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V.1

V. Integro-differential operators

1. Fredholm-Stieltjes integro-differential operator

The most part of this chapter is devoted to the Fredholm-Stieltjes integro-differential
operators of the form

x - x(t) — Jlds[P(t, s)] x(s).

0

The kernel P(t,s) is assumed to be an n x n-matrix valued function defined for a.e.
te[0,1] and any se[0,1] and such that P(.,s) is measurable on [0, 1] for any
se[0,1],

(L,1) o(t) = |P(t, 0)| + var§ P(t, .) = ||P(t, .)|l;v < 0 ace. on [0, 1]

and

(12 e = (| tetiyrar) < .

where 1 < p < 0.
Such kernels will be called L?[ BV ]-kernels.

1.1. Remark. For L' < I* if p <r, any L[BV]-kernel is also an L[ BV ]-kernel
for each p, 1 < p < r. Furthermore

IP(t, s)| < |P(2,0)] + |P(t, s) — P(t, 0)| < o)
for all se€[0,1] and a.e. te[0,1]. Hence by (1,2)

1
J |P(t,s)|Pdt < oo forany se[0,1].
0
1.2. Proposition. If P(t,s) is an L?[ BV ]-kernel, then the function
. 1
Px: te[0,1] > J d,[P(t, s)] x(s)e R,
0
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\A
belongs to L” for any x € BV, and the operator

1

(1,3) P: xe BV, - j d,[P(1, s)] x(s)e L1,
0

is linear and bounded.

Proof. By 1.4.27 and 1.4.37 Pxe L and

(14) |(Px) (6)] < () ( sup [x(s))  ae. on [0,1]

se[0,1]

for any xeBV,. Since gel” and sup |x(s)| < | x|z, our assertion follows im-
mediately. sel0.1]

1.3. Remark. Since (1,4) holds also for any x € C,, the mapping x — Px is bounded

as an operator C,— LF as well. Let us notice, furthermore, that if x,,xeC,

(k=1,2,...) and lim |*, — x||c = 0, then in virtue of (1,4) lim (Px,)(t) = (Px)(1)
- k=

ae. on [0,1]. In other words, P maps sequences converging uniformly on [0, 1]

onto seugences converging a.e. on [0,1]. It was shown in Kantorovi¢, Pinsker,
Vulich [1] that

xeC, - JldS[P(t, s)] x(s)e L,

0
with the L'[BV]-kernel P(t,s), is a general form of operators C, — L} possessing
this property. .

1.4. Proposition. If P(t,s) is an I[![BV]-kernel, then the operator P: BV,— L!
given by (1,3) is compact.

Proof. Let x,€BV, and ||, <1 for each k = 1,2,.... By the Helly Choice
Theorem the sequence {x,}, contains a subsequence {x, }iZ, such that

lim x,(t) = x(r) ~ on [0,1]
for some x € BV,. For t,5€[0,1] let us denote

plt, s) = vary P(t, .)
and

(0= | 007691 )~ 0.
Given [ = 1,2,... and s€[0,1],

i) = x(5) < lx, = {15y < [y + [xv < 1+ [x]y < o0
and hence by 1.4.27

|2e)| < (varo P(&, .)) (1 + |x| ) < (1 + || %[ v) o)  ae. on [0,1].
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V.1
Moreover, according to 1.4.24
llirg z(t)=0  ae on [0,1].

By the assumption g € L and hence applying the classical Lebesgue Convergence
Theorem we obtain

(L,5) lim r|z,(t)}" dt=0.

=00 0

Since for any I = 1,2,...

Ll jlds["(" )] (xi,(5) — x(s))

0
and this completes the proof.

p 1
dt < J |z(e)P de,
0

(1,5) implies
lim [Px,, — Px||, =0

1.5. Notation. Throughout the chapter P denotes the operator defined by (1,3)
or its restriction on W? (1 < p < o), where W/ stands for the Sobolev space defined
in 1.5.10. Furthermore,

(L6) D: xeWr-x'el?
and
(1,7) L=D-P: xeWf—>x' —Pxel?

for any peR, p > 1.

1.6. Remark. Clearly, D is linear and bounded for any peR, p > 1. Hence if
P(t,s) is an I’[ BV ]-kernel, then L is also linear and bounded. We shall show that
it has a closed range and hence by 1.3.14 it is normally solvable.

1.7. Proposition. Let P: [0,1] x [0,1] —» L(R,) be an L?[ BV ]-kernel (1< p < o).
Then the operator L: WP — L% given by (1,7) has ‘a closed range in L.

Proof. Let fe L2 Then fe R(L) if and only if there exists x € W? such that

(19 ()~ x0) - [ (] atpte.n x9) e = [ 0c

Hence denoting
T

(1,9) y: heLf,’AJ‘h(t)dte we,

0

II: xe WP - z(t) = x(0)e W7,
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V.1
we have f € R(L) if and only if ¥fe R(I — (IT + ¥PP)), where I stands for the identity
operator on WP.

The operators IT and ¥ are evidently linear and bounded. As R(IT) is finite dimen-
sional, IT is compact (cf. 1.3.21). Since, given xe W?, || x|z, < || x| ws, it follows from
1.4 that also P: WP — LF is compact. Hence the operator @ =IT + ¥YP: WP - WP
is linear bounded and compact. Consequently R(I — @) is closed (cf. 1.3.20).
Since  ¥(R(L)) = R(I — ©), R(L) is closed.
1.8. Proposition. If P(t,s) is an LP[ BV ]-kernel, then

n < dimN(L) < o0,
while dim N(L) = n if and only if R(L) = L.
Proof. By the proof of 1.7 the equation Lx = f is equivalent to the equation

x — Ox = Yf,

where @ = IT + PP: W — WP is defined by (1,9). Since © is compact, by 1.3.20
we have dim N(L) = dim N(I — ) < o and

(1,10) dim N(L) = codim R(I — ©) = dim W?/R(I — ©).
It follows from the definition of @ that

R(l — ©) = {geW?; g0) = 0} = V)7

Consequently
dim W?[R(I — ©) > dim W?[V/?.

o)
If {e,,e,,...,e,} is a basis in R, and ‘g‘l() ; on [0,1] (j =1,2,...,n), then the
system of equivalence classes ; + V" (j = 2 ..n) forms a basxs in Wp[vp.

Hence
dim W;”/ VP =n

and by (1,10) dim N(L) = n if and only if
dim W?[V? = dim W?[R(I — ©).
Since R(I — @) =V if and only if R(L)= L2, the proof will be completed by
means of the following assertion.
- 1.9. Lemma. Given a Banach space X and its closed linear subspaces M, N such that
M c N c X, dim X/M = dim X/N < oo holds if and only if M = N.
Proof. Let dim X/M = dim X/N = k < co and let xe N\ M. Let £;=¢;+ N
(j=1,2,..,k) be a basis in X/N and let
k
ax + ) AgeMc N
j=1
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V.1

for some real numbers a, 4; (j=1,2,.., k). Since ax e N, this may happen only if
ME + A8 + ...+ L& eN, ie. A, =4, =...=4,=0. Thus axe M and for
x¢ M, o = 0. This means that the classes {x +M, &+ M; j=1,2,.., k} are
linearly independent in X/M and dim X/M > k+ 1 > dim X/N. This being con-
tradictory to the assumption, we have M = N.

1.10. Remark. By 1.8 there exists an n x k-matrix valued function X (k = dim N(L))
such that xe W/ is a solution to Lx = 0 if and only if x,(t) = X(r)c on [0,1]
for some ceR,. Unfortunately, even if k = n, it need not be det(X(t)) + 0 on
[0, 1]. For example, the equation

(1,11) x(t) — 4 jlx(t) dt=f(r) ae on [0,1]

0

possesses for any fe L. and ce R, the unique solution

x(t) = I(1 - 41)c + 41 Ll (J:f(f) dr) ds + L f()dc  on [0,1]

such that x(0) = ¢. In particular, x € AC, is a solution of the corresponding homo-
geneous equation if and only if x(t) = I(1 — 4t) ¢ for some ce R, and X(t) = I(1 — 4t)
is the fundamental matrix solution for (1,11). Let us notice that X(z) = 0.

1.11. Remark. Putting R(z,s) = P(t,s+) — P(z,1) for se(0,1), R(t,0) = P(t,0) — P(t, 1)
and R(, 1) = 0, we would obtain

R(t,s+) = P(t,s+) — P(t,1) if se[0,1),
R(t,s—) = P(t,s—) — P(s, 1) if se(0,1]
and hence according to 1.5.5

les[P(t, s)] x(s) = J;) 1ds[R(t, s)] x(s)  for each xeAC,.

Given a subdivision ¢ = {0 =5, <s; <...<s, =1} of [0,1] and 6 > 0 such
that 0 = sy <so+0 <5, <$;+5<... <Sp_y <Sp_1+06<s, =1, we have

m—1
t) = |P(t, so + 8) — P(t,0)| + Y. |P(z, 5;+ &) — P(t, s;— 1 + 5|
j=1

+ |P(t,1) = P(t, 5, +8) < o(t) ae. on [0,1].
Consequently

™=

IR(t, 5;) = R(t, 55-1)| = Jim Vi(t) < eft)

]

j=1

and vary R(r, .) < o(t) a.e. on [0,1]. Since |R(t,0)| < 2¢(t) ae. on [0,1] (cf. 1.1),

it follows that R: [0,1] x [0,1] — L(R,) is also an L”[BV]-kernel.
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V.2

This means that without any loos of generality we may assume that P(1, .) is
right-continuous on (0, 1) and P(t, 1) = 0 for almost all te[0,1].

1.12. Remark. Let
—A(t)—C(t) — D(t) if s=0,

—A(r) — D(t if 0<s<t,
Plt.s) = (1) = D(1) i s

—D(r) if t<s<l1,

0 if s=1,

where A, C, D are n x n-matrix valued functions whose columns are elements of L?.
Then
var} P(t, .) = |A()| + |€(0)] + [D()]  ae. on [0, 1]

and hence P(t,s) is an L”[ BV ]-kernel. Furthermore, given x € AC,,
1
f d,[P(t, s)] x(s) = A(t) x(¢) + C(t) x(0) + D(t) x(1)  a.e. on [0,1]
0

and the integro-differential operator L = D — P reduces to the differential-boundary

operator
xe WP — x'(t) — A(t) x(t) — C(t) x(0) — D(t) x(1) € L.

2. Duality theory

Our wish is now to establish the duality theory for BVP

1
(2.1) x'(¢) — J d[P(s,s)] x(s) = f(t) ae. on [0,1],
. 0

1
(2.2) Sx = Mx(0) + j K(t) x'(t)dt = r.

(0]
In particular, we shall show the normal solvability and eyaluate the index of this
boundary value problem under the following assumptions.

2.1. Assumptions. P: [0,1] x [0,1] - L(R,) is an LP-[BV]-kernel, 1 <p < oo,
fell, MeL(R,R,), K: [0,1] > L(R,R,). |K|L <o, ¢=p/(p—1)if p>1,
g=o if p=1and reR,.

2.2. Definition. A function x: [0,1] - R, is said to be a solution of BVP (2,1),
(2,2) if xe AC, and (2,1), (2,2) hold for a.e. te[0,1].

