be the smallest reflexive transitive relation containing the relation 
g u \A (see 1 C.4). Put B = o[A\. Then clearly A <=. B, c o[B] = (<7o<t) [A~] = 
= a[A] = B. Now let A a B', g[B'] <= B'. If x e B, then by 3 F.4 there exists 
a finite sequence {z,J£=0 such that z0eA, zp = x and (zk, zk+1)eg u JA for 
k e Np. Since z0 e B', <= B', it is easy to prove, by induction, that x e B'. — 
The proof of the uniqueness is left to the reader. 

3 F.7. Let g, n be relations and let Dfi, Efi consist of pairs. Then there exists 
exactly one relation a such that (1) a => g, (2) 7x[c] c a, (3) if a' is a relation, 
a' g, c: o', then a' •=> a. 

This follows easily from 3 F.6. 
The meaning of this proposition may be indicated as follows: there is given a rela-

tion g and a certain procedure for "transforming" pairs into pairs; it is asserted that 
there exists a (unique) smallest relation a => g such that if xay and <x', / > is obtained 
by the prescribed procedure from <x, then x'ay'. 

We shall now use the above results for the proper introduction of the concept 
of an n-tuple of elements and other related notions. 

3 F.8. Definition. Let si be a class. Denote by p. the relation consisting of all 
elements of the form <x, x » , where xesi, ye. si. Let n = k + 1, k e N, 
k^l. Then every z e E/ifc will be called an n-tuple of elements of si\ also, for 
convenience, every xesi will be called a I-tuple of elements of stf. An n-tuple of 
elements of will also be called a regular multiplet of elements of si. 

If si is the universal class, we shall speak simply of an n-tuple of elements (or of 
a regular multiplet of elements). Instead of an n-tuple of elements from the class 
of all elements satisfying a prescribed condition C (respectively, possessing a certain 
property P), we shall speak of an n-tuple of elements satisfying C (respectively, 
possessing property P). 

Intuitively, by means of the relation /U we pass (of course, by no means in a unique 
manner) from an element x to an element x>, from it to an element <v, y, x ) = 
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= <V, <y, x » , then to <i, v, y, x> = <f, (v, y, x » = <f, (v, (y, x » > , etc.; this 
procedure is exactly expressed in our definition. 

Remarks. 1) Observe that e.g. a 4-tuple is at the same time a triple and 
a pair. It is not even apparent that the existence of an element which would be an 
n-tuple for each n e N, n ^ 1, would contradict our axioms. On the other hand, 
for any given n e N, an element can be expressed in at most one manner as an n-tuple 
of elements. — 2) An element of the form « a , by, (c)> is, of course, a pair of ele-
ments, but not a triple since (c) is not a pair; on the other hand, <a, ( c ) » is 
a triple. — 3) We have considered the successive forming of pairs from elements 
only. This has been necessary because otherwise the procedure indicated in 3 F.2 
could not be used. 

3 F.9. Definition. Let A be a class. If an element x belongs to every class X such 
that X => A, X x X <= X, then we shall say that x is a multiplet of elements of A. 

Remarks. 1) Clearly, if x, y are multiplets of elements of A, then <x, y) 
also is a multiplet of elements of A. This fact also gives a motivation of the above 
definition, whose meaning is simply that multiplets of elements of A are precisely 
those elements which can be obtained from those belonging to A by forming of pairs, 
in other words precisely those elements which belong either to A or to A x A (i.e. 
are of the form <x, y>, x e A, y e A) or to A x (A x A) (i.e. are of the form 
<x, <y, z)>, x e A, y e A, z e A) or to (̂ 4 x A) x A and so on. — 2) A regular 
multiplet of elements of A is a multiplet of elements of A. The proof is left to the 
reader. — 3) The definition of an n-multiplet of elements will be given in exercises, 
since this notion is not essential for further developments. — 4) For reasons 
indicated below (3 F.13) we defer to Notes (at the end of the book) the introduction 
of the general concept of a multiplet and an n-tuple, e.g. of non-comprisable classes. 
The term "multiplet", unspecified, will meanwhile be used informally to indicate 
objects of the form e.g. <a, <f>, c), d} where a, b, c, d are quite arbitrary. 

We shall now discuss the relationship between finite sequences and n-tuples of 
elements. 

3 F.10. Theorem. There exists exactly one single-valued relation o, whose 
domain is the class of all non-void finite sequences and which has the following 
properties: 

(1) for each element x the relation a assigns to the one-element sequence {x} 
the element x; 

(2) if a{ak+1}"k=0 = y, and a0 is an element, then o{ak}lt J = <a0> >*)/ in other 
words, using the symbol introduced in 3 F.1, o-({a0} . a) = <a0, aoC) for any finite 
sequence a. 

If n ^ 1 is a natural number, then the restriction of a to the class of all sequences 
of length n is a relation bijective for this class and that of all n-tuples of elements. 

Convention. The relation a will be called the canonical relation for the class 
of finite sequences and that of all regular multiplets of elements. 
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Proof . The assertion is intuitively self-evident. To every one-element sequence {x} 
the element x is assigned; to the sequence {x} . {y} (see 3 F.1), we assign <x, y> 
and, in general, if a regular multiplet £ is already assigned to a sequence x, then we 
assign, for any element y, the regular multiplet <y, £> to {y} . Now this procedure 
of simultaneous transition is covered by the pattern described formally in 3 F.7. — 
We proceed to the formal proof. Let g denote the relation {{x} -> x}; let n denote 
the relation consisting of pairs with the left member (a, a ) where a is a finite sequence, 
a a multiplet, and the right member <{x}. a, <x, a » , x being an arbitrary element. 
Let <7 be the relation described in 3 F.7. It is easy to prove that a possesses the pro-
perties required. We omit the rest of the proof. 

3 F . l l . We shall now discuss one more relation for elements whose discussion in 
this place has rather the character of an exercise. It will, however, play an important 
role in Section 7. 

It is intuitively clear what we mean when we say that the element <a, b) is obtained 
from <a, c » or from <<a, c), b) or from <<a, by, c), etc., by deleting the ele-
ment c; let us now try, however, to give a precise general formulation of this relation. 

It is clear that if an element a is obtained from an element j8 by deleting a in the 
sense indicated above, then the same holds, with an arbitrary element x, for <a, x ) 
and </?, x ) as well as for <x, a> and <x, /?>; on the other hand, it is intuitively clear 
that this procedure, i.e. transition from a and to <a, x ) and </?, x ) or to <x, a ) 
and <x, /?>, carried out step by step starting from pairs such as x and <x, a ) or x 
and <a,x>, gives all cases where some £ is obtained from some r\ by deleting a. We 
are now ready to state the following assertion. 

3 F.12. Let a be an element. Then there exists exactly one relation 9a such that 
(1) for any element x we have x9a(a> x)> x9a(x> (2) if ^„jj , z is an element, 
then <z, O 3a<z, //> and <£, z> Sfl<fj, z>; (3) i f , for a relation 5, (1) and (2) hold, 
with 3a replaced by 5, then 5 

This assertion is obtained as a corollary to 3 F.7, if we put g = {x -» <a, x>} u 
u {x <x, a)}, fi = {<z, O -» <z, 1>} u {<£, z> - <j], z>}. 

Definition. If £ and r] are arbitrary elements and e 9a, we shall say that t 
is obtained from r\ by deleting a and that q is obtained by enriching i with a. 

3 F.13. We shall return to these questions later in Section 7 and in the Notes at the 
end of the book. One remark, however, is in order here. We have defined regular 
multiplets (n-tuples) and, as a more general notion, multiplets of elements. However, 
if we try to define, within the framework of the theory of classes and sets presented 
here, the concept, say, of a "regular multiplet of classes", i.e. of an «-tuple of classes, 
n e N arbitrary, we encounter serious difficulties. Namely, for any actually given n 
we can define an n-tuple (e.g. of classes), but we cannot give a definition valid for 
all natural numbers n. Indeed, it is not possible to proceed indefinitely from a to 
< b, a}, then to (c, b, a ) , etc., because such a procedure would involve essentially the 
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use of "sequences of non-comprisable objects" which do not exist. A more profound 
discussion of these topics would lead to considerations belonging to mathematical 
logic. For our purposes it would be quite sufficient to choose once and for all a 
fixed natural number k ^ 1 and to define, e.g., a regular multiplet of classes in an 
obvious, cumbersome but logically correct way (for instance, for k = 3 : "A is 
regular multiplet of classes, if either A is a class, or A = (X, Y>, X, Y being classes, 
or A - <X, Y, Z> where X, Y, Z are classes"). 

An analogous reasoning applies, of course, to concepts such as "X is obtained 
from y by deleting A", etc. 