2.3. Remark. According to 1.13 we may assume that for a.e. t€[0,1] P(t,.) is
right-continuous on (0,1) and P(t,1) = 0. Furthermore, let us mention, that if
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V.2

P(t,s) is an L”[BV]-kernel and fe L%, then obviously x'eL? for any solution
x € AC, of the integro-differential equation (2,1). Thus given a solution x of BVP
(2,1),(2,2), xe Wp.

2.4. Notations. The operators D € B(W?, L%) and P e K(W?, L%) are defined by (1,3)
and (1,6),

1
S: xe WP > Mx(0) + j K(t) x'(t)dteR,,
and 0
Dx — Px
Sx

Making use of 2.4, we may reformulate BVP (2,1), (2,2) as the operator equation

(24) Px = <f>

r

(2,3) .%’:er,,"-*[ ]eLﬁme.

It appears to be convenient to handle instead of (2,4) the operator equation for

§—<X>GW"><R
- d n m

(2.5) E-Te=9,
where

1
(2,6) 'I’:ueL‘,i—»J‘u(r)dteVl{f’, D: xe WP - v(t) = x(0)e WP,
0
P YP b4
T:(x>eW,,"xR,,,—»[ X+ er,,”xR,,, and ¢p=< f)eW,,"xR,,,.
d d — Sx r
Clearly, x e W? is a solution to BVP (2,1), (2,2) if and only if for an arbitrary deR,,
the couple & = (:) is a solution of (2,5). In particular,
(2,7) dim N(I — T) = dim N(&) + m.
¥f

i )eR(I—T).

As according to 1.4 and 1.3.21 the linear operator T given by (2,6) is compact and

Furthermore, C)GL’,{ x R,, belongs to R(%) if and only if (

b4
the linear operator W: (:)eLﬁ x R, —->< rf>e WP x R,, is obviously bounded,
we have

2.5. Proposition. Under the assumptions 2.1 the operator £ given by (2,3) has a closed
range in L? x R,

Since by 1.5.13 the dual space (W?)* to WP is isometrically isomorphic with
L? x R¥ and (L2 x R,)* is isometrically isomorphic with Lf x R} (cf. 1.3.9 and
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V.2

1.3.10), the adjoint operator to &% may be represented analytically by the linear
bounded operator

(2.,8) &L*: (y*, A*)e L x R — (L¥(y*, 4*), L%(y*, 4*))e L¢ x R*
which is defined by the relation

(29) le*(t) [Dx — Px](f)dt + A*[$x] = J:L’f(y*, %) (1) x'()dt + L¥(y*, 4*) x(0)

0
forall xeW?, y*elL? and A*eRX.

Analogously, the operator
(2,10 T*: (y* x* 4*)e LI x R* x R
| - (THy* %, 4%), T3(y*, »*, &%), T3(y* »*, 2*))e L x R} x R}
defined by
(2,11) le*(t) (Px) (¢) dt + »* x(0) + A*(d — Sx)

0
1
- J TH(y*, o*, A*) x'(t) dr + TH(y*, »*, 4*) x(0) + Ti(y*, »*, 4*)d
0
forall xeWpP, deR,, y*elLl, x*eR}, A*eR}

represents analytically the adjoint operator to the operator T.

2.6. Theorem. If 2,1 holds and P(t,1) =0 a.e. on [0,1], then the operator
£L*: LT x RE — Li x R} given by (2,8) verifies (2,9) if and only if
: 1

(212) Li(y* a%)() = y>*(t) + L y*(s)P(s,t)ds + A*K(t)  a.e. on [0,1],

(2,13) Li(y*, 4*) = *M + J‘ y*(s) P(s, 0) ds..
]
Proof. Let xe WP, y*eL? and A* € R}. By 1.4.38
1 1 1
J y*(©) (Px) () dt = J d, I:J‘ y*(s) P(s, ) ds:l x(1).
V] 0 0

Furthermore, integrating by parts (1.4.33) and taking into account the assumption
P(t,1) = 0 a.e. on [0, 1], we obtain

[ roEa0a = (] yorsoe)xo - [ ([ rorsis)xoa.

0 (4] 0 0
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Hence )
J y*(t) [Dx — Px](f)dt + A*(Sx)

0

= [l*M + J]y*(s) P(s,0) ds:| x(0) + Jl [y*(t) + le*(S)'P(s, t)ds + A K(f)] x(¢) dt

0 0 0
for all xe WP, y*e L] and A*eR}.
In virtue of (2,9) this yields that

Jl |:LT(Y*, ) (1) — y*(0) - J ly*(s) P(s, f)ds — A* ,((t)] () dt

0 + [L’S(y*, ¥) — A*M _0 Ll y*(s) P(s, 0) ds:| x(0) = 0

holds for all xe W?, y*e LI and i* e R}.

The proof will be completed by making use of 1.5.15.
Similarly

2.7. Proposition. If 2.1 holds and P(t,1) =0 ae. on [0,1], then the operator
T*: L x R¥ x R — L% x R} x R% given by (2,10) verifies (2,11) if and only if

TH(y*, o*, 4%) (£) = — L¥(y*, A*)(¢) + y*() ae. on [0,1],
Ta(y* o% 4%) = —L3(y* 4%) + %%,  TH(y* % %) = A*

Jor all y*e L, x*e R} and i*eR}.

2.8. Corollary. dim N(£*) = dim N(I — T*) — n < oo.
Proof follows readily from 2.6, 2.7 and 1.3.20.

2.9. Theorem. If 2.1 holds and P(t,1) = 0 a.e. on [0, 1], then
ind (&) = dim N(£*) — dim N(&) =m — n.

Proof. By 2.5 and 1.3.15 codim R(£) = dim N(£*). Hence by (2,7) and 2.8 and
1.3.20
ind(#)=dimN(I = T*)—n—dimN(I —T)+ m=m—n.

2.10. Remark. The relation (2,9), where L¥(y*, 4*) and L¥(y*, 4*) are given by (2,12)
and (2,13) is the Green formula for BVP (2,1), (2,2).

2.11. Remark. Let A, C,D: [0,1] > L(R,) be Lebesgue integrable on [0, 1], let
P: [0,1] x [0,1] - L(R,) be an L'[BV]-kernel and let K: [0,1] - L(R,, R,) be
of bounded variation on [0,1] and M, N e L(R,, R,). Let us consider the problem
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of determining x € AC, which verifies the system

(2,14)  x'(r) — A(t) x(t) — [€(¢) x(0) + D(r) x(1)] — J:ds[P(t, s)] x(s) = £(r)

a.e. on [0,1]

and
1

(2,15) M x(0) + N x(1) + J d[K(t)] x(t) = r,

0

where fe L} and reR,,. Again we may assume that P(t, .) is for almost all ¢ € [0, 1]
right-continuous on (0, 1). Moreover, if we put

P(#,0+) — P(t,1—) if s=0,
Po(t,s)=[P(t,s) —-Pt1-) if 0<s<1,
0 if s=1
and Cy(r) = C(t) — [P(t,0+) — P(t,0)], Do(t) = D(t) — [P(¢, 1) — P(t, 1—)], for any

x € AC, we should obtain
1

C(t) x(0) + D(¢) x(1) + L d [ P(z, s)] x(s)
= C,(t) x(0) + Dy(t) x(1) + les[PO(t, s)] x(s) -

Hence, without any loss of generality we may assume that for almost all ¢€[0,1]
P(t, .) is right-continuous on [0, 1), left-continuous at 1 and P(t, 1) = 0. Analogously,
K may be assumed right-continuous on [0, 1), left-continuous at 1 and K(1) = 0.

According to 1.12 we may rewrite the equation (2,14) in the form

(2,16) x(t) — fOIdS[R(t, s)] x(s) = f(r)  ae.on [0,1],
where
—A() — C(t) — D(r) if s=0,
T R St
0 if s=1

is again an L'[ BV ]-kernel. Furthermore, applying the integration-by-parts formula
and taking into account that K(1) = 0 and

1
x(l) = x(O) + j x’(r) dr for any xe AC,,
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we transfer the side condition (2,15) into

(2,17) H x(0) + J lF(t) x(f)dt =r,

where H=M+N-KO0), Fi=N—K(.

The system (2,16), (2,17) may be written as the operator equation

- (;)

with Z: AC, - L. x R,, defined in an obvious way. Now, proceeding analogously
as in the close of the proof of IV.3.13 we may deduce from 2.6 that (y*, A*) e N(#*)
if and only if there exists ze BV, such that z(t) = y(t) a.e. on [0, 1], z(0+)= z(0),
z(1—) = z(1) and

1
(2,18) z*(t) + j z*(s)R(s,t)ds + A*Ft) =0  on (0,1),

0

1
(2,19) A*H + J z*(s)R(s,0)ds = 0.

0
As F(1—-)=F1)=N and R(t,1—)= —D(r) for almost all te[0,1], we have
by (2,18)

1
(2,20 *(1) = j z*(s) D(s)ds — A*N..

0o
Since F(0+)= F(0) = N — K(0) and R(1,0+) = P(t,0) — A(t) — D(t) for almost
all te[0,1], the relations (2,18) and (2,19) imply

2%(0) = — rz*(s) P(s,0)ds + f

0 0

1 1

z*(s) D(s) ds + J z*(s) A(s) ds — A*N + A* K(0)

0

- - [m-l + le*(s) R(s, 0) ds] - J lz*(s) C(s)ds + A*M

0 0

= - le*(s) C(s)ds + A*M.

0
By the definition of R and F we have for any ze BV, and A€ R, fulfilling (2,20)

jlz*(s) R(s, t)ds + A* F(t)

0

- (m« - le*(s) D(s) ds) - J 2(s) Als) ds + L 249 Pls, £ ds — 4* K({)

= —z%(1) - J:lz*(s) A(s)ds + j z*(s)P(s,t)ds — A*K(t)  on [0,1].

0
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Thus, the adjoint problem to BVP (2,14), (2,15) is equivalent to the problem of de-
termining z € BV, and 4* € R} such that

1

(2,21) z*(r) = z*(1) + fz*(&) A(s)ds — j z*(s) P(s,t)ds — 4*K(t)  on [0,1]

0
1

(2,22) z*(0) + A*M + L z*(’s) C(s)ds =0,

z*(1) — A*N — J z*(s)D(s)ds = 0.

0

2.12. Theorem. Let us assume 2.1 and P(t,1) = 0 a.e. on [0,1]. Then for given
feL: and reR, BVP (2),(22) possesses a solution if and only if

1
J y*(t) f(r)de + A*r =0
0
for any couple (y*, A*)e L8 x R* which verifies the adjoint system

(2,23) y*() + 1y*(s) P(s,t)ds + A*K(t) =0  ae. on [0,1],

0

(2,24) MM + J 1y"‘(s) P(s,0)ds =0.

0

Proof follows from 2.5, 2.6 and 1.3.14 (cf. 1.3.23).

2.13. Theorem. Let us assume 2.1 and P(t,1) =0 a.e. on [0,1]. Then for given
g*e Ll and q* € R}, the system

y*() + le*(s) P(s,t)ds + A*K(t) = g*(t)  ae on [0,1],

0

0

1
M + J y*(s) P(s,0)ds = q*
possesses a solution (y*, A*)e L% x R¥ if and only if

Jwg*(t) x'(t) dt + q*x(0) =0

0o

holds for any solution x € WP of the homogeneous problem ¥Lx = 0.

Proof follows again from 2.5, 2.6 and 1.3.14.

2.14. Remark. Let us notice that the side condition (2,2) is linearly dependent if
there exists q € R,, such that ¢*M = ¢* K(t) = 0 a.e. on [0, 1] (q*(Sx) = O for all
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x € WP implies that
1
xe Wz q($6) = (M)x0) + | (a" K0 X0 creR
o
is the zero functional on W}).

Analogously as in the case of Stieltjes-integral side conditions (cf. IV.1.14, where
no use of the special form of side conditions was made), we can also show that to
any nonzero linear operator S,: W?” - R, and r,eR, such that q*S,x) =10
for any xe AC, implies q*r, = 0, there exist m <k, S§: W? > R, and reR,
such that the condition Sx = r is linearly independent and equivalent to S,x =r,,.

2.15. Remark. It follows from the proof of IV.1.15 that if (2,2) is reasonable and
linearly independent, then there exists a regular m x m-matrix @ such that
M, 0
O[M,K(1)] = | My, K,(t)
0, K1)
where Mye L(R,, R, ), M, and K,(t)e L(R,,R,,) and K,(t)e L(R,, R,,,) are such
=m

M, K,(¢)
that my, + m; + m, = m, rank M o + m; and the rows of are
1

ae. on [0,1],

K1)
linearly independent in L, i.e.

Kl(t)]
* =0 ae. on [0, 1
7 [Kz(t) [o.1]
implies g* = 0. The system
M, x(0) = ro,
1 o
M, x(0) + J K@) x()dt=r, (| r,]|=06r),
0 r,

Jle(t) x'()dt =r,

0

is the canonical form of the side condition (2,2).

2.16. Remark. Another possible functional analytic way of attacking BVP (2,1),
(2,2) with reR,, fixed consists in considering the linear operator &, defined on
D(&Z) = {xeWP; Sx=r} c WP by

%, xeD(¥,)—>Dx — Pxelf.
BVP (2,1), (2,2) may be rewritten as the operator equation
Zx=f.
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As R(<Z,) is the set of all fe L? for which <f>eR($) and R(£) is closed by 2.5,
r
R(Z,) is also closed. By 2.12 R(,) is the set of all fe L? which fulfil the relation

jly*(t) f(t)de + A*r =0

0

for all couples (y* A*)e N(£*) < LI x R¥. In particular, if N} denotes the set
of all y*e L? for which there exists 4* € R¥ such that (y*, 4*)e N(Z*), then

R(&,) = “(N})
(the set of all fe L% for which <f, y*), = 0 for any y*e N¥).

2.17. Proposition. R(L,)* = N§, where R(ZL,)" denotes the set of all y* e L% such
that

le*(t) f()dt =0  forany feR(Z,)

and N¥ is the set of all y* € L2 for which there exists A* € R* such that (y*, 4*) € N(£¥)
(i.e. (2.23), (2.24) hold).

Proof. Let y*e L% Then y* e R(Z,)" if and only if

0= fly*(t) [Dx — Px] () dt

- [[ro+ [y P( 9as [xar+ | [ v pis0)as |x0)

holds for every x e D(%,) = N(S).

This is true if and only if (u*, v*) € N(S)*, where

(2,25) u*(t) = y*(t) + le*(s) P(s,t)ds  on [0,1],

0

v = le*(s) P(s,0) ds.

0

' Since R(S) is a linear subspace in R,, it is certainly closed and thus according to
1314 N(S)* = R(S*), where

S*: A* e R¥ — (STA*, S¥A¥)e L x R}

is the adjoint of S defined by the relation

1
IX(Sx) = j (§%4%) (1) x(¢) dt + (S34*)x(0)  forall xeW? and i*eRj.

0
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Obviously, (S¥A*)(t) = A*K(t) ae. on [0,1] and $%4* = A*M. This means that
(u*,v*)e N(S)" if and only if there exists A* € R} such that

u*(t) = A*K(t) ae.on [0,1], v*=A*M,
wherefrom R(Z,)* = N§ follows immediately by (2,25).

2.18. Remark. Since by 2.8 dim N} < oo, Proposition 2.17 is a consequence of
the following general assertion due to J. Dieudonné (cf. Goldberg I1.3.6).
If Y is a linear normed space, N < Y*, dim N < oo, then (*N)* = N.

3. Green’s function

Let us continue the investigation of the operator

Dx — Px

& er,,"~+|:
X

]equm

given by (2,15). (cf. also (L,6), (1,3) and (2,2).) We assume again that 2.1 holds. More-
over, we assume that P(t,1) = 0 a.e. on [0, 1] (cf. 1.15 and 2.2).
Of particular interest is the case when the operator equation

(3.1) Px = (f)

r

or BVP (2,1), (2,2)) has a unique solution for any fe L? and reR,,.
( (2.1), (22) q y felf m

3.1. Notation. Throughout the section ! = dim N(D — P), X(t) is an arbitrary
n x k-matrix valued function whose columns form a basis in N(D — P) and (SX) is

the m x [-matrix
1

(32 (SX) = MX(0) + J K(t) X(t) d.

0
(According to 1.8 n <1< 0.)

3.2. Lemma. dim N(&) = [ — rank (SX).

Proof. By the definition of X(t) we have xe N(£) if and only if x(r) = X(f)c
on [0, 1], where ce R, is such that

(3.3) (SX)c=0.

Obviously, the functions X(t)¢; with ¢;e R, (j = 1,2,...,v) are linearly dependent
in W? if and only if the vectors c; (j =12,.., v) are linearly dependent. The
assertion of the lemma follows immediately.
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3.3. Remark. Since rank (SX) < m and I > n, 3.2 implies
dmN(&) > n—m.
3.4. Lemma. R(¥) = L? x R,, if and only if dim N(£)=n — m.
Proof. Since by 2.5 R(&) is closed in L? x R,, R(£)= L% x R,, if and only if
(34) 0 = codim R(&) = dim ((LZ x R,)/R(£)) = dim N(£*)
(cf. 1.3.11). According to 2.9
dim N(£*) = dimN(&L) + m —n

wherefrom by (3,4) the assertion of the lemma follows.

3.5. Corollary. BVP (2,1), (2,2) possesses a unique solution for any fe L and reR,,
if and only if

(3,5) m=n and dimN(&L)=0.
Proof follows from 3.4 taking into account that (3,1) has a unique solution for any
<i>e R(£) if and only if dim N(&Z) = 0.

Analogously as in the case of ordinary differential equations we want to represent
solutions to (3,1) in the form

1

(3,6) x(t) = J‘ G(t,s) f(s)ds + H(t)r  on [0,1].
0

3.6. Definition. A couple of functions G: [0,1] x [0,1]— L(R,) and H: [0,1]>L(R,)

is said to be a Green couple of BVP (2,1), (2,2) if for any t € [0, 1] the rows of G(t, .)

are elements of L2'and the function (3,6) is for any feL? and re R, the unique

solution of BVP (2,1), (2,2).

Clearly, (3,6) verifies (3,1) for any fe L% and reR, if and only if

() ()= [ 6tes)| ¥ - [ atpts. o1 (0|0

0
1

K(s) x'(s) ds] . on [0,1]

holds for any x e W?. If for any t€[0,1] the rows of G(t, .) are elements of L%,
then by 1.4.33 and 1.4.38

J: G(t, o) (les[”(o, s)] x(s) do) = J:d, UolG(t’ o) P(o, 5) da] x(s)
S <LIG(t, o) P(c,0) do) x(0) — r <le(t, o) P(a, s) do') x(s) ds

0 0

+ H(t) [M x(0) + j

0
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for any te[0,1] and any x € W?. (We assume P(t, 1) = 0.) Consequently the right-
hand side of (3,7) becomes

|, [ste9+ [ 0Pl ao + 9| 95

0 0

+ [H(t)M + j 'G(t, ) P(0, 0) da] x(0).

0

Thus, since for any x e W

x(t) = x(0) + j () dt = x(0) + JIA(t, 9x(s)ds  on [0,1],

where
(3.8) A(t,s) = {

the relation (3,7) may be rewritten as follows

(39) Jl l:G(t, 9+ JlG(t, o) P(, ) do + H(1) K(s) — A(t, s)] x(5) ds

0 0

0 if t<s,
] if t>s,

+ [H(t)M + j 1G(t, o) P(c,0)do — 1] x(0)=0 forany xeWp.

0

Applying 1.5.15 we complete the proof of the following

3.7. Proposition. Let us assume 2.1 and P(t,1)=0 a.e.on[0,1]. Let G: [0,1] x [0, 1]
- L(R,) and H: [0,1] > L(R,) and let G(t, .) be *-intergrable on [0, 1] for any
te[0,1]. Then G(t,s), H(t) is a Green couple of BVP (2,1), (2,2) if and only if (3,5)
holds and for any t€[0,1]

(3,10) G(t,s) + LIG(t, 0)P(o,s)do + H(t)K(s) = A(t,s)  for ae. se[0,1],

H(O)M + j G(t,0)P(0,0)do =1,

0
where A(t, s) is given by (3,8).

Moreover, we have

3.8. Proposition. Let the assumptions of 3.7 be satisfied. If m = n and for any
te[0,1] G(t,s) and H(t) satisfy the system (3,10), then G(t, s), H(t) is a Green couple
of BVP (2,1), (2,2).

Proof. Since (3,10) implies that (3,9) and consequently also (3,7) hold for any
x € WP, it is easy to see that then (3,6) is a solution to BVP (2,1), (2,2) for any couple
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<f>eR(.5£). Furthermore, if x,,x,e WFf and ¥x, = ¥x, = (i), then inserting
r
x = x; and x = x, into (3,7) we obtain

x,(1) = JIG(t, s)f(s)ds + H(t)r = x,(t)  on [0,1],

]

ie. dimN(ZL)=0. If m=n, then by 29 codim R(%Z) = dim N(&) = 0. Thus
R(Z) = L% x R,, (cf. 1.9) and this completes the proof.

Let &£*: L1 x R} — LI x R¥ denote again the analytical representation of the
adjoint operator to & given by 2.6.

3.9. Lemma. If (3,5) holds, then dim N(£*)=0 and R(£*)= L% x R}.

Proof. By 2.9 (3,5) implies 0 = dim N(&) = codim R(£*) = dim N(£*) and the
proof will be completed by means of 1.9.
Lemma 3.9 together with the Bounded Inverse Theorem 1.3.4 yields

3.10. Proposition. The operator £*: LI x R* — L1 x R* defined by 2.9 possesses
a bounded inverse.

3.11. Theorem. Let us assume 2.1 with P(t, 1) =0 ae. on [0, 1] and (3,5), Then
there exist functions G: [0,1] x [0,1] - L(R,) and H: [0,1] - L(R,) which verify
the system (3,10) for any te [0, 1]. Moreover,

(i) given te[0,1], |Gt )| <o (g=plp—1) if p>1, g=o0 if p=1),
(i) there exists p€R such that

IG(t, ). + |HEO) < B< o0 forany te[0,1],

(i) if G:[0,1] x [0,1] > L(R,) and A: [0,1] - L(R,) also fulfil (3,10) for any

te[0,1], (i) and (ii), then Gi(t,s) = G(t,s) and F(t) = H(t) for all te[0,1]
and for a.e. se[0,1].