G . C O U N T A B L E S E T S 

We shall now consider countable sets (i.e. countably infinite sets and sets with a finite 
number of elements). At this stage we cannot prove that every finite class has a finite 
number of elements, i.e. is equipollent with some Np (the converse holds, of course, 
see 3 E.7); this will be shown in Section 4. Fortunately, these two concepts (finite 
classes and sets with a finite number of elements) are easily seen to coincide, without 
the Axiom of Choice, for the case when countable sets are considered. Therefore, we 
formulate propositions below for sets with a finite number of elements inviting the 
reader to keep in mind that, as a matter of fact, they hold (if the Axiom of Choice is 
assumed) for finite sets. 

However, some important propositions on countable sets cannot be proved without 
the Axiom of Choice. They will be proved in Section 4 but stated here for the sake 
of completeness. 

3 G.l. Definition. A class A is called countable if there exists a single-valued 
relation q> such that A = <p[N], A class A is called countably infinite if it is equi-
pollent with N. 

Remarks. 1) Clearly, every countably infinite class, as well as every class with 
a finite number of elements (see 3 E.7) is countable. — 2) By 1 E.4, every countable 
class is a set (since N is a set). 

3 G.2. We recall that a class X is said to have p elements, p a natural number 
(see 3 E,6, 3 E.7), if it is equipollent with Np, and that every set with a finite number 
of elements is finite (see 3 E.4). 

We now give some lemmas. 
3 G.3. Let M<= N. Suppose that (l) 0 e M, (2) if neM, then either n + 1 e M 

or n is the greatest element in M(i.e. neM, and m ^ n whenever meM). Then 
either M = N or M = N pfor some p e N , 

Proof. If n + 1 eM whenever neM, then by the principle of mathematical 
induction, M = N. If not, then some neM is the greatest element in M. By 3 D.5 
(remark on induction for the sets Np), every me Nn + 1 belongs to M and thus M = 
= N„+1. 

5 — Topological Spaces 
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3 G.4. Let M <=• N. Let (p be the single-valued relation which assigns to every 
xe M the cardinality (see 3 E.7) of the set E{z | z e M, z < x}. Then (p is one-to-one 
and <p[M] is equal either to N or to some Np. Moreover, for any xeM, y e M we 
have x < y if and only if (px < (py. 

Proo f . For brevity, put Mx = E{z | z e M, z < x}. Clearly, 0 e <p[M] since Mx 

is void if x is the smallest number in M. If n e <p[M], then for some xe M, n = (px, 
N„ is equipollent with Mx. If x is the greatest number in M, then clearly n is the 
greatest one in <p[M]. If not, choose the least y e M with x < y. Then My = Mx u 
u (x), <py = n + l, n + le <p[M]. Now, by the preceding lemma (3 G.3), <p[M] = 
= N or <p[M] = Np for some p e N. Finally, if x e M, y e M, x < y, then clearly 
Mx c My, x e My, x $ Mx which clearly implies, since Mx is equipollent with N ^ , My 

is equipollent with N w , that (px < (py. 

3 G.5. If M a N is finite non-void, then there exists a number which is the 
greatest one in M. 

Proo f . Let cp be the relation considered in 3 G.4. Clearly <p[M] is finite, hence 
equal to some N9 + 1 . It is easy to see that (p~lq is the greatest number in M. 

3 G.6. Theorem. If A is a countable set, then either A is countably infinite or has 
a finite number of elements. 

Proo f . Since A is countable, there exists a single-valued relation / such that 
A = / [ N ] , Let g be the single-valued relation assigning to every xe A the least 
number in the inverse fibre / - 1 [ x ] . Then g is one-to-one on A into N. By 3 G.4, 
g\A\ is equipollent either with N or with some Np; in the first case, A is countably 
infinite; in the second case it has p elements. 

3 G.7. Theorem. Let A be a class, B c A. If A is countable, then B is countable. 
If A has a finite number m of elements, then B has a finite number n of elements, 
n ^ m. 

P roo f . I. Since A is countable, there exists a single-valued relation tp such that 
<p[N] = A. Let ij/ denote the range-restriction of tp to £ (i.e. i// = (p n (N x B)); 
clearly, i/'fN] = B. — II. Clearly it is sufficient to prove the second assertion for 
the case A = Nm. Apply 3 G.4 (with M replaced by B). Clearly, <p[B] = N„ for 
some n, and n ^ m (if m < n, A would be equipollent with a proper subset of B, 
hence of A, which is impossible since A is finite). 

3 G.8. Theorem. Let f be a single-valued relation. If A is countable, then f\_A\ 
is countable. If A has a finite number m of elements, thenf[A] has a finite number n 
of elements, n ^ m. 

Proof . I. There exists a single-valued <p with A = <p[N], Putting i// = f o q> we 
have f\^A\ = iA[N]. — II. We prove the second assertion for A = Nm. For every 
x let gx be the least of all numbers z such that fz = x. Then g is a one-to-one 
relation on f[A\ into A from which, by 3 G.7, we obtain t h a t h a s a finite number 
n of elements, n ^ m. 
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3 G.9. The sets N x N and N are equipollent. 
Proof . Denote by / the relation assigning 2m . (2n + 1) — 1 to <m, n) e N x N. 

It is easy to see that / is one-to-one on N x N onto N. 

3 G.10. Theorem. Let A, B be countable. Then A x B is countable; if A, B 
are non-void and one of them is infinite, then A x B is countably infinite; if both 
A and B are finite, then A x B has ab elements where a, b denote the number 
of elements of A, B respectively. 

Proof . There exist single-valued relations cp, 4> such that <p[N] = A, i/i[N] = B. 
Now let <P assign to every m e N the pair <<p(/_1m), whe re / i s the rela-
tion indicated in 3 G.9. It is easy to see that <P is single-valued, 4>[N] = A x B. — 
If, say, A is countably infinite, B 4= 0, then choose b e B. Clearly, the subset A x (b) 
of A x B, hence also A x B itself is also countably infinite. — The last assertion is 
contained in 3 E.8 because A and B are countable and finite, and hence, by 3 G.6, 
have a finite number of elements. 

3 G. l l . If Q is a relation, A is a class, and A as well as every (?[(x)], x e A, has a 
finite number of elements, then Q\A\ has a finite number of elements. 

This easily follows from 3 G.5 (which implies the existence of a number p e N 
not less than the number of elements of any g[(x)], x e A). 

3 G.12. Theorem. Every infinite class contains a countably infinite subset. 
Proof . Let A be an infinite class. Let cp be a one-to-one relation on A into A such 

that q>[A] 4= A. Choose x e A — <p\_A~\. Let \¡/ consist of <0, x> and all </c, <pftx>, 
lc e N, k ^ 1. Clearly, Dt¡/ = N, \j/ is single-valued. We are going to prove that \p 
is one-to-one. Suppose, on the contrary, that there exists a number k e N such that 
t¡/k = \j/m for some m e N, m > k; choose the least k with this property. Then, 
clearly, i¡/k = ij/m =|= x, for x $ <p\_A\ whereas \j/m = <pkx e <p[/4]. Thus, k =1=0. 
Since cp is one-to-one, we get i¡/(k — l) = ij/{m — l) which is a contradiction. We 
have proved that i// is one-to-one. Therefore, i//[N] <= A is a countably infinite set. 

3 G.13. The proofs of the following propositions require the Axiom of Choice. 
We formulate them here, although they cannot be proved now, but we shall restate 
them with proofs in Section 4 (see 4 C.9, 4 C.10). — l) A class is finite if and only 
if it has a finite number of elements. — 2) If A is a countable set, Q is a relation 
and every £>[(*)], x e A, is countable, then Q\A\ is countable. — 3) If [Xa | a e A} 
is a countable family of countable sets, then is countable. 

5' 
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4. C H O I C E 

Roughly speaking, the Axiom of Choice asserts the following: if we have a class 
of non-void sets, then we can choose "simultaneously" an element in each set. In order 
to illustrate this situation, it is sometimes said that an election is held in all the sets 
in question at the same time, and every set elects its "chairman" from among its 
elements. This principle is of fundamental importance for modern mathematics 
based on set theory. Its significance in "classical" mathematics is not so essential; 
nevertheless, we can find it in a weaker form in very simple cases, for example in the 
following reasoning: "Let M be a non-empty set of positive real numbers, inf M = 0. 
We are going to prove that there exist x„ e M such that lim x„ = 0. For every n = 
= 1,2,... there exist xsM with x < n - 1 ; hence, we choose for each n one such 
number x„, and we get the required sequence". The last step here is based on 
the Axiom of Choice. 

We shall not now discuss in detail the sense and role of the Axiom of Choice and 
its relationship to the other axioms and theorems. We remark only that, roughly 
speaking, for a certain fairly reasonable axiomatic system of set theory containing 
the Axiom of Choice, it has been proved that this system is consistent provided it is 
consistent without the Axiom of Choice. Before formulating the Axiom of Choice 
(in a form stronger than usual) we prove some propositions useful for further develop-
ments but not based on the Axiom of Choice. We point out that there is a deeply 
rooted similarity between these propositions and assertions 3 B.4, 3 B.5 in Section 3. 

A. M O N O T O N ICALLY A D D I T I V E CLASSES 

First, we introduce notions which will be used at various places in the sequel. 
We recall that a class of sets si is called monotone (see 3 B.1) if for every X esi, 

Yesi either X Y or Y a X. 

4 A.l. Definition. Let sd be a class of sets, si is called additive if X u Ye si 
whenever Xesi, Ye si, completely additive if USCes i for every non-empty 
collection 3C c si\ si is said to be monotonically additive if esi for every 
non-empty monotone collection 3C <= si. 
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We observe that the definition of complete additivity requires, of course, (J9? e si 
only if # is a collection, not a non-comprisable class, and similarly for monotone 
additivity. 

Examples. (A) Every class of the form exp^f is completely additive. — (B) If 
g is a relation, si is a completely additive class of sets, and every X e si, 
is comprisable, then E{gi[Z] | X e si} is completely additive. — (C) The class of 
one-element sets is monotonically additive but not completely additive. — (D) The 
class (the collection) of all connected subsets (see 20 B.1) of a given topological 
space is monotonically additive but not completely additive. — (E) The class of all 
sets with a finite number of elements is additive (see 3 E.8) but not monotonically 
additive and hence also not completely additive. 

4A.2. The following classes are monotonically additive: the class of all compris-
able single-valued relations, the class of all comprisable one-to-one relations, 
the class consisting of all monotone collections of sets. 

A proof of the last assertion only will be given. Let A consist of all monotone 
collections of sets. If X c A is a monotone collection, consider UX. If A e (JX, 
B e (J*, then AeSC u B e <%2 for some 3CX e X , f 2 e X; since X is monotone, we 
have either •=> 3C2

 o r 

2 j « It is sufficient to consider one of these cases, 
say ZD 3[2. Then we obtain X e f ^ B E and therefore, being monotone, 
either A => B or B <=• A. 

4A.3. If X is a non-void class of additive (respectively, completely additive, 
monotonically additive) collections of sets, then flX is additive (respectively, 
completely additive, monotonically additive). 

We omit the easy proof. 

4 A.4. If si is a monotone class of sets, then the class 88 of all \}9C, where 
3C c si is a collection, is monotone and completely additive. 

Proof. I. Let 3C c: si, <& c si be collections. If for every XeSC there is a Ye<& 
with Y -> X, then clearly if not, then, for some X0eSC, Y => X0 holds 
for no YeW; therefore, si being monotone, X0 => Y for every Ye'W and therefore 
X0 => \J%/, (J& => IJ<W. This proves the monotonicity of - II. Let 2£ <= 88 be 
a collection. For every Z e 5 , let 3CZ be the collection of all sets X esi such that 
X <= Z; clearly, \J2£Z = Z. Now put % = \J{3£Z \ Ze8Z}. Then SC is a collection, 
3C e si and clearly U ^ = U-^-

For the sake of completeness we introduce analogous definitions relating to 
intersections. 

4 A.5. Definition. Let si be a class of sets, si is said to be multiplicative if 
X n 7 e si for X esi, Ye si, completely multiplicative if {\3C esi for every non-
void collection 9E c si\ si is called monotonically multiplicative if n & e s i for every 
non-void monotone collection 3C <= 
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The same remarks as for the previous definition also hold for this definition. 
4A.6. We turn now to the theorems announced above, namely to propositions 

4 A.7 and 4 A.8 which are quite analogous to the theorems 3 B.4 and 3 B.5. This 
analogy also concerns the proof and is not essentially diminished by the fact that the 
assumption X => <pX in Section 3 is replaced here by X <= (pX; however, the class 38 
may be non-comprisable, a striking difference from the result in Section 3. 

It is to be noted also that there is an analogy (though not so complete) between 
4 D.1 and 3 C.2 as well as between theorem 11 A.9 (and its consequences) and the 
uniqueness theorem 3 C.5. 

Roughly speaking (and anticipating some concepts to be introduced in the sequel), 
the main purpose of the theorems in the subsection 3 C lies in a "construction" 
of the set of natural numbers (or, at least, "segments" of it), whereas 4 A.7 and 
4 A.8 besides preparing the way for the "maximality principle" (4 C.1), contain a "con-
struction" of the class of all ordinal numbers (or, at least, "segments" of it). The 
theorems from 3 C justify the use of the principle of mathematical induction, theorems 
4 A.7, 4 A.8 that of the principle of transfinite induction. 

4 A.7. Theorem. Let si be a monotonically additive class of sets.Let Aesi.Let <p 
be a single-valued relation with domain si and let (pXesi, X a (pX for each 
X esi. Then there exists precisely one class 38 <= si such that 

(a0) Ae38, (a t) X e 38 => cpX e 38, (a2) 38 is monotonically additive; 
(b) if <€ <= 38 and the following holds: (1) AeW, (2) l e i implies <pXe<#, 

(3) # is monotonically additive, then = 38. 
The set A is the smallest set in 38. 
Proof. Let us say that a class X <=• si has property S if (1) A e l , (2) X e SC => 

=> (pX e 3C, (3) 3C is monotonically additive. Let 38 be the class of all X e si which 
belong to every class with property S (such classes exist, for si has property S). 
Evidently, 38 also has property S. In fact, A belongs to every class with property 5, 
and hence A e 38; if X e 38, then l e f , hence <pX e 3C for each class 9C with 
property S, and therefore cpX e 38; finally, if W <= 38 is a monotone collection, 
then, for every class 3C with property S, <& c 3C; hence \J<2/ and this implies 

e 38. 
We shall show now that 38 has the propsrties required in the theorem. The pro-

perties (a0), (at), (a2) have already been proved. If # c 38 and 1 fulfils conditions 
(1), (2), (3) in (b), then # has property 5, which implies 38 c 

We have proved that there exists a class 38 with the required properties. The proof 
that 38 is unique (for given si, q> and A) is similar to the proof of theorem 3 B.4: 
if 38' is a class with the properties in the theorem, then also the class 38 n 38' has 
properties (a0) — (a2). By (b), we get 38 n 38' = 38 and at the same time 38 n 38' = 
= 38'. Hence, 38 = 38'. 

Finally X z> A for every X e 38; for if (6 denotes the class (evidently, monotonically 
additive) of sets X e 38 such that X => A, then by (b) we get <€ = 38. 
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4 A.8. Theorem. Let 3d be a non-empty class of sets. Let Ae 38. Let <p be a single-
valued relation with domain 38 such that X e 38 => X c cpX. Let assumptions 
(a0), (a^, (a2), (b) in 4 A.7 be fulfilled. Then 

(m) i f X e 38, Ye 38, then either X = Y or X => <pY or Y => (pX (hence, 38 is 
monotone); 

(w) if a class 3C cz 38 is non-void, then it contains a smallest set; 
(s) if X e 38, then X c: cpX, X 4= <pX unless X is the largest set in 38-, if X e 38, 

Ye 38,X a Y, X 4= Y, then <pX a q>Y, <pX 4= q>Y unless (pX = Y and Yis the largest 
set in 38\ finally, 38 is comprisable (i.e. is a set) if and only if there is a largest 
set in 38. 

Proof . I. We shall prove assertion (m). If X e 38, Ye 38, then XgY denotes that 
either X => Y or (pX a Y. We shall show that the following holds: 

(*) if XgY, YgX, then Xg(cpY). 
Let XgY, YgX. If < p i c <pY, then evidently Xg((pY). If q>X <=. q>Y does not hold, 

then neither X = Y nor (since Y a q>Y) q>X a Y. As XgY, we have simultaneously 
X Y, X 4= Y, hence Y => X does not hold. We have shown that YgX implies 
X => (pY, and this means that Xg(cpY). 

Let us denote by 38' the class of all Ye 38 such that ZgYfo r each X e 38, and 
by 38" the class of all Ze38 such that YgZ for every Ye 38'. We shall show that 
3ft' = 38" = 38. Evidently, if X e 38, and a 38 is a nonempty monotone collection 
and XgYfor every Ye®J, thenXg(\J<W). This implies that 38' and 38"are monotonically 
additive, hence they have property (a2). By theorem 4 A.7, XgA for every X e 38. 
Hence Ae 38', A e 38", and 38' and 38" fulfil (a0). If Ye 38', Z e 38", then ZgY, YgZ 
by the definition of classes âf, 38". By (*).we have Yg(<pZ); hence Ze 38" => <pZ e 38". 
If we put 38" instead of # in (b), we have 38" = 38. Therefore, if X e 38, then also 
X e 38", and if Ye 38', then again by the definition of the classes 38', 38" we have 
XgY, YgX. Therefore by (*), Xg(<pY) also holds; hence Ye 38' => q>Ye38'. By (b), 
we get 38' = 38. 