Proof. Let &¥(t,s) and e} (j = 1,2,...,n) be the rows of A(t, s) and I, respectively.
By 3.10 any equation from the system

(3,11) LHeg*h*) =05t ). e), te[0,1], j=1,2,...n
has a unique solution (g}(t, .), h}(t)) in L2 x R* and
612 g6 Mow + W) < (306 oo + )

for any t€[0, 1] and j=1,2,...n,
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where x = [|[(£*)7!| < 0. Let us put
609 = [g.(e: ) £al.5) o 691 on [0.1] x [0.1],
H() =[hy() hye) ... h()]* on [0,1].
Then, given t € [0, 1], the couple (G(t, s), H(t)) verifies (3,10). By (3,12)
IG(t, )| + [H(t) < nx < o0 forany te[0,1]

whence (ii) follows. The assertion (jii) is a consequence of the uniqueness of solutions
to the equations (3,11).

3.12. Corollary. Under the assumptions of 3.11 the given operator & possesses
a bounded inverse .
L <:>6Lﬁ X R,,,—»J G(t,s) f(s)ds + H(t) re Wp.

0
3.13. Theorem. Let us assume 2.1 with P(t, 1)
G(t, s), H(t) given by 3.11 is a Green couple of BVP
couple to (3,1), then G(t,s) = G(t,s) and H(t) =
all se[0,1].

Proof follows from 3.7 and 3.11.

(3

0 and (3,5). Then the couple
1). If G{(t, s), A(t) is also a Green
) for all te[0,1] and almost

H(e
3.14. Remark. Let r € R,. According to the definition 3.1 of X, x € W? is a solution to

(3,13) Dx — Px =0, Sx=r

if and only if x(t) = X(t) ¢ on [0, 1], where ce R, fulfils (SX) ¢ = r. In particular,
if we assume (3,5), then by 1.8 | = n and by 3.2 det(SX) + 0, i.c. xe W7 verifies
(3,13) if and only if x(t) = H(t)r on [0, 1], where

A() = X (sX)*  on [0,1].

On the other hand, if G(t,s), H(t) is the Green couple of BVP (2,1), (2,2), then
x(t) = H(t) r on [0, 1] is for any r € R,, the unique solution of (3,13) on W?. Hence
(H() — AH(t)) r = 0 on [0,1] for any reR, or :

H(t) = X() (SX)"*  on [0,1].

Let us notice that the columns of X being elements of W?, the columns of H(r) are
also elements of W?.

4. Generalized Green’s couples

If P: [0,1] x [0,1] —» L(R,) is an L*[BV]-kernel, then obviously
1 1
j |P(z, s)|* dz + j |P(¢, 0)|*> do < o0
0 0
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for almost all t,s€[0,1] (cf. 1.1). Moreover, according to the assumptions (1,1)
and (1,2) (where p = 2)

Ll (.[:'P(t’ I ds) de < Llez(t) dt < oo,

By the Tonelli-Hobson Theorem 1.4.36 this implies that if an L?[ BV ]-kernel P(t, s)
is measurable in (t,s) on [0, 1] x [0, 1], then

@y el [ rearaas= [ (] Reores)a< .

[0,1]x[0,1]
4.1. L?-kernels. The function P: [0,1] x [0,1] — L(R,) is said to be an L*-kernel
if it is measurable in (t,s) on [0, 1] x [0, 1] and fulfils (4,1). Given an L*-kernel P,
Pl is defined by (4,1).
Let us recall some basic properties of L?-kernels and of Fredholm mtegral
equations for ue L2

(42) u(t) - JIP(t, s) u(s) ds = g(t)

0
with an L?-kernel P. (For the proofs see e.g. Dunford, Schwartz [1] or Smithies [1].)

Let P: [0,1] x [0,1] - L(R,) be an L*-kernel. Then for any u e L2, the n-vector
valued function

glt) = Ll P(z, s) u(s) ds, te[0,1]

is L*-integrable on [0, 1] and the mapping ue L2 — ge L2 is linear and bounded.
(This may be shown easily by making use of the Cauchy inequality and the Tonelli-
Hobson Theorem 1.4.36.) Moreover, a linear operator @: L% — L2 is compact if
and only if there exists an I?-kernel T: [0,1] x [0, 1] - L(R,) such that

1
©:uell —»J T(t, s) u(s)dse L.
(4]
If ||P|| < 1, then the equation (4,2) possesses for any ge L2 a unique solution u
in L% and there exists an L?-kernel R: [0,1] x [0,1] — L(R,) such that for any
g e L2 the unique solution ue L2 of (4,2) is given by

u(t) = g(t) + LlR(t, s)g(s)ds, te[0,1].

R is called the resolvent kernel corresponding to P.

Finally, given an L*-kernel P, there exist a natural number n', functions P, : [0, 1]
— L(R,,R,) and P,: [0,1] - L(R,,R,) L*integrable on [0, 1] and an L2-kernel
P,: [0,1] x [0,1] - L(R,) such that

@3)  IPol <1 and P(t,s) = Poft,s) + Pi(e) P(s) on [0,1] x [0,1].
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Let us turn our attention to BVP (2,1), (2,2) fulfilling 2.1 with p=g4~=2 and
P(t,1) = 0 ae. on [0,1]. (P(t,s) is an L*[ BV ]-kernel, K is L*-integrable on [0, 1]
and fell)

A function x € W is a solution to BVP (2,1), (2,2) if and only if

where x = ®c + Yu + Yf,

1
(4.4) ®: ceR, > 2(t) = ce W7, 'I’:ueLf,—»J‘u(-c)drve

o

and the couple (u) e L2 x R, verifies the system
c

(4,5) u — Pdc — PYu = PYf,
(4,6) Sdc + SWu =r — SYf.

In fact, if xe W? is a solution to BVP (2,1), (2,2), then x = & x(0) + ¥YPx + ¥f
and Sx = S® x(0) + S¥YPx + S¥Yf=r. Consequently, u=Px and ¢ = x(0)
satisfy (4,5) and (4,6). (Clearly u € L)) On the other hand, if (u) e L% x R, is a solu-
c
tion to the system (4,5), (4,6) and x = ®c + Yu + ¥f, then x(0) = ¢, Px = Pdc
+ P¥u + PYf = u and hence x — @ x(0) — YPx = ¥f and Sx =r.
Let us mention that in virtue of 1.4.33, the composed operator P¥: L% — 2
is given by
1
(4.7) PY: uell— — j P(t, s)u(s)dse L.
0
Now, let a natural number n', an L*-kernel P,: [0,1] x [0,1] - L(R,) and
L*-integrable functions P;: [0,1] —» L(R,, R,) and P,: [0,1] —» L(R,, R,) be such
that (4,3) holds. Furthermore, let R,: [0,1] x [0,1] - L(R,) be the resolvent
kernel corresponding to P,. The symbols Py, P,, P, and R, will denote the linear
operators

1
(4.8) Py: ueLl — — | Py(t,s)u(s)dseLZ,
Jo
P:deR,.—  —P()del?,
1
P,: uel? — P,(s) u(s) dse R,
JO
1
Ry: uelZ — — | Ry(t,s)u(s)dse L2,
Jo

as well. All of them are obviously compact.
By (4,3) and (4,8) we may write

P¥Y =P, + PP,
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and the equation (4,5) becomes

u — Pou = P®c + P,P,u + PYf.
Accordingly

(49) u — [I + Ro] (P®c + P,Pu) = [I + R,] P¥f.

Let us denote
d = qu .

Then the equation (4,9) reduces to
(4,10) u= [’ + RO] Pdc + [l + RO] P.d + [l + RO] PYf.

Applying P, to (4,10) and inserting (4,10) into (4,6) we reduce the system (4,5), (4,6)
to the system of equations for ce R, and deR,.

i) ola)=(: 2

where

—P,[1 + Ry | PP I -
(412) B: <c> R, - ( ,[1 + Ro] P®Pc + (I — P,[1 + Ry] P,)d €R,..
d S(I — P[I + Ry P) ®c + SY[I + Ry P,d

and
(4,13) F: feL:— Pl + R,]P¥feR,.,
F,: fel2—> SY(I+ [l + R,|PY)feR,,.

The operator B may be represented by a uniquely determined (m+n') x (n+n')-
matrix. Let us denote this matrix again by B.

Thus BVP (2,1), (2,2) possesses a solution x € W,? if and only if the system (4,11)
. (e . .
possesses a solution d €R,,, and x is then given by

(4,14) x = (® + P[I + R,]P®) c + P[I + R,] Pod + ¥[I + R,] P¥f + Pf.

Let 4,,eL(R,,R,), 4,,€L(R,,R,), 4,,€L(R,) and 4,,€eL(R,,R,) be
chosen in such a way that

4,4, 4
Bt = 1,1 1,2 EL(R,,H.,,‘, R,H.,,\)
AZ,I’ A2,2

fulfils BB*B = B (e.g. B* = B*). Then if (4,11) has a solution, the couple
(4,15) c=[4,,F —4,,R]f+4,,reR,,
d=[4,,F —4,,F]f+ 4,,reR,,

is also its solution.
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Inserting (4,15) into (4,14) we obtain that if BVP (2,1), (2,2) has a solution, then

(4,16) x = ®[G,f + H,r] + Y[l + Ry] (G,f + H,r) + Pf
with
(4’17) G, =Al,1F1 "Al,ina H1 =A1,2,

G, = P®(4, ,F, — A, ,F,) + P,(4, ,F, — 4,,F,) + P¥,
H, =P®4,, + P4, ,
is also its solution. As G,: L2 — R, is a linear bounded n-vector valued functional

on LX and [I + R,] G, eK(L2), there exist an L*-integrable function G,: [0,1]
— L(R,) and an L*-kernel G,: [0,1] x [0,1] - L(R,) such that

(4,18) G,:fel2— JIGI(S) f(s)dseR,,
0
[I +Ry]G,: feLl— leZ(t, s) f(s)dse 2.

0

Applying the Tonelli-Hobson Theorem 1.4.36 we may show that

[([eseormefi- [ [oeredrne

for any fe L2 and te[0,1], ie.
1 t

(4,20) Y[l + R ] G,: felZ— J (J G,(7,5) dt) f(s)dse w;2.
o \Jo

Furthermore, by (4,3), (4,4) and (4,8) there exist an L*-integrable function H,: [0, 1]
— I(R,,, R,) such that

H,=P®A, , + P A,,: reR,— H,(t)re?.

Consequently,

(4.21) Y[l + R]H,: reR,, — (J:Hz(r) dr) r,

where
1

H,(t) = A () + j Ro(t,7) Ay(c) dr,  te[0,1]

0o

is also L?-integrable on [0, 1]. Inserting (4,18), (4,20) and (4,21) into (4,16) we obtain
that if BVP (2,1), (2,2) has a solution, then also

(422) x(t) = JlGo(t, s)f(s)ds + Ho()r,  te[0,1],

0
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with
(423)  Golts) = Gifs) + J Gy(rs)de + 4(ns)  on [0,1] x [0,1],

Alt,s)=0 if t<s, A s)=1 if t>s,
t
Hy(t)=H, + JHZ(‘L')d‘C on [0,1]
0
is a solution to BVP (2,1), (2,2). It follows from the definition of the functions
Gy(t, s) and H,(t), that the linear operator

(4.24) P+ <f>e L2 x R, - JlGo(t, 9 £(5)ds + Holt)re W2

r 0

is bounded. The results obtained are summarized in the following theorem.