Thus, for arbitrary Xe 38, Ye 38 we have XgY, that is either X z=> Y or (pX a Y 
(in view of X <= <pX, this implies that 38 is monotone). It is easy to see, in a manner 
similar to the proof of theorem 3 B.5, that this condition is equivalent to (m). 

II. We shall prove that (w) holds. Let % c 38, % 4= 0. Let Jt be the class of all 
Xe38 such that X <= Y for every 7 e f . Let X0 = \JJK; then, clearly, X0e38. 
If Ye3C, then X <= y for every X e Jt, hence X0 <=• Y; we get X0 e Jt. It suffices 
to show that X0 e 3C. We shall assume that X0 <= Y, X0 4= Yfor each Ye 3C and we 
shall derive a contradiction. Then (since <pY => Y) X0 => <pY cannot hold for any 
Ye9C, and hence, by property (m), (pX0 c: Y for each Ye3C, also <pX0eJt. It 
is easy to see that the class Jt is monotonically additive. By 4 A.7, A e Jt. Let X e Jt. 
We are going to show that <pX e Jt. Certainly X <=. X0. As we have proved that 
<pX0 e Jt, cpX eJt is evident for X = X0. If X c: X0, X =|= X0, then (because 
<pXQ 3 X0) X => (pX0 cannot hold. Hence, by (m), X0 => <pX and we get again 
<pX e Jt. Then, by (b), Jt = 38, which contradicts the assumption $ 3C. 
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III. Finally we prove (s). Clearly, if X e 38 is the largest set in 38, then <pX = X. 
Conversely, suppose that X0e38, (pX0 = X0. Put = E{Z | X e 38, X c: A:0}. 
Evidently, Ae<#. Let Ye<#. If Y = X0, then <pY <pX0 = X0 c X0, and thus 
(pYe c€. If Y 4= X0, then Y <= <pX0, Y + q>X0, hence Y => <pX0 cannot hold. There-
fore, by (m), X0 => q>Yand we get again (pYs c€. Finally, it is evident that i? is mono-
tonically additive. Hence = 38 by (b), and X0 is the largest set in 38. Omitting the 
proof of the second assertion in (s), which may be left to the reader, we pass to the 
third statement. If 38 is a set, then also \J38 is a set by theorem 2.13. Since 38 is 
monotonically additive, \J38 e 38. Evidently, U38 is the largest set in 38. Conversely, 
if 38 contains the largest set B, then 38 <= exp B, and 38 is a set (by Axiom 1 E.1, 
(c) and Theorem 1 E.5). 

The following proposition will be useful in the proof of theorem 4 C.1. 

4 A.9. Lemma. Let 38 be a non-void class of sets; let A be a set. Let <p be 
a single-valued relation defined on a class si => 38 such that for any Xesi, 
q>X e si, q>X => X. Let 38 possess properties (a0), (at), (a2), (b) from 4 A.7. Let si', 
si" be classes such that (1) s4' <= si" a si, (2) A e si', (3) if 3C <= si' is a monotone 
collection, then \JZ£ e si", (4) if X e si", then (pX e si'. Then 38 cz si" and for 
each Xe 38 there exists a 7 e 38 n si' such that X c Y{in particular, if 38 possesses 
a largest set M, then M e si'). 

Proof. To prove that 38 <= si" we assume, on the contrary, that 38 — si" 4= 0. 
Then, by 4 A.8 (w), there exists in 38 — si" a smallest set X0. Let # consist of all 
Xe38 such that X e X0, X * X0. Put Z j = \j{(pX | X e <$}. Evidently, <8 c si", 
hence cpX e si' for each X e <€, and by assumption (3), Xx e si". Since X => X0 

for no X e we have, in view of part I of the proof of 4 A.8, <pX a X0 for every 
X e f , hence also Xx c: X0. Since 38 is monotone and monotonically additive, we 
have Xt e 38. We now show that both assumptions Xt = X0 and XY 4= X0 lead 
to a contradiction; this will prove 38 cz si". Since Xt esi" and X0 $si", Xt = X0 

cannot hold. Let X1 4= X0, hence Xt e Since X 0 e 38, e 38, and X^ => X0 

does not hold, (PXI t= X0 (by part I of the proof of 4 A.8); since XT e c6, we have 
<pXt <= Xi and therefore (pXt = X1. It follows, by part III of the proof of 4 A.8, 
that X1 is the largest set in 38. This is a contradiction, as, on the other hand, Xt <= X0, 
Xi 4= -Xq. Therefore 38 <= si". 

We now prove the second assertion of the lemma. Let X e 38. Then X e si", 
hence (pX e si', (pX e 38 n si'. Since <pX => X, it is sufficient to put Y = (pX. 

B. AXIOM OF CHOICE 

The Axiom of Choice can be formulated in different ways. Often we can find for 
example the following formulations: "If J l is a disjoint family of non-void sets, 
then there exists a set A which has precisely one common element with each M e Ji" 
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or "if {Xa | a e A} is a family of non-void sets, then there exists a family {xa | a e A} 
such that xa eXa for each a e A"; probably this last formulation most clearly ex-
presses the idea of "simultaneous selection" which is important for the Axiom of 
Choice. 

There is a close connection between the Axiom of Choice and another general 
principle, which is sometimes called "the principle of definition by means of ab-
straction". This idea, which has a very wide methodological significance, can be 
formulated, as far as mathematical concepts are concerned, in the following form: 
if g is an equivalence on a class Z, then we can assign to every z e Z an element 
i¡/(z) in such a way that \j/(z) = i^(z') if and only if ZQZ'. This principle is used for 
example for the definition of cardinal numbers: we associate (see 9.A) with every 
set X an element card X, called the cardinality of X, such that card X = card Y 
if and only if X and Y are equipollent. Of course, the principle of definition by 
abstraction in the above formulation does not imply the Axiom of Choice; e.g. if Z 
is a set, then we can take i¡/(z) = E{x [ XQZ} for z e Z, and this has nothing in com-
mon with the choice of elements. 

On the other hand, if we assume the Axiom of Choice in a suitable form, then in the 
situation described above we may choose elements <pz in such a way that always 
zg(tpz), i.e. ipz e g[(z)]. To this end consider, provided g[(z)] are sets, the relation 
H = {g[(z)] —• z | z e Z}, which is not single-valued in general; choose a single-
valued <p c= ¡1 and put, for any z e Z, \j/z = <p(g[(z)]). Let us note that the classes 
É?[(z)] are sets whenever Z is a set. 

The facts roughly indicated above as well as the necessity of choosing, from time 
to time, elements from non-comprisable classes, leads to a rather strong form of the 
Axiom of Choice (which is, in fact, rather similar to the form of the postulate of 
choice contained implicitly in N. Bourbaki's formulations in his "Éléments de 
mathématique"). 

4 B.l. Axiom of Choice. Let Abe a class; let g be an equivalence on A. Then there 
exists a class B a A with the following property: for every x e A there exists 
precisely one y e B such that xgy. 

Remark. Evidently, the property indicated above may be expressed as follows: 
there exists a single-valued relation (p <=. g such that Dip = Dg, xgx' => <px = <px'. 

Now, some immediate consequences of the Axiom of Choice are given. 

4 B.2. Theorem. Let g be a relation. Then there exists a single-valued relation 
<p c: g such that D<p = Dg. 

Proof. Let us denote by R the relation defined as follows: <u, v} e R if and only 
if u e g, v e g and there exist x, y, z such that u = <x, y v = <x, z>, that is the 
first members of u and of v are equal. It is easy to see that R is a transitive, sym-
metric and reflexive relation, D/? = g, BR = g, hence R is an equivalence on the 
class g. By the Axiom of Choice, there exists a class <p <=• g such that 

(*) for each u e g there exists precisely one v e cp such that uRv. 
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We shall prove that Dcp = Dg and that cp is a single-valued relation. Evidently, 
Dip c: Dg. Let x e Dg; there exists a y such that u = <x, y> e g. By (*), there exists 
precisely one v = (s, t} e cp such that uRv; we have s = x, hence <x, i> = ve cp 
and therefore x e Dep. Thus we have proved Dg c Dcp; hence, Dcp = Dg. Let x e Dcp; 
let <x, y ) e cp, (x, y') e cp; we are going to prove that y = y'. By the definition of the 
relation R, we have <x, y> J?<x, / > ; this implies, by (*), <x, y> = <x, y'}, hence 
y = / . 

Corollary. If g is a single-valued, relation, then Eg is equipollent with a subclass 
ofDg. 

The proof is left to the reader. 

4 B.3. Theorem. Let {Xa | a e A} be an indexed class of non-empty sets. Then 
there exists an indexed class {xa \ a e A} such that xa eXafor each a e A. 

Proof . Let g be the class of all pairs <a, y> such that y e Xa. Then g is a relation, 
Dg = A. By the preceding theorem, there exists a single-valued relation cp c g such 
that Dcp = Dg, hence Dcp = A. For cp <= g, we have <a, cpa) e g for each a e A, 
hence cpa e Xa. Put x„ = cpa; then {xa | a e A} = cp has the required properties. 

4 B.4. Theorem. Let be a disjoint class (respectively, a disjoint collection) 
of non-empty sets. Then there exists a class (respectively, a collection) F such that, 
for every M e Mf) F is a singleton. 

Proof . We consider the indexed class {M | M e J (} . By 4 B.3, there exists an inde-
xed class {xM | M e such that xM e M for each M e J(. Put F = E{xM | M e 
Since ^ is disjoint, F n M = (xM) for each M e 

C. M A X I M A L I T Y P R I N C I P L E A N D R E L A T E D P R O P O S I T I O N S 

In addition to the above trivial consequences of the Axiom of Choice we are going 
to give several essentially more profound ones. 

4 C.l. Theorem ("maximality principle"). Let Ji be a collection of sets with the 
following property: for every monotone collection 9£ c Jt there exists a Ye Ji 
such that X <= Y for every X e3C. Then there exists, for every A e Ji, a maximal 
set M e Ji containing A. 

Proo f . Let S = U Ji, sé = exp S. Put si' = M. Let si" be the collection of all 
\J2f, where % c Ji is a non-empty monotone collection. It is easy to see that 
si' <= si" <= si and that si is a monotonically additive collection. Next, for 
every Xesi", there exists a Ye si' such that 7 d J ; this is shown as follows: 
since X e si", we have X = where 3C <=. M is a non-void monotone collection; 
by the assumption in the theorem, there exists a set Ye Ji = si' such that Z c Y 
for every Ze3C, hence, I c y . Now put XgY if and only if Xesi, Ye si and 
either (1) Xesi", Ye si', X c Y, X * Y, or (2 )Xesi", X = Y, there is no Zesi 
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with Z => X, Z =# X, or (3) X $ si", Y = S; then it is easy to see that Q is a relation 
with domain si. By 4 B.2 there exists a single-valued relation q> a Q with Dcp = 
= DQ = si. For every X esi we have cpX => X; for if X e si", then, by the definition 
o f f t l c cpX; i{X$ si", then X <= q>X = S. 

Now we have a monotonically additive class si, a single-valued relation cp such 
that Dip = si, cpX => X and cpX e si for every X e si, a set A e si', and a class si" 
such that the conditions (1), (2), (3), (4) in 4 A.9 are fulfilled. Moreover, the assump-
tions of the Theorem 4 A.7 are fulfilled. Hence, there exists a 38 <=. si with the pro-
perties from 4 A.7. As si is a set, 38 is a set; hence, by 4 A.8, (s), there exists a largest 
set M in 38 and <pM = M. By 4 A.9, M esi' = Ji. Since A e 38, we have A <=. M. 
As <pM = M, the definition of g implies that there exists no Ye Ji such that Y => M, 
Y* M. 

4 C.2. Theorem. Let Ji be a collection of sets with the following property: 
for every monotone collection SC c Ji there exists a Ye Ji such that Y <= X for every 
X e2C. Then there exists, for every AeJi, a minimal set M e Ji contained in A. 

This follows at once from the preceding theorem applied to the collection of all 
sets S - X where S = \JJi, X e Ji. 

4 C.3. Theorem. A non-void monotonically additive (multiplicative) collection 
of sets contains a maximal (minimal) set. 

Proo f . Let si be monotonically additive. Then, for any monotone 9C <=. si, we have 
U f e i and X c (JSC for every XeS£. Thus the assumptions from 4 C.1 are ful-
filled. The proof for a monotonically multiplicative collection is analogous. 

4 C.4. In the following theorem (4 C.5) the concept of a finite set plays an essential 
role. We have not yet established the well-known connection between finite sets and 
the "segments" Np; this will be done somewhat later in this section. We could, of 
course, state and discuss the theorem in question at a later place, but we prefer 
to give it now, preceded by a lemma, the proof of which will also serve as a useful 
exercise. 

Lemma. Every finite non-void class of sets contains a minimal set. 
Proof . Suppose that si is a finite non-void class of sets containing no minimal 

set. Let g consist of all pairs <X, Y> where X esi, Yesi, X => Y, X 4= Y. By the 
supposition, Dg = si. By 4 B.2, there exists a single-valued relation (p cz Q with 
D<p = DQ = si. Choose a set A e si. By 3 B.4, there exists a collection 38 c si 
with properties (a0), (ax), (b) indicated in 3 B.4. Clearly, there is no smallest set in 
38 (since if X e 38, then <pX e38, <pX cz X, (pX 4= -Y). Hence, by 3 B.5, assertion (s), 
X e 38, Ye 38, X 4= Y implies <pX 4= <pY. Thus <pm is one-to-one. Clearly, A 4= <pX 
for every X e 38 (otherwise we would have A <= X, A 4= X which contradicts the 
fact that A is the largest set in 38\ cf. 3 B.4). We have shown that (p is one-to-one 
on 39 into 38 and <p[38~\ 4= 38\ hence, 38 is infinite. This is a contradiction for si => 38 
is finite. 
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Corollary. Every finite non-void collection of sets contains a maximal set. In a 
finite non-void monotone collection of sets, there is a largest and a smallest set. 

Remark. Of course, all these assertions are trivial as soon as we show that every 
finite class is equipollent with some Np; this will be done in 4 C.9. 

4 C.5. Theorem. Let si be a non-void class of sets such that X esi if and only 
if every finite subset of X belongs to si (such a class of sets is sometimes said to be 
of "finite character"). Then si is monotonically additive. If si is comprisable, 
then it contains a maximal set. 

Proof. Let 3C si be a non-void monotone collection; put S = (JSC. If 3C = (0), 
then clearly S = 0, S e si. Hence we may suppose that SIC contains a non-empty set. 
Let M c S be finite. Put g = {x X \ x e M, Xe3C, xeX}; clearly, Dg = M. 
By 4 B.2, there exists a single-valued (p <= g with Dcp = M. By the corollary to 4 B.2, 
Ji = E(p is finite. Now, Jl <=. 9C is a collection and therefore, by the corollary to 
4 C.4, there exists in M a largest set, say X0. For every x e M we have x e <px, 
<px e Jt, hence (px c X0. Thus x 6 M => x e X0, and M <=. X0. 

We have shown that every finite M <=• S is contained in some X e3C a si. Since 
si is of "finite character", this proves that every finite M c S belongs to si. Hence S 
belongs to si as well. This proves that si is monotonically additive. 

4 C.6. Theorem. Let OF be a non-empty monotonically additive class of single-
valued relations. Let A be a set and let Df <=. A for any fe!F. Suppose that for 
every f e 8F such that Df 4= A there exists a relation g e 2F such that g => / , 
g 4= / . Then there exists a relation h e SF such that Dh = A. 

Proof. Let g consist of all pairs (J, g} where / e 3F, g e 2F, g => / , and g 4= / 
provided Df 4= A. By the assumptions stated in the theorem, DQ = Hence, by 
4 B.2, there exists a single-valued relation (p c g with Dq> = Dg = OF. By 4 A.7 and 
4 A.8, there exists a monotone class 38 <= J*" such that fe3$=> (pfe3S and 38 is 
comprisable if and only if there is a largest set in 38. Now, clearly { / -> D / | f e 38} 
is a one-to-one relation on 38 into exp A (if ft e 38, f2e 38, Df1 = D/2, then, by the 
monotonicity of 38, either f1 => f2 or f2 <= / i which, f1, f2 being single-valued, implies 
f1 = / 2 ) . This implies that 38 is comprisable. Hence, there exists a largest set, say h, 
in 38. Clearly, Dh = A since otherwise we would have (ph => h, cph 4= h, (ph e 38. 

Remark. Under a stronger assumption, namely of 3F being a set, the theorem 
would follow at once from 4 C.1. 

4 C.7. Theorem. Let si be a class of finite sequences, let me N and let the fol-
lowing conditions be satisfied: (a) si contains a sequence of length m; (b) i / n e N , 
{xk | k e N„} e si, then there exists an element y such that {xk | k e Nn + 1} e si 
where x„ = y. 

Then there exists an infinite sequence {ak | k e N} such that for every n e N, 
n ^ m, {ak \ ke N„} belongs to si. 
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Proof. Denote by 3F the class of all single-valued relations <p such that (1) either 
Dq> = N„, n ^ m, or D<p = N, (2) for every j e N , p ^ m, the restriction of <p 
to (Dip) n Np belongs to si. It is easy to see that & satisfies the assumptions from 
4 C.6 (with A = N). Thus there exists a <p e SF such that D<p = N. This completes 
the proof. 