4.2. Theorem. Let the assumptions 2.1 with p = q = 2 be fulfilled and, moreover,
let P(t,s) be measurable in (t,s) on [0,1] x [0,1]. Then there exist functions
Go: [0,1] x [0,1] - L(R,) and H,: [0,1] - L(R,, R,) such that for any feI?
and r € R,, the function x(t) given by (4,22) belongs to W;? and the linear operator L+
given by (4,24) is bounded. Furthermore, if BVP (2,1), (2,2) possesses a solution, then

(422) (ie. x=2" C)) is also its solution.

4.3. Remark. According to the definition IV.3.10 we may say that Gy(t, s), Hft)
is a generalized Green’s couple of BVP (2,1), (2,2). The operator £* given by (4,24)
fulfils the relation XL+ ¥ = L.

4.4. Proposition. The functions G(t, s) and H,(t) defined by (4,23) have the following
properties
(i) H, possesses a.e. on [0,1] a derivative which is L-integrable on [0,1],

) Gy is an L?-kernel, Gy(., s) is of bounded variation on [0,1] for a.e. se[0,1],
(iii) ¥(s) = |Go(0, )| + varg G-, s)e L2,

) for almost every se[0,1] the columns of Gy(.,s) — A(.,s) belong to the
space W2,
Proof follows from the construction of the functions Gy(t, s) and Hy(t) (Go(0, s)
= G,(s), varg A(.,s) < 1 and hence

¥s) < |Gy(s) + Jolle(T, s|dt+1 ae on [0,1]))

4.5. Remark. If k = dim N(£) > 0, let X,, denote the n x k-matrix function whose
columns form a basis in N(&). If k* = dim N(£*) > 0, let ¥,: [0,1] —» I(R,, R,.)
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and A,€L(R,, R,.) be such that the couples (y¥ A¥) (j=1,2,...,k*) of their
rows form a basis in N(&£*). Then evidently for any L*-integrable function @, : [0, 1]
— L(R,, R,), any matrix @,€eL(R,,R,) and any function X: [0,1] - L(R,., R,)

of bounded variation on [0, 1]

(4,25) G(t,s) = Go(t, s) + Xo(t) Oy(s) + 2(t) Yols),  t,se[0,1],
H(t) = Ho(t) + Xo(t) @, + Z(1) 4,

is also a generalized Green’s couple of BVP (2,1), (2,2) and fulfils (i)—(iv) from 4.4
in place of Gy(t, s) Hoft).

4.6. Definition. Generalized Green’s couples of the form (4,25) will be called standard
generalized Green’s couples.

4.7. Remark. It is easy to verify that given a standard generalized Green couple
G(t, s), H(t), the operator

(4.26) @+ (f) €2 x R, - J 'Glt,5) f(5)ds + H({) r

0

is bounded and fulfils the relation L *'¥ = £. *)

4.8. Remark. Making use of the equivalence between BVP (2,1), (2,2) and the linear
algebraic equation (4,11) we could obtain (under the assumptions 2.1 with p=q=2)
the basic results of the Section V.2 in a more elementary way. An analogous procedure
can be applied also to BVP

(427)  x'(¢) — A(t) x(t) — C€(t) x(0) — D(t) x(1) — les[R(t, s)] x(s) = f(¢) ‘
ae. on [0,1],
(4,28) M x(0) + J K(e)x'()dt =r,

where A is supposed to be only L-integrable on [0, 1] and K is measurable and es-
sentially bounded on [0, 1]. (In general BVP (4,27), (4,28) cannot be rewritten as
the system of the form (2,1), (2,2) fulfilling the assumptions of this section.) If X(r)
denotes the fundamental matrix solution of the equation x'(t) — A(t)x(t) = 0,
then BVP (4,27), (4,28) will be transferred to a system of integro-algebraical equations

*) Since in general we may not assume that X,(t) has a full rank on [0, 1] (cf. 1.10), we may not apply
the procedure from 1V.3.12 to show that £ * € B(L} x R, W?) fulfils LL*¥ = & ifand only if £*
is given by (4,26), where G(t, s), H(t) is a standard generalized Green’s couple.
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for ue I2 and ceR, of the form (4,5), (4,6) (with an L*-kernel) by means of the
substitution

o) = €0 0)+ DX + [ 4R 9] 9
c = x(0).
On the other hand,

x(t) = X(t) ¢ + X(t)j

0

t t

X~ 1(s) u(s) ds + X(t) J X~1(s) f(s) s,

0
ie. x = Uc + Vu + Vf.

S. Best approximate solutions

We still assume that P: [0,1] x [0,1] - L(R,) is a measurable L*[BV ]-kernel,
P(t,1) = 0 ae. on [0, 1], the columns of K: [0,1] - L(R,, R,,) belong to L2, felL?
and reR,,. Given x,ue W2, let us put

(5.1) (x, u)y = Jlu*(t) x(f)dteR.

0

Clearly, x,ue W;? - (x,u)xeR is a bilinear form on W? x W2, while (x,u)y
= (u, x)x for all x,ue W, and (x, x)x = 0 if and only if x(t) = 0 on [0, 1]. It means
that (., .)y is an inner product and x e W;” - ||x||x = (x, x)¥? is a norm on W2.

Analogously,

(5.2) ¢ = (f) Y= (5)6&. X R = (0,¥)y = <@, ¥*) 12xr

r

- [e0rou+ grer

0

is an inner product on L} x R, and @eL} x R, — |o|, = (¢, 9)}/* is a norm
on L% x R,,. Moreover, as |¢| < |¢|, = (c*¢)'/? < n|¢| for any ceR,,

f

r

(e (o)« ) 5 (o) )= )

forall fel? and reR,.
On the other hand,

[(ioeac s o ([ i) "1 = o

2

Y
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and hence
f 2 1 1 1/2 2 f 2
o) (rs) o) 0
r/lly 0 0 r/llL2xr
ie.
1
(53) ~lely < lelexr < V@ loly  foreach @elixR,.

It follows immediately that the space L% x R,, endowed with the norm .|y is
complete, i.e. it is a Hilbert space.

5.1. Notation. In the subsequent text X stands for the inner product space of
elements of W,;> with the inner product (5,1) and the corresponding norm |.||x.
Y denotes the Hilbert space of elements of L2 x R, equipped with the inner product
(5,2) and the corresponding norm |.|y. The operator xe X —» Lxe Y (cf. (2,3))
is denoted by /.

5.2. Remark. Evidently o/ € (X, Y), R(«/) = R(&) and N(&/) = N(£). It follows
easily from (5,3) and 2.9 that R(s#) is closed in Y.

5.3. Remark. Let us notice that in general &/ is unbounded.

5.4. Notation. If k = dim N(£) > 0, then X, denotes the n x k-matrix valued
function whose columns form a basis in N(%). If k* = dim N(£*)>0 and (y;, 4¥)
eLZx R%(j=1,2,...,k*) is a basis in N(Z*), let us put Y&(t) = [y,(¢), y2(t), .- yie(t)]
on [0,1] and A = [A1,4,, ..., A ).

5.5. Lemma. If k* > 0, then the k* x k*-matrix

1

C= J Yo(t) Y& () dt + ApAd
0

is regular. If we put

(5.4)
t Yt !
n,: (f>e Y — <f( )> - [ a1 ):I c! [j Yols) f(s) ds + Aor:le Y if k*>0,
r r A o
O,=1 if k*=0,
then I1, is an orthogonal bounded projection of Y onto R(&4).

Proof. If there were 6*C =0 for some d€R,., then it would be also 0=6*CJ, i.e.

0= Jl(é* Yo(t) (Y&(2) 8) dt + (5*A,) (A%0) = ||(Y&(t) 6, A%0)||3 -

0
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This may hold if and only if §*[Yo(t), 40] = 0 a.e. on [0, 1]. Hence 6*C = 0 implies
o* =0.
Furthermore, it follows easily from 2.12 that IT,¢ € R(s#) for any ¢ €Y and

I1,¢ = ¢ if ¢eR(). Finally, given (pe(f)e Y and ¥ = <g>eR(d), we have
by 2.12 r 9

1 1
(o~ Mo v =| [ a0 0@+ aa e [ v s + aur | = 0.
0 0
The boundedness of I1, is obvious.

5.6. Lemma. If k > 0, then the k x k-matrix

D= Jlx;';(t) Xo(z) dt

is reqular. The mapping

(5.5) 1,: xeX_,xo(t)Dﬂ(j

1

0

M,=0 if k=0

X¥(s) x(s) ds)eX if k>0,

is an orthogonal bounded projection of X onto N(sf).

Proof. The regularity of D follows analogously as the regularity of C. Obviously
R(IT,) = N(#). Furthermore, if 6€ R, and x(t) = X,(t) & on [0,1] (ie. x € N(Z)),

then
1

X3(s) Xofs) ds) 5 = Xo(t) 8 = x(t).

100 = %0 (|
0
Consequently R(IT,) = N(&#) and II} = II,. Finally, given xeX, deR, and

u(t) = xo(t) ’, (x — I, x, u)x

= &* (J:X;';(t) x(t) dt) —&* ( leg(t) X(t) dt) D! <leg(t) x(t) dt) =0.

5.7. Definition. A function u,e W? is said to be a least square solution or a best
approximate solution of BVP (2,1), (2,2), if it is a least square solution or a best ap-
proximate solution of the operator equation

(59) x = (f)

r
respectively.

Let us assume 2.1 with p=q =2 and let P(t, s) be measurable in (t, s)
on [0,1] x [0,1]. Then there exist a standard generalized Green’s couple G(t,s),
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H(t) of BVP (2,1), (2,2) such that for any fe L% and reR,,
1

(5,7) uo(t) = J G(t,s) f(s)ds + H(t)r  on [0,1]

0

is the unique best approximate solution of BVP (2,1), (2,2).

Proof. Let Gyft,s), Ho() be the generalized Green’s couple of BVP (2,1), (2,2)
given by 42 and let £*: 2 x R, — W? be the corresponding generalized inverse
operator to & given by (4,24). Let us define /™ : (f>e Y2t <f>e X and

r r

r

(58) ¥ <f>eY—>(l——H2)d+H1 <f>eX,

r
where IT, € B(Y) and IT, e B(X) are given by (54) and (5,5), respectively. Then
A el(Y,X), Ad*el(Y,X), oAt = o and according to 1.3.28 and 1.3.29
uy=o* f is the unique best approximate solution of (5,6) for every feL?

and r € R,,. Taking into account 4.4, (5,4), (4,24) and making use of 1.4.36 we obtain
that for any fe L2 and reR,,

(59) I, <:> (t) = Lla(z, 9f(s)ds + A r  on [0,1],
where

(510 &les) = Gotes) — (|

0

A() = Holt) — Ho(t) A3C~'4,  on [0,1].