Remark. The above theorem is a form of the so-called principle of con-
struction by induction (on natural numbers) or of recurrent construction. Observe 
that, in this theorem, the element x„ is, in general, not determined uniquely by the 
sequence {xt | k e N„}, in contradistinction to Theorem 3 D.6. 

We now give some basic facts on finite and infinite sets the proof of which requires 
the Axiom of Choice. Thus the gap in thee onsiderations in Section 3 concerning 
countable sets will be filled (the propositions in question have already been mentioned 
in 3 G.13). 

4 C.8. Theorem. If a class A is equipollent with no Np, p e N, then a subset 
of A is equipollent with N. 

Proof. Apply theorem 4 C.7 putting m = 0 and denoting by si the set of all one-
to-one finite sequences ranging in A. Clearly, the condition (b) from 4 C.7 is satisfied 
since, for any one-to-one finite sequence cp of length n, the class A — <p[N„] is non-
void. Hence, there exists an infinite sequence {ak | k e N} such that every {ak | k e 
e N„} belongs to si. Thus {ak | k e N} is one-to-one, which completes the proof. 

4 C.9. Theorem. Every finite class is a set equipollent to some Np, p e N ; 
conversely, every class equipollent to some Np is a finite set. Every infinite class 
contains a countably infinite set. 

Proof. Let A be a finite class; if A were equipollent with no Np, there would exist 
M <=. A equipollent with N which is impossible (see 3 A.9); thus A is equipollent to 
some Np, hence A is a set. The converse follows from 3 E.4. The last assertion has 
already been proved (see 3 G.12); an alternative proof is as follows: If A is infinite, 
it is equipollent with no Np; therefore it contains a set which is equipollent with N, 
hence countably infinite. 

4 C.10. Theorem. Let A be a countable set, Q a relation such that i?[(x)] is count-
able for every x e A. Then is countable. 

Proof. For any x e A, there exists a single-valued relation (depending on x) 
a such that Da c N, Ecr = g[(x)]. Now let r denote the relation consisting of all 
<x, ij/} where x e A, if/ is a. single-valued relation with Di¡/ c N, E = g[(x)]. 
By 4 B.2, there exists a single-valued relation f <= r with Df = Dr = A. 

Let (p be a single-valued relation, D(p <=. N, Ecp =A. We define a relation <P as 
follows: « m , n>, y} e <P if and only if <n, ef(q>m). 

Now if z e Q\A\, then z e g[(x)] for some xeA; clearly, fx is a single-valued relation 
for N ranging on g[(x)]. Thus, for some m, n, <n, z ) e fx, <n, z ) ef((pm). Clearly, 

is single-valued (since every f((pm) is a single-valued relation). Therefore we have 
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a single-valued 0 with D& c N x N, Ei> = Q\A\. This completes the proof, because, 
by 3 G.9, there is a single-valued relation on N onto N x N. 

Corollary. Let | a e A] be a countable family of countable sets (this means 
that A and every Xa is countable). Then \JXa is countable. 

Proof . It is clear that g = {a -* x | x eXa, a e A) is a relation satisfying the 
assumption from the theorem. Evidently Q\_A~\ = \JXa. 

D. M I N I M A L L Y N O N - C O M P R I S A B L E C L A S S E S 

We conclude this section with some propositions concerning a certain special 
type of non-comprisable classes. 

Up to now, non-comprisable classes usually appeared in this book mostly either 
as a "pathological" case beyond the scope of a proper investigation or as a kind 
of an unlimited depository of elements. In the present short subsection we give some 
positive facts concerning certain "relatively not too large" non-comprisable classes. 

4 D.l. Theorem. There exists a non-comprisable class 38 of sets such that, 
for a suitable set A and a single-valued relation cp on 38, 

(d0) A e 38, ( d j Xs38 (pXs38, (d'x) X e 38 => X c= <pX, X 4= q>X; 
(d2) 38 is monotonically additive; 
(d3) if ^ a 38 and the following holds: l) Ae<S, (2) if X e<$, then (pXe<#, 

(3) 1 is monotonically additive, then <6 = 38. 
Every such a class 3$ is monotone, and every non-void subclass S£ of 38 contains 

a smallest set. 
Proof . Let si be the class of all sets. Let g consist of all pairs <X , Y) of sets such 

that X <= Y, X 4= Y; it is clear that Dg = sd. 
By 4 B.2, there exists a single-valued (p c: g with Dtp = si. Let A be an arbitrary 

set. Then the existence of & with properties indicated above (except, perhaps, non-
comprisability and (di)) follows from 4 A.7, 4 A.8. If 38 were comprisable, then by 
4. A.8 (s), 38 would contain a largest set, say, M; this is a contradiction, because 
M e 38, hence (pM e 38, and (pM => M, <pM 4= M. Thus 38 is non-comprisable. 
Finally since 38 contains no largest set, (d't) holds. 

Remark . The class ^ i s well-ordered (see Section 11), and every interval ] *-, X J 
of it is a set. In Section 11, we shall prove that an order on a non-comprisable class 
is uniquely determined, up to an isomorphism, by these properties. 

We now append some auxiliary propositions. 
4 D.2. A class si of sets is comprisable if and only if \}si is comprisable. 
Proof . " I f" follows from si <= exp (U-^), "only if" is asserted in 2.13. 
4 D.3. Let si be a non-comprisable monotone class of sets. If 38 a si, then either 

U38 is a set and U38 <= A for some A e si or U38 = \Jsi. If X cz \Jsi is a set, 
then X <= A for some Aesi. 
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Proof . Let 38 cz si. Then either (1) there is a set A e si such that B <=. A for every 
Be 38 or (2) for any Aesi, there is a set B e 38 with 4 c B.In the first case, U 38 c A, 
38 c exp A, in the second case, U38 = Us i . — Let X cz \Jsi be a set. Let g 
consist of all <x, Y> where xeX, Ye si, x e Y. Clearly, Dg = X, hence there exists 
a single-valued <p cz g with D<p = X. Obviously, E<p c si is a set and therefore there 
exists a set A e si such that (px ^ A for every xeX, hence X <= A. 

4 D.4. Definition. A class A is called minimally non-comprisable if it is non-
comprisable and there exists a monotone class si of sets such that A = \Jsi. 

Remark . We have proved (4 D.1) that such classes exist. In the axiomatic system 
presented here, there is no possibility of proving that there exists a non-comprisable 
class which is not minimally non-comprisable; on the other hand, no means are 
known for proving that every non-comprisable class is minimally non-comprisable. 

As for the term "minimally non-comprisable", its motivation is apparent from 
theorem 4 D.7. 

4 D.5. If A is a set, and B is an arbitrary non-comprisable class, then A is equi-
pollent with a subset of B. 

Proof . Denote by F the class of all one-to-one relations for A into B. Clearly 
the suppositions of 4 C.6 are satisfied (observe that, for any / e F, /[^4] is a set, 
hence f[A\ 4= B). Therefore, there exists a he F with Dh = A. 

We now intend to show that the above assertion also holds if A is assumed to be 
a minimally non-comprisable class. This will be proved as a special case of a rather 
general theorem resembling (but by no means including) 4 C.6 and expressing 
(implicitly) a kind of an "over-transfinite induction" (for the concept of transfinite 
induction, etc., see Section 11). 

4 D.6. Theorem. Let F be a non-void monotonically additive class of single-valued 
relations. Let Jl be a monotone class of sets; put M = \JJl. Let Df cz M for every 
f e F. Suppose that for any f e F such that Df ^ M there exists a g e F such that 
g => f , g =¥f and, for some X e Ji, Dg X => Df. — Then there exists a single-
valued relation $ and a monotone class Jl* of sets such that (l) = M, (2) for 
any X e Ji*, 4>x e F, (3) \JJl* = M. 

Proof . If Jl, hence M is a set, we may apply 4 C.6 immediately and put Ji* = (M). 
Therefore we shall suppose that Jl is non-comprisable; then Df 4= M for every 
f e F. Let g consist of all </, g> where/ e F,g e F,f cz g,f 4= g and, for some X e Ji, 
Df cz X c Dg holds. By the assumptions made, Dg = F. Now let <p cz g be single-
valued (see 4 B.2), Dcp = Dg = F. Choose arbitrarily a relation he F. By 4 A.7 (with 
si, A replaced by F, h) and 4 A.8 there is a class B cz F with the properties described 
in 4 A.7, 4 A.8; in particular, B is monotone, and it is easy to see that B is non-com-
prisable. Now let Jl* denote the class of all Dg, g e B, and let 3C denote the class 
of all X e Jl such that X c Dg for some g e B. We are going to show that U3C = M. 
Suppose, on the contrary, that [J!Z =|= M; then by 4 D.3, there exists a Ye Jl such 
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that \JSC cz Y, i.e., X cz Y for every XeSC. If feB, then g = (pfeB, </, g} e Q 
and therefore there exists a J f e l with Df cz X cz Dg. Hence feB implies Df c= Y. 
From this we obtain at once that Ji* is comprisable. However, this assertion clearly 
contradicts the fact that B is non-comprisable. This contradiction proves that the 
assumption [JSC # M is false. Therefore \J3C = M, hence (JJi* = M. Now it is 
easy to see that the relation 4> = (JB has the properties required. 