1

G(t, 0) Y&(o) da) C 'Yys) on[0,1] x[0,1],

Obviously, G{t, s) is an L?>-kernel and G(t, s), H(t) is a standard generalized Green’s
couple of BVP (2,1), (2,2). By 4.2 and 1.4.36 we have

[t [ st aoe = [ (x50 6t 0) 190

Consequently, putting
1
(511) G(t,s) = G(t, s) — Xo(t)D‘lj X#(r)G(r,s)dr  on [0,1] x [0,1],
0
1

H(t) = H(t) — X,(t)D™* J X#(7) A(r) dt on [0,1],

0
we obtain

uo(t) = J:G(t, s)f(s)ds + H(t)r  on [0,1].
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5.9. Remark. Let us notice that ve X is a least square solution to BVP (2,1), (2,2)
if and only if

(5,12) 0= (.sﬂx, v — <f>> forany xeX.
Y

r

Since by the definition (5,2)

(oo~ (7))~ Gom (- ().,

= (X, LHLV)* — LHf* r*)) g forany xeW?,

the condition (5,12) is equivalent to
,T*(va)* = g*(f*, ,.*)

or

(5,13) V() + [P(t, 0) + J

0

1

P*(o, t) P(0,0) do + K*(t) M] v(0)

+ Jv1 [P(t, s) + P*(s, t) + JlP*(a, t) P, s) do + K*(t) K(s)] v/(s)ds

0 0

= f(t) + flP*(s, t)f(s)ds + K*¥¢)r  ae. on [0,1],

0

[M*M + J P¥(s,0) P(s, 0) da] v(0)

0

N J 1 [M* K(s) + P*(s,0) + JlP*(a, 0) P(o, s da] v(s)ds

0 0
= M*r + JIP*(S, 0) f(s) ds.
0

Let us notice that the system (5,13) of equations for u = v'e L2 and ¢ = v(0)e R,
may be treated in the same way as the system (4,5), (4,6) (cf. also Lemma 3.1 in Tvrdy,
Vejvoda [1]). If P(., s) and K are of bounded variation on [0, 1], then the system
(5,13) may be reduced to the form (2,1), (2,2).

5.10. Remark. Let re R, be fixed and let us define

D,={xeW?; Sx=r} and %: xeD,—»Dx —Pxel?.

Then R(&Z,) is closed in LZ (cf. 2.16). Hence if D, # 0, then by the Classical Projection
Theorem (Luenberger [1], p. 64) R(Z,) contains a unique element y of minimum
L*-norm and y € R(Z,)". It follows from 2.17 that |y|,. < ||f| .. for all fe R(Z)
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if and only if there exists A* € R¥ such that (y* A*)e N(£*). Thus ue D, fulfils

|Du — Pul|,. < |Dx — Px|,. for all xeD, if and only if there exists A*e R}
such that

L*(Du — Pu)*, 4*) =0.

6. Volterra-Stieltjes integro-differential operator

Let P:[0,1] x [0,1] > L(R,) be an I’[BV]-kernel and let for ae. t€[0,1],
P(t,s) = P(t,t) if 0 <t < s < 1. Then

P: xe WP~ Ll d,[P(t, 5)] x(s) = J;ds[P(t, s)] x(s)e L%,

and the Fredholm-Stieltjes integro-differential operator & = D — P defined in 1.5
reduces to a Volterra-Stieltjes integro-differential operator

(6,1) L =D—-P: xeWF->x(t) - J;ds[P(t, s)] x(s)e L%

If P(t,s) = P(t,£) = 0 for 0 <t <s < 1, then by 1.4.38

[(ftrensir  [simcre)s
= [[a] [te9ar |9 = 0] [te910e] 9.

Thus, if f e L2, then by integrating the Volterra-Stieltjes integro-differential equation
for xe WP

(62) x(t) - J:ds[P(t, ] x6) = ) ae on [0,1]

we obtain

6.1. Proposition. If P(t,s) = 0 for 0<t <s < 1, then a function x € BV, is a solution
to (6,2) if and only if

t

(6,3) x(t) — ﬂds[Q(t, s)] x(s) = x(0) + Jf(t) dt  on [0,1],

0

where

t e
(6.4) Q(t,s)=jP(r,s)dr if 0<s<t<1, Qs)=0 if 0<tr<s<l1.

s

(Obviously, if x e BV, fulfils (6,3), then x € W/?.)
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6.2. Remark. Let us notice that if Py(t,s) = P(t,s) — P(t,t) on [0,1] x [0, 1], then
Py(t,s) =0 for 0 <t <s<1 and

J:ds[Po(t, 9] x(6) = ﬁds[P(t, g]x(s) forany te[0,1] and xeC,.

This means that the assumption P(t,t) = 0 for every t€[0, 1] does not cause any
loss of generality.

6.3. Proposition. v, ;1x0.1(Q) < o0, Q(0,5) =0 0n[0,1]and Q(t,t—)=Q(t,1)=0
for any te(0,1].

Proof. Letanet-type subdivision {0=1t,<t; <...<t,=1; 0=5,<5, <... <5, = 1}
be given. Then

mi,J(Q) =

j:i_ (P(z,s;) — P(t,5;_,))de| < f: IP(r, s;) — P(t,s;- 1)‘ dr.

Hence

.; .;m,-_ Q) < ;1|P(r, sj) — P(t,55-,) dr < J o(r)dr

and consequently Vjo ;;x0.11(Q) < 0. The other assertions of the lemma follow
immediately from (6,4).

Making use of the results obtained for Volterra-Stieltjes integral equations in
the Section II.3 we can deduce the variation-of-constants formula for Volterra-
Stieltjes integro-differential equations.

6.4. Theorem. Let P: [0,1] x [0,1] - L(R,) be an IP[BV]-kernel such that for
ae. te[0,1] P(t,s)=0 if 0<t<s<1. Then for any ceR, and feL’ there
exists a unique solution x of the equation (6,2) in WP such that x(0) = e.

Furthermore, there exists a uniquely determined function U: [0,1] x [0,1] - L(R,)
such that for any f e L. and ce R, this solution is given by

t

(6.5) x(t) = U(t,0) ¢ + j u(t, s) f(s)ds, te[0,1].
0

The function U satisfies the equation

(6,6) %U(t, s) = J:d,[P(t, ] U(r,s) forany se[0,1] andae. te[s1].

Moreover, Vi 11,10.1/(U) + varg U(0, .) < oo, U(.,s) is absolutely continuous on
[0,1] for any se[0,1] and U(t,s) =1 if 0<t<s< 1.
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Proof. Let I': [0,1] x [0,1] - L(R,) correspond to Q by I13.10. In particular,
the function x: [0,1] > R, given by

M) =+ [1ar+ [afreon (e + [0

is for any ce R, and f € L% a unique solution to (6,3) such that x(0) = . Integration
by parts yields

67)  x(t)=[1+I(t.1)] e+ J(:[l + I(t,t) — I'(t,s)] f(s)ds  on [0,1].
Denoting

I+ I(t,t)-TIts) if 0<s<t<1,
(638) U(t,s)—{’ if 0<t<s<l,

the expression (6,7) reduces to (6,5). (Recall that I'(t,0) = 0 for every te[0,1])
In our case the function I satisfies for 0 < s <t < 1 the relation (cf. (I1.3.29))

(69)  I(ts)= J P, 5) de - Jp(r, 0)dr + Ld U:p(r, ) dr:l I(rs).

s 0
Taking into account that P(r,r)=0 if 0<t<r<1 and I'(r,s)=I(r,r) if
0 <r <s <1 and employing 1.4.38 we obtain for 0 < s <t <1

L:d, U:P(T, r) dr] I(r,s) = L:d, U;P(T’ ) dr] I(r, s)
- [, (et ) = [/ ([ atpenrees) o
- (menreopes [ tmenreale

It is easy to verify (cf. also (6,8) and (6,9)) that

e =1~ [ Pesa = [ ([ atptenl ) - o) ar

s s s

t

t

for 0<s<t<l.
On the other hand, it follows from (6,8) that.
J’ d,[P(z,r)] U(r,s) = —P(,s) — j d,[P(z, )] ([(r,r) — I(r,5))

for 0<s<t<1.
Thus (U(s,s) = 1)

U(t,s) = U(s, 5) + J (fd,[P(r, A U, s)) dt if 0<s<r<l,

which yields (6,6) immediately.
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As Vio,1yx(0,1() < 00 (cf. I1.3.10), also Vi 1yx0.1(U) < 0. The other assertions
of the theorem are evident.

6.5. Remark. Denoting for ceR,, fe L and t€[0,1]

t

(6,10) (@e)(t) = U(t,0)c and (¥f)() = J u(z, s) f(s) ds,

0

the variation of constants formula (6,5) for solutions of (6,2) becomes
(6,11) x(t) = (Pc)(t) + (PF)(1) on [0,1] (x = Pc + Pf).

By 6.4 the functions @c and ¥f belong to W? for every ce R, and f e L. More-
over, the linear operators ®: ceR, - ®PceW? and ¥: fel? » ¥Yfe WP are
bounded. Indeed, if fe L and y = Yf, then in virtue of 1.4.27, 1.6.6 and 6.4 we
have for a.e. te[0,1]

Wl = |[[atpesnwe + 10| < || atpteon (v ) + o)
< el). siv [0t I7l,+ 0]
Consequently o

196l = 1120 < (1+ leluo  sup UG 5)) £l

ie. ¥ e B(L%, W?P). Analogously we could obtain @ e B(R,, W/?).

6.6. Corollary. Let % be a linear normed space and let @€ B(%, L%).If P: [0,1] x [0,1]
— L(R,) is an L[ BV ]-kernel such that for a.e. te[0,1], P(t,s) =0 if se[t,1],
then for any ue %, fe L and c€ R, there exists a unique solution x € W} of

Dx - Px=0u+f, x(0)=c.
This solution is given by x = ®c + YOu + YPf. -

6.7. Remark.Let r>0 and let P: [0,1] x [—r,1] - L(R,) be an L[ BV ]-kernel
on [0,1] x [—r,1] such that P(t,s) = 0 if t < s and P(t,s) = P(t,t —r) if s<t—r.
Let ue BV,[ —r,0] and f € L%, be given and let us look for a function x € BV,[ —r, 1]
absolutely continuous on [0, 1] and such that x’ is [*-integrable on [0, 1] and

6.12) x(t) - J A[PIIX0) = ) s on [O.1],

x(t)=u(t) on [-r0].
If we put

@:uc’ BVH[—r, O] - J‘ids[P(t, S)] u(s) el?,
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then @ is a linear compact operator (cf. 1.4). For any x e BV,[ —r,1] and t€[0,1]

we have
0

[ atresnse = |

[Pl x) + L'ds[p(t, 9] x6).

Thus our problem may be formulated in the form of the operator equation
Dx — Px = Ou + f and according to 6.6 (with % = BV,[ —r,0]) the equation
(6,12) has for any ue BV,[—r,0] and x € L2 a unique solution x € W/ such that
x(t) = u(t) on [—r,0]. This solution is of the form x = ®,u + Pf, where
®,: ueBV,[—r,0] > P u(0) + POue W7 is a linear compact operator. (Let us
notice that in virtue of 1.4.38

(@ou) (1) = U(t,0) ul0) + J Ords [ j U(t, ) P, 5 dr] us)  on [0,1]

0

for any ueBV,[—r,0].) Thus, the variation-of-constants formula for functional-
differential equations of the retarded type (cf. Banks [1] or Hale [1]) is a con-
sequence of Theorem 6.2.