4 D.7. Theorem. If M is a set or a minimally non-comprisable class, and B 
is an arbitrary non-comprisable class, then M is equipollent with a subclass of B. 

Proof. The case in which M is a set has been considered in 4 D.5. Suppose that M 
is minimally non-comprisable, M = \JJl where Ji is a monotone (non-comprisable) 
class. Denote by Fthe class of all one-to-one relations / such that D/ cz M, E/ cz B. 
Clearly, F is monotonically additive. I f / e F, then, by 4 D.3, there exists a set X e Ji 
such that Df cz X, Df 4= X; by 4 D.5, there exists a one-to-one relation g' on X — Df 
into B — E f . Putting g = f <o g', we have g e F, Dg = X. This proves that all 
assumptions from 4 D.6 are satisfied. Therefore, there exists a single-valued <P and 
a monotone class Ji* with properties (l) —(3) indicated in 4 D.6. By property (1), 
the domain of $ is equal to M. Since (JJi* = M, property (2) implies that <P is 
a one-to-one relation with E<£ c B. This proves the theorem. 



5. P R O D U C T S 

In this section, the cartesian product and some related notions will be considered. 
The cartesian product is, essentially, a generalization of the product X x 7 o f two 
classes X, Y already introduced in Section 1; roughly speaking, if certain sets Xa 

are given, their cartesian product consists of elements determined by their coordinates, 
the "a-th coordinate" being taken from Xa. Clearly, Xr introduced in 1 E.8 is a special 
case of the cartesian product with all Xa equal to a given X, and a ranging over Y. 

Besides this concept, we shall also consider the sum of sets, a concept which is 
dual, in a Certain sense, to that of the product. 

A. C A R T E S I A N P R O D U C T 

5 A . l . Definition. If A, B are classes, then the class A x B, i.e. the class of all 
<x, y), where x e A, y e B is called the pair-product or simply product of classes A 
and B. (This is a restatement of definition 1 C.9.) 

By this definition, the meaning of A x (B x C), (A x B) x C, A x ((B x C) x D), 
etc., is already clear. 

Convention. We shall write A x B x C instead of A x (B x C), A x B x 
x C x D instead of A x (B x (C x £>)), etc. 

Observe that this convention is in accordance with the notation (a, b, c) = 
= <a, <b, c)> introduced in 1 B.3. 

Remark. Clearly, (A x B) x C #= A x (B x C), A x B =t= B x A in general; 
in special cases, e.g. if some of the "factors" are void, equality may hold. 

5 A.2. If A, B, C are classes, then A x (B u C) = (4 x B) u (A x C), 
(BvC) x A = (B x A) u(C x A), A x (BnC) = (A x B)r\(A x C), (B n C) x 
x A = (B x A) n(C x A), and similarly for the difference and the symmetric 
difference. If A, B, C, D are classes, A, B are non-void, then A x B c C x D if and 
only if A <=. C, B <=. D. 

5A.3. If Y is a class, {Yft} is an indexed class of sets, then A x U{is} = 
= x 1»}, A x D{lfc} = n M x lf {*.}. W are indexed classes of 

6 — Topological Spaces 
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sets, then U{-^a} x = x and similarly for the intersection 
a,b 

(provided {AT,,}, {Yb} are non-void). 
These and similar results will be used in the sequel without reference. 
Having introduced the product of two classes we can proceed, step by step, to 

the product of any actually given finite number of classes; however, this procedure 
cannot yield the product of infinitely many "factors". Therefore, another approach 
is adopted. 

5 A.4. Definition. Let 96 = {Xa | a e A} be a family of sets. The class of all families 
x = {xa | a e A} such that xa e Xa for every a e A, will be called the cartesian 
product (sometimes only product) of the family 3£ (or also, somewhat informally, 
the cartesian product of sets Xa, a running through A), and denoted by n9C or 
Tl{Xa | a e A} or, briefly, J} X„, or if the set of indexes A is clear from the context, 

(IF A 

then by Yi^a ( o r sometimes HXa, provided there is no danger of ambiguity). 
a 

Definition. If SP is a collection of sets, then the cartesian product (or simply 
product) of SP, denoted by YISP, is, by definition, the product n { X | X e £P\. 

In the sequel, we shall usually consider products of families of sets. Of course, 
all results can be easily carried over to products of collections of sets (the difference 
being purely formal). 

Remarks. 1) Clearly, if X, A are sets, XA = Il{a -> X \ a e A} or, in other 
words, XA = n{Xa | a e A] where Xa = X for every a e A. — 2) It is evident that 
n o = (0) = X&. — 3) It is possible to introduce even the product of a "set of classes". 
Namely if A is a set and g is a relation with domain A, consider the class P(g) con-
sisting of all families {xa\a e A} such that agxa for every a e A. Now, if {Xa | a e A} 
is a family of sets and g = {a -» x | x e Xa, a e A}, then clearly P(g) = n{X a \ ae A}. 
— However, we shall not consider P(g) further. 

5 A.5. Definition. If a is an element, then the relation {x y \ x is a family, 
<a, _y> e x] will be denoted by pra (and occasionally called the projection relation 
associated with a or simply the a-th projection relation). 

Observe that pr„ is single-valued, Dpra is the class of all families whose domain 
(set of indexes) contains a, and Epra is the universal class. Since pra is single-valued, 
the symbol prax has a meaning for every x e Dpra. 

Convention. If x e Dpra we shall call prax the a-th coordinate of x. 
We shall now establish the fact that the pair-product (of two sets) and the cartesian 

product of a two-element family are "equivalent", in a sense to be specified. — 
The following assertion is clear: 

5 A.6. Let A, B be sets. Let T = (a, /?) be a two-element set. Then the relation 
assigning to every <x, y> e A x B the family (<a, x) , </J, _y>) is bijective for the 
pair-product A x B and the cartesian product II«a, A), </?, B)). 
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Convention. The above relation will be called (if the sets A, B and the elements 
a, P are given) the canonical relation for A x B and the corresponding cartesian 
product. 

Observe that there is a similar relation for, say, A x B x C and n{A'i | £ e 
e(a, /?, 7)}, where Xx = A, Xp = B, Xy=C, and so on. On the other hand, A x B 
and the above cartesian product are entirely different in the formal sense: elements 
of A x B are pairs, i.e. not sets, whereas elements of a cartesian product are always 
families, hence sets. 

5 A.7. Convention. If no misunderstanding is likely to arise, we shall also 
use the symbol A x B for the product J} Xs where Xa = A, Xfi = B, provided that 

either a, /? are evident from the context or their choice is irrelevant for the reasoning 
in question (see also 5 A.11). Similarly for A xBxC, AxBxCxD, and so on. 

5A.8. Convention. If T = (a, b), a 4= b, A is a set, then the relation {<p -*• 
-» <p_1[a] | (p e TA], which is bijective for TA and exp A (see 1 E.9), will be called 
the canonical relation for TA and exp A. 

Now we proceed to consider some properties of the cartesian product. 

5 A.9. Theorem. The product of a family of sets is a set. It is void if and only 
if some member of the family is void. (In symbols | a e A} = 0 if and only 
if Xa = 0 for some a e A.) 

Proof. Consider a family of sets {Xa | a e A}. Put X = \JXa. Then X is a set, 
hence XA is a set. Clearly, UXa c XA. As for the second assertion, "if" is clear, 
"only if" is asserted in 4 B.3. 

Remark. As just shown, the above theorem follows at once from the Axiom of 
Choice. On the other hand, this axiom in its strong form (see 4 B.1) given in this 
book can hardly be deduced from the above theorem; nevertheless, its weaker form 
obtained by replacing "class" by "set" in 4 B.1 is easily deduced from the theorem 
in question. 

5 A.10. If Xa are non-void, then H{Xa | a e A} <= II{Ya | a e A} if and only if 
Xa

 c Yafor every a e A; in particular, YlXa = IIYa if and only if Xa = Y„for every 
a e A. — This is clear, since pra[nXa] = Xa. 

5 A.11. Let a relation <p be bijective for sets A and B. Let a family of sets {Xb | b e 
e B} be given. Then the relation assigning to every x = {xb} from the product 
Tl{Xb\beB} the element {xva\ from the product Il{A'<))a | a e A} is bijective for 
these products. 

The proof is easy and is left to the reader. 
Convention. The above relation will be called the canonical relation (under (p) 

for the products in question. 

5 A.12. An important remark of a general kind is in place here. The above pro-
position expresses the "commutativity" of the cartesian product, more precisely the 

6' 
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fact that a cartesian product of a family "does not depend", essentially, either on 
the set of indexes or on the manner in which sets are assigned to indexes. The sets 
ILXj, HX9a are distinct, in general, but there is a naturalfy defined (canonical) bijec-
tive relation for them. 

Such a situation occurs in many other instances (cf. 5 B.2, 5 B.5, 5 B.6, etc.). In 
such cases, statements and properties relating to one of the sets (or other objects) 
in question are, as a rule, transformed almost automatically, by means of the appro-
priate canonical relation, to statements and properties relating to the other one. 
Thus, with due care, we can use in our reasoning any of such objects or even pass 
freely from one of them to another. We shall often proceed in this way, sometimes 
even without special comment. 

5 A.13. Let {Ba | a e A} be a disjoint family of sets, let B = \JBa. Let {Xb \ b e B} 
be a family of sets. Then the relation assigning to every {x61 b e B} the element 
{{x„ | b eBa} | a e A} is a bijective relation for Yl{Xb | beB) andIl{n{Xb \ b e Ba}}, 
that is for Y\Xb and ¡"J 11 Xb-

beB aeA beBa. 
The proof is immediate and is left to the reader. 
Convention. The above relation will be called canonical for and FI FI^»-

beB aeA beBa 

Remark. The above propositions express a kind of "associativity" of the carte-
sian product. An associativity in the strict formal sense (cf. the corresponding pro-
positions for U and fl in Section 2) does not hold of course (e.g. the set of indexes 
of any family belonging to n ^ f > p r e c i s e l y B, that of any family belonging to 

beB 

n n*>«precissiy 
aeA beBa 

We are now going to introduce the notation A x [38], [si] x [38] and so on in 
a sense analoguous to that of A u [38], [si] u [&] etc. (see Section 2). The meaning 
o f i x [38] is clear if we conceive A x X as the value (at X) of the relation {X -» A x 
x X}, A fixed; this relation may be denoted by A x , and then A x [38] is well 

defined (see 1 B.7). Nevertheless we shall define A x [3f], and other similar sym-
bols, explicitly. 

5 A.14. Definition. If A is a set, 38 a class of sets, then A x [38] is the class of all 
A x B, Be 38, and [38] x A is the class of all B x A, B e 38. If si, 38 are classes 
of sets, then [si] x [38] is the set of all A x B, A e si, Be 38. 

Example. If si = 38 is the class of all singletons, then [si] x [38] is the class 
of all singletons of the form ((x, y)), whereas si x 38 is the class of all pairs of the 
form <(x), (y)>. 

5 A.15. Definition. If A is a set of families, then n [ A ] is the set of all 11,4, A e A , 
exp [ A ] is the set of all exp A, A e A, and is the set of all HA, AeA (see 5 B.1). 

We shall use these symbols (especially those in 5 A.15) only rarely and do not, 
therefore, consider their use or properties in any detail. 



5. P R O D U C T S 85 

B. SUM 

We are now going to introduce the concept of the sum (in the sense of set theory) 
of a family of sets. Relatively less important than that of the cartesian product, 
it is nevertheless very useful (and in many respects far simpler than that of the 
product). 

5 B.l. Definition. If 9C = {Xa \ ae A} is a family of sets, then the set of all <a, x>, 
xeXa, will be called the (set-theoretic) sum of the family 9C and denoted "LSC or 
~L{Xa | a e A} or simply £ Xa (sometimes even EXa if the set of indexes is clear 

aeA 
from the context). 

Remarks, l) Observe that, if SC is a family of sets, T& = e - 1 0 X. - 2) If {Xa} 
is disjoint, then ZXa is, essentially, the same as U^a- In general, EXa can be described 
as obtained by replacing every Xa with a replica of it, in such a way as to get disjoint 
sets, and then forming the union. — 3) The sum can be defined also for an indexed 
class of sets (not necessarily comprisable); we shall, however, not investigate these 
questions. 

Convention. If Sf is a collection of sets, then will mean EJ^ (cf. 1 B.10). 
5 B.2. If {Xa | a e A) is a family of sets, then {<a, x> x | a e A, xe is 

a single-valued relation on E { X a | aeA} onto | a e A}. It will be called the 
natural mapping-relation for hXa and This relation is one-to-one (hence 
bijective for l,Xa and U-^a) if and only if {X^} is disjoint. In this case it will be 
called canonical. 

Proof. Perhaps only the last assertion requires a proof. If {Xfl} is disjoint, then 
there exist no distinct a e A, a' e A, and x such that x e Xa, x e Xa.\ thus if <a, x> e 
e hXa, <a', y} e I,Xa, and a #= a', then x 4= y. — If the canonical relation is one-
to-one, then x and x' are distinct whenever <a, x), <a', x'> are distinct; hence if 
a, a' are distinct, no x exists with x eXa, x e Xa,. 

5 B.3. Definition. Let a be an element. The relation assigning to every x the 
element <a, x> will be denoted by inja and occasionally called the injection relation 
associated with a or simply the a-th injection relation. 

Observe that E{Z„ | a e A) = Uinja [Za]. 
5 B.4. If {Xa | a e A} is a family of sets, then l,Xa is a set. It is void if and only 

i f , for every a e A, Xa is void (hence, in particular, if A = 0). — This is clear. 

Remark. Clearly, Z{Xa | a e A] <= E{Ya | a e A} if and only if Xa <= Ya for every 
aeA. 

5 B.5. Let cp be a bijective relation for sets A and B. Let a family of sets 
{Xb | b e B] be given. Then the relation assigning to every <a, x> e | a eA} 
the element <<pa,x> from \ b e B} is a bijective relation (called canonical) 
for £ Xva and £ Xb. — This is clear . 

aeA beB 
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5 B.6. Let {Ba \ a e A} be a disjoint family of sets, let B = U{5a}. Let {Xb\be B} 
be a family of sets. Then the relation assigning to every (b, b e B} 
the element <a, <f>, x » where b e Ba (which determines the element a uniquely) 
is a bijective relation for and X and called canonical (for J^Xb 

beB aeA beBa beB 

and £ ZXb). 
aeA beBa 

The easy proof is left to the reader. 

5 B.7. Let {Xa | a e ,4} be a family of sets; let Y be a set. Then the relation 
assigning to every « a , x>, y> e ( L X a ) x Y the element <a, <x, y>> e ~L(Xa x Y) 
is a bijective relation for (ZX a ) x Y and x Y) and is called canonical (for 
(LX.) x Y and T.(Xa x Y)). 

The proof is left to the reader. 

5 B.8. Remark. We have established, in 5 A.6, 5 A.8, 5A.11, 5A.13, 5 B.2, 
5 B.5, 5 B.6, certain canonical relations (cf. in this connection remark 5A.12). 
These relations are bijective, hence the sets in question are equipollent. Explicitly, 
we have (abbreviated notation is used): (a) exp A and TA, T being a two-element 
set, are equipollent; (b) Xb and Y \XV„ are equipollent, provided cp is bijective 

beB aeA 
for A and B; (c) J } Xb and Xb are equipollent, {Ba} being a disjoint cover 

beB aeA beBa 

of B, (d) \JXa and ~LXa are equipollent, if {Xa} is disjoint; (e) £ Xb and ^ X,pa 
beB aeA 

are equipollent, q> being bijective for A and B; (f) £ Xb and Y, Z x b are equipol-
beB aeA beBa 

lent, {Ba) being a disjoint cover of B. 

C. RELATIONAL PRODUCT 

If q, o are relations, then their pair-product in the sense of 5 A.1 consists of all 
pairs « a , b>, <c, d » where (a, b> e g, <c, d) e o. If [ga\ae A} is a family of 
relations, then the cartesian product consists of all {<xa, ya} \ a e A} where <xa, ya> e 
e ga; hence, this product is not a relation. Such a situation, of course, is not satis-
factory; intuitively, the product of two relations cp, (for the sake of simplicity, 
single-valued ones) should be a relation assigning <<px, i j /y} to every <x, y} e D<p x 
x Di¡/, and the product of {ga} should (provided ga are single-valued) assign {gaxa} 

to {xa} en{Dga}. We are now going to introduce the appropriate definitions. 

5 C.l. Definition. If g, a are relations, then the relation {<x, y> ->• <«, v) | 
j <x, u) e g, v} e <7} is called the relational pair-product of g and a and denoted 
by g x rel a; as a rule, we shall write simply g x a instead of g x rel a and call it, 
in short, the product of g and a (thus, if g and a are relations, g x a shall always 
mean the relational product unless it is clear from the context or stated explicitly 
that the product in the sense of 5 A.1 is considered). 
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