Analogously we may show that if 0 <r, <r (i=1,2,...,k), A;: [0,1] - L(R,)
i =1,2,..,k) are measurable and essentially bounded on [0, 1] and A,: [o, 1]
x [—=r,0] - L(R,) is measurable and essentially bounded on [0,1] x [—r,0],
then the system

@y x0-Sa0fl bl

ut —r) if t—r, <0

° (0 if t+s>0
- j _,Ao(t’ 9 1u(t +s) if t+s< O} ds
- L' [P 9] x(s) = f)  ae on [0,1]

has for any fe L2[0,1], ue L[ —r,0] and ceR, a unique solution x e L[ —r, 1]
such that x(t) = u(t) ae. on [—r,0], u(0)= ¢ and x|q.;;€ W?. This solution is
of the form x = &c + YOu + Yf, where

O:uelf[-r0]- {l_iAi(‘) ug—r) if t—r< 0}

0 if t—r>0
0 ult +s) if t+s<0}
At dseLr.
+J_, °(’S){o if t+s>0

(Functional-differential equations of the type (6,13) were studied in detail in
Delfour-Mitter [1] and [2].)
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6.8. Theorem. Let A be a Banach space, Se B(W}, A) and let P: [0,1] x [0,1]
— L(R,) be an I’[BV]-kernel such that for a.e. te[0,1], P(t,s) =0 if se[t,1].
Then the linear bounded operator

Dx — Px

X

,‘?:er,,"a[ :|eLﬂ><A

has a closed range.
Proof. By 6.5, <f>e L% x A belongs to R(&) if and only if r — S¥fe R(SP). As
r

w: <f>eLﬁ x A—>r— SPfeA is bounded and R(S®) is a finite dimensional
r

linear subspace in A (® € B(R,, WP)), it follows that R(Z) is closed.
7. Fredholm-Stieltjes integral equations with linear constraints

This section is devoted to the system of equations for x € BV,

1

(7.1)  x(t) — x(0) — f d,[P(t,s) — P(0,s)] x(s) = f(t) — f(0)  on [0,1],

0
1
(7,2) J d[K(s)] x(s) = r.
0
The following hypotheses are pertinent.
7.1. Assumptions. P: [0,1] x [0,1] - L(R,) and there are to,so€ [0, 1] such that
(7.3) Vio,13x(0,11(P) + varg P(to, .) + varg P(., s0) < oo,

K: [0,1] - L(R,, R,) is of bounded variation on [0,1], fe BV, and reR,,

7.2. Definition. Any function P: [0,1] x [0,1] — L(R,) fulfilling (7,3) is called an
SBV-kernel.

7.3. Remark. If P: [0,1] x [0,1] - L(R,) is an SBV-kernel and

_ JP(t,s) = P(0,s) for te[0,1] and se(0,1],
04 Qles)= {P(l, 0) —P(0,0) =1  for te[0,1] and s=0,

then obviously Q(t, s) is an SBV-kernel and
1 1

(7.5) x(0) + f d,[P(z, s) — P(0, )] x(s) = j d[Q(t,s)] x(s)  forany xeBY,
Y 0
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(cf. 1.4.23). It means that the equation (7,1) is a special case of Fredholm-Stieltjes
integral equations studied in Chapter II. Let us denote by Q the linear operator

(7.6) Q: xe BV, —» x(0) + les[P(t, s) — P(0, 5)] x(s) .

By (7,5) and IL.1.5 R(Q) = BV, and Q€ L(BYV,) is compact.
The following assertion follows analogously as 1.8 from 1.3.20 and 1.9.

7.4. Proposition. If P: [0,1] x [0,1] - L(R,) is an SBV-kernel and the operator Q
is given by (7,6), then n<dim N(I — Q) < oo, while dim N(I — Q)=n if and only
if the equation (7,1) has a solution x € BV, for any f € BV,

Let us mention that the following additional hypotheses do not mean any loss
of generality (cf. I1.1.4).

7.5. Assumptions. P(t, .) is right-continuous on (0, 1) and P(t, 1) = 0 for any t€[0,1]
and P(0,s) = 0 for any se[0,1]; K is right-continuous on (0, 1) and K(1) = 0.

Analogously as in the case of BVP (2,1), (2,2) for Fredholm-Stieltjes integro-
differential operators we rewrite the system (7,1), (7,2) of equations for xe BV,

x
as the system of operator equations for & = d eBV, x R,

o e (-(%)-C)

where Q € K(BV,) is defined by (7,6),

1
(7.8) S: xe BV, - J d[K(s)] x(s) e R,,,
0
(7.9) T (* eBV,,me—»< QX \eBy xR,
d d — Sx
and ¥ is now given by
(7,10) ¥: fe BV, - f(t) — f(0)eBY,.

7.6. Proposition. If x € BV, is a solution to (7,1), (7,2), then & = (:) is a solution

to (1,7) for any d € R, If x € BV, and there exists d € R,, such that & = <:) verifies
(7,7), then x is a solution of (7,1), (7,2).

7.7. Proposition. Under the assumptions 7.1 the operator Te L(BV, x R,,) defined
by (7.,6), (7.8) and (7.9) is compact.
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Proof. As obviously Se B(BV,, R,) = K(BV,, R,) (cf. 1.3.21) and Qe K(BV,), it is
easy to see that Te K(BV, x R,,).

Our wish is now to establish the duality theory for problems of the form (7,1),
(7,2). To this end it is necessary to choose a space BV, of functions [0,1] - R}
and an operator T'e L(BV, x R}) in such a way that (BV, x R, BV, x R}) is
a dual pair with respect to some bilinear form [ ., .] (cf. 1.3.1) and

(7,11) [T <:>, (z*, }.*)J = [(:), T'(z*, }.*)j,
for all <:>EBV,, x R, and (z* A*)eBV, x R%.

According to 1.5.9 the spaces BV, and NBYV, form a dual pair with respect to the

bilinear form
1

xeBV, g NBV, —»J d[e*(t)] x(r)eR.
0

For the purposes of this section a slightly different choice of the space BV, is more
suitable.

7.8. Definition. BV, denotes the space of all functions z*: [0,1] - R¥ of bounded
variation on [0, 1], right-continuous on (0, 1) and such that z*(1) = 0.

7.9. Proposition. The space BV, defined in 7.8 becomes a Banach space if it is endowed
with the norm z*€ BV, - ||z*| gy = |2*(0)| + var} z*. Moreover, (B, x R,,, BV, x R})
is a dual pair with respect to the bilinear form

7,12 *)eBV. x R,,, (z*, 2*)e BV, x RX
d

. [(’;) (2, ,1*)] - le[z*(t)] x(t) + i*deR.

or the proofs of analogous assertions for 7 see 1.5.2 and L1.5.9.
For th fs of anal ions for NBV, 1.5.2 and 1.5.9
In the following the bilinear form [ ., .] is defined by (7,12).

7.10. Proposition. If the hypotheses 7.1 are fulfilled, Q: [0,1] x [0,1] — L(R,) is
defined by (7,4) and

1
* p—
(7,13) T': (z*,A*)€ BV, x R* > Ld[z (t)] Q(t s) A*K(s)
l*
then (7,11) holds. If 1.5 is also assumed, then R(T) =BV, x R* and T'eK(BV,' x R,).

>
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Proof. Let us denote
1

Q: zeBV,~ f Q(t, s) d[z(1)] -

0

As Q(t, s) is an SBV-kernel, Q'€ K(BV,) (cf. I1.1.9). Moreover, by 1.6.20

[, etz ([ atetexs) + 2 (a - [ i)

— Ld Uld[z*(z)] Qlt, s) — i* K(s)] x(s) + A*d

0

for any x € BY,, deR,, z*€ BV, and A* e R}. If P(t, .) is right-continuous on (0, 1),
then according to 1.6.16 and 1.4.17 also Q'z e BV, is right-continuous on (0, 1) for
any ze BV,. Consequently, R(T") = BV, x R} provided that 7.5 is satisfied. The
compactness of T'e L(BV, x R¥) follows readily from the compactness of Q.

The operators T and T' being compact,
(7,14) ind(l = T)=ind(1 - T)=0
(cf. 1.3.20) and we may apply Theorem 1.3.2.

7.11. Theorem. If the hypotheses 7.1 and 1.5 are satisfied, then the system (7,1), (7,2)
has a solution x € BV, if and only if

(1.19) [, at 65 - 100) + 37 =0

0

for any z* € BV, and A* € R} such that

1

(7,16)  z*(s) — j d[z*(t)] P(t,s) + A*K(s)=0 on [0,1], z*0)=0.

0

Proof. By 1.3.2 the system (7,1), (7,2) has a solution if and only if (7,15) holds for
any z* e BV, and A* e R} fulfilling the equation

(7,17) z*(s) — L‘d[z*(t)] Q(t,s) + A*K(s)=0  on [0,1],
ie. (I — T')(z* 4*) = 0 (cf. 7.9, 7.10 and (7,14)). Given z* € BV,

049 Ll A1 Q) = Ll d[z*(0)] P(t.s) — {z*(l) —z40) if 5=0

0 if s>0
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(cf. (7,4) and 1.4.23). After the substitution (7,18), the equation (7,17) becomes

(7,19) 2%(s) — J:d[:*(t)] P(t,s) + *K(0)=0  on (0,1],

- J a[24(0)] P(t,0) + 4* K(5) = 0.

0

According to 7.5 P(0,5) = 0 on [0, 1]. Thus the value of each of the integrals

[[atrpes seton). [ aeneo - o)

does not depend on the value z*(0) (cf. 1.4.23). Consequently (z*, A*)e BV, x R}
is a solution to (7,19) if and only if (z¥, A*) with z¥(s) = z*(s) on (0, 1] and z(0) = 0
is also its solution. The proof is complete.

The following assertion is also a consequence of 1.3.2.

7.12. Proposition. Let 7.1 and 7.5 be satisfied and let he BV,. Then there exist
z* € BV, and A* € R}, such that

(7,20) z*(s) — J:d[z*(t)] Q(t,s) + 4* K(s) = h*(s)  on [0,1]

(1 — T)(z*, 4*) = (h*,0)) if and only if

le[h*(t)] x(t) = 0

holds for every x € N(&£), where
(7.21) 2 xeBV,,—»(x _stx>eBV,, xR, .

7.13. Theorem. Let us assume 7.1 and 1.5 and let £ € B(BV,, BV, x R,,) be given by

(7,6), (7.8) and (7,21). Then k = dim N(£) < oo and the system (7,16) has exactly

k* = k + m — n linearly independent solutions in BV, x R}.

Proof. By 74 k = dim N(£) < oo. Obviously dim N(I — T) = k + m. Since (7,14),
it is by 132 dim N(l — T") = dim N(I — T) = k + m. The set N' of all solutions
to (7,16) consists of all (z*, A*)e N(I — T) for which z*(0) = 0. So dim N
=dim N(I — T') — n = k + m — n. The proof is complete.

In addition to 7.1 and 7.5 we shall assume henceforth that
(7,22) P(t—,s)=P(t,s) forall (1,s)e(0,1] x [0,1],
P(0+,s) = P(0,s)  forall se[0,1].

In this case we may formulate the adjoint problem to (7,1), (7,2) in a form more similar
to (7,1), (7,2).
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Integrating by parts (1.4.33) we transfer the system (7,16) of equations for (z*, 4*)
€ BV, x R} to the form

(7,23) z*(s) + le*(t) d[P(t,s)] + A*K(s)=0  on [0,1],
' z*(0) = z¥(1) = 0.
As by (7,22) P(0+,s) = P(0,s) and P(1—,s) = P(1,s) for every se[0,1], the value
of each of the integrals
j“z*(t) d[P(ts)], se[0,1]
0
does not depend on the value z*(0) and z*(1). In particular, if z* € BV, z*(0) = 0,
A*e R} and
(724)  y*s)=2*s) on (0,1),  y*0)=z*0+), y*(1)==*(1-),
then the couple (z*, A*) solves (7,23) (i.e. (7,16)) if and only if

1

(7,25) y*(s) + j y*(t) d[P(¢t,s)] + 2*K(s)=0  on (0, 1),

0

0= le*(t)d[P(t, 0)] + A*K(0) (= z*0)).

0
Applying 1.6.16 and 1.4.17 we obtain

r0=yio+)= - |

0

() 4[P(,0+) — P(t,0)] — A4[K(O-+) — K(O)]
and

() = y(1-) = - [ 0 afP1-] - 2 k(1)

for every y e BV, and ieR,, fulfilling (7,25). If for t € [0, 1] we put

P(t,0+) if s=0, K(0+) if s=0,
(726) Poft,s) = {P(t,s) ifO0<s<1, Kofs)=1K(s) if0<s<l,
P(t,1-) if  s=1, K1-) if s=1,

C(t) = P(t,0+) — P(,0), D(t)= —P(t,1-),
M = K(0+) — K(0), N = —K(1-),
then system (7,25) becomes
(7.27)

y(s) = y*(1) - jly*a) a[Po(t. ) — Poft. 1] - [Kels) — Ko(1)]  on [0,1].
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(7,28) y*(0) + A*M + le*(t) d[c()] =0,

(7.29) y*(1) - #*N — J y*(t)d[D()] = 0.

0
Given ze BV, with z(0) = z(1) = 0 and y e BV, such that (7,24) holds, we have
in virtue of 1.4.23

[ st 16— 100 = [ a0 169 = v () 1) = y0) 10
This completes the proof of the following

7.14. Theorem. If the hypotheses 7.1, 1.5 and (7,22) are satisfied, then the problem
(7,1), (7.2) possesses a solution x € BV, if and only if

.30 PO 1) -y O 10) - | a9 19 = 2

for any solution y € BV,, A€R,, of (7,27)—(7,29), where P,, C, D, Ko, M and N are
defined in (7,26).

7.15. Remark. If (7,22) holds and f(¢t—) = f() on (0,1], f(0+) = £(0), then by
1.6.16 and 1.4.17 any solution x € BV, of (7,1), (7,2) is left-continuous on (0, 1] and
right-continuous at 0. On the other hand, if y € BV, and 4 € R,, satisfy (7,27)—(7,29),
then provided that 7.5 holds, y is right-continuous on [0, 1) and left-continuous
at 1 (cf. 7.24).

7.16. Remark. Let ge BV, be right-continuous on (0,1), p,qeR,. It is easy to
see that ye BV, and AeR,, satisfy (7,27), (7,28), (7,29) with the right-hand sides
g*(s) — g*(1), p* and q*, respectively, if and only if y is right-continuous on (0, 1)
and the couple (z* 4*), z*(s) = y*(s) on (0,1), z*(0) = z*(1) = 0, fulfils (7,20),
where h*(s) = g*(s) — g*(1) + z*(s) on [0,1], x*(0) = q* — p* 1*(s)=q* on
(0,1) and x*(1) = 0. It follows immediately from 7.12 that the system (7,27), (7,28),
(7,29) with the right-hand sides g*(s) — g*(1), p* and q*, respectively, has a solution
ye BV, ieR, if and only if (cf. (7,21))

le[g*(t)] x(t) = q* x(1) —p* x(0)  for each xeN(Z).

7.17. Remark. If P: [0,1] x [0,1]— L(R,) is an L'[ BV ]-kernel (|P(t,0)| + var} P(z, .)
= g(t) < o ae. on [0,1] and g€ L') and fe L}, then x: [0,1] - R, is a solution
to (2,1) on [0, 1] if and only if

x(t) — x(0) — fd[Rts Jf on [0,1],

Jo
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where

R(t,s) = jtP(t, s)drt on [0,1] x [0,1].

0

Given a subdivision {0 =1t, <t; <..<t,=1; 0=5,<s <..<s, =1} of
[0,1] x [0, 1], we have

k k
.; FZ]IR(% 5;) = R(t:—1,5) — R(ti, 5;-1) + Rti- 1, 5;-1)|

[ sy = e ] = [ (5 ptes) Py o

= Jlellz, < 0.

Consequently Vio 1yx0,1)(R) < 0. Clearly var§R(.,1) < co. (We may assume
P(t,1) = 0 a.e.on [0,1].) As R(0, .) = 0 on [0, 1], this implies that R is an SBV-kernel
and the Fredholm-Stieltjes integro-differential equation (2,1) is a special case of
the equation (7,1). ‘

7.18. Remark. Let A: [0,1] - L(R,), varjA < oo, M and Ne L(R,, R,,) and

A0) —Al) if0=s<t<T, -M-N if s=0,
P(t.s) = {A(s+) — A(t) f0<s<t<1, Ks=|-N ifo<s<1,
0 fo<t<s<i1, 0 if  s=1.

It can be shown that Vi 1,x(0.1y(P) < vary A. Furthermore, P(0,.) =0 on [0, 1],
varj P(.,0) = varj A and varg K = |M| + |N|. Since for any te[0,1]P(t, .) and K
are right-continuous on (0, 1), K(1) = 0 and P(t, 1) = 0, the assumptions 7.1 and 7.5
are satisfied in this case. If, moreover, A is left-continuous on (0, 1] and right-con-
tinuous at 0, then P(t—,0) = A(0) — A(t—) = A(0) — A(t) for 0 <t <1, P(t—,s)
= A(s+) — A(t—) = A(s+) — A(f) for 0 <s<t<1 and P(t—,s) =0 for
0 <t < s < 1. Finally, P(0+,s) =0 for any se[0,1]. Thus P fulfils also (7,22).
By 7.14 the system (7,1), (7,2) which is now reduced to BVP dx = d[A] x + df,
M x(0) + N x(1) = r has a solution if and only if (7,30) holds for all y e BV, and
AeR,, satisfying (7,27), (7,29). In our case P,(t,s) = P(t,s), C(t) = D(t) =0 and
K,(s) = —N. Moreover,

1 1
J y*() d,[P(t, 5)] = J y*(#)d[B(t)] forany yeBV, and se[0,1],
] s

where B(s) = A(s+) on (0,1), B(0) = A(0) and B(1) = A(1). It follows that under
the assumptions of this remark the adjoint system (7,27)—(7,29) to (7,1), (7,2) reduces
to BVP (II1.5,12), (IIL5,13). Let us notice that now no assumptions on the regularity
of the matrices (I + A*A(t)) are needed.
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7.19. Remark. Let the matrix valued functions A: [0,1]— L(R,), P,:[0,1]
— LR,,R,), P,:[0,1]>L(R,R,), C:[0,1]-L{R,), D:[0,1]- L(R,) and
K: [0,1] - L(R,, R,,) be of bounded variation on [0,1], M, Ne L(R,,R,), fe BV,
and re R, and let us consider the system of equations for x € BV,

(131) ()= x(0) + | 9[4S <69 + (€l) — €(0) x0) + (BL) — D(O) x1)
+ (R0~ P(O) | AP0 + 100~ 10)  on [0.1]

1

(7,32) M x(0) + N x(1) + J d[K(s)] x(s) = r.
0

Introducing new unknowns a, B, y, 4, ¥ by the relations

) = J(:d[K(s)] x), B = Ltd[PZ(s)] x(s),
¥(t) = x(0), &)= x(1),  x(e) = (1),
we reduce the given problem to the form
dx = d[A] x + d[P,] B + d[C]y + d[D]é + df,
de = d[K]x, dp=d[P,]x, dy=0, do=0, dy=0,
Mx(0) + Nx(1)+ a(l)=r, a0)=0, x(0)—y0)=0,
x(1) - 80)=0, B0)=0, p1)—-x0)=0
which may be expressed in the matrix version
dé¢ =d[U] E+dp, Me(0) + NE1) = ¢,

where &* = (x*,a*, p*, y* 0% ¢*) and A: [0,1] - L(R,) and M. NeL(R,R,)
are appropriately defined matrices, u =2m + 2n + 2p, v =m + 3n + 2p,

¢ = <£ ) and ¢ = (; ) By this var} A < oo. The complicated problem
v—n, n—m

(7,31), (7,32) was transferred to the two-point boundary value problem for a linear
generalized differential equation.

Notes

In the case p = 1 the compactness of the operator P and hence also the closedness of R(L) (V.1.4
and V.1.7) were proved by Maksimov [1] and independently by Tvrdy [4]. Theorem V.1.8 is due to
Maksimov and Rahmatullina [2]. Our proof follows a different idea. The proofs of the main theorems
of Section V.2 (V.2.5, V.2.6 and V.2.12) are carried out in a similar way as the proofs of analogous results
for ordinary differential operators in Wexler [1] (cf. also Tvrdy, Vejvoda [1], Tvrdy [3], Maksimov [1]).
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For more detail concerning Green’s couples see Tvrdy [6] Systems of the form (4,27), (4,28) were treated
in Tvrdy, Vejvoda [1]. Theorem V.6.4 follows also from the variation of constants formula for functional
differential equations of the retarded type due to Banks [1] Equations of the form (V.6,13) were introduced
in Delfour, Mitter [1], [2]. Section V.7 is based on the paper Tvrdy [5]. The transformation similar to
(7.33) was for the first time used in a simpler situation by Jones [1] and Taufer [1]. For more detail
concerning the systems of the form (7,31), (7,32) (Green’s function, Jones transformation, selfadjoint
problems etc.) see Vejvoda, Tvrdy [1], Tvrdy [1] and Zimmerberg [1], [2].

The oldest papers on the subject seem to be Duhamel [1], Lichtenstein [1] and Tamarkin [1]. Further
related references to particular sections are

V.1: Catchpole [1], [2];

V.2: Parhimovi¢ [1]—[3], Lando [1]—-[4], Krall [2], [5], Tvrdy [1];
V.3: Maksimov, Rahmatullina [1], [2];

V.6: Hale [1], Maksimov, Rahmatullina [1], Rahmatullina [1], Tvrdy ‘[4];
V.7: Krall [6]—[8], Honig [1], Tvrdy [2].

Related results may be found also in the papers by N. V. Azbelev and the members of his group
(L. F. Rahmatullina, V. P. Maksimov, A. G. Terent’ev, T. S. Sulavko, S. M. Labovskij, G. G. Islamov a.o‘)
which have appeared mainly in Differencial’nye uravnenija and in the collections of papers published
by the Moscow and Tambov institutes of the chemical machines construction.

In Lando [3], [4] and KultySev [1] the controllability of integro-differential operators is studied.
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