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V.l 

V. Integro-differential operators 

1. Fredholm-Stieltjes integro-differential operator 

The most part of this chapter is devoted to the Fredholm-Stieltjes integro-differential 
operators of the form 

X -> x ' ( í ) ds[P(r,S)]x(s). 

The kernel P(t, s) is assumed to be an n x n-matrix valued function defined for a.e. 
te[0,1] and any se [0,1] and such that P(.,s) is measurable on [0,1] for any 
s e [ 0 , l ] , 

(1,1) g(t) = \P{t,0)\ + var0P(t, .) = ||P(t, .)||^ < oo a.e. on [0,1] 

and 

(1,2) \\Q\\u = (J\o{t)y^J'P<cx>i 

where 1 < p < oo. 
Such kernels will be called Lp\_BV~\-kernels. 

1.1. Remark. For U cz U if p < r, any U[BV]-kerml is also an Lp[BV]-kernel 
for each p, 1 < p < r. Furthermore 

|P(^s)|<|P(t,0)| + |P(t,s)-P(r,0)|<0.(r) 

for all s e [0,1] and a.e. t e [0,1]. Hence by (1,2) 

|P(r, s)\p At < oo for any s e [0,1] . 

1.2. Proposition. If P(t,s) is an If[BV~\-kernel, then the function 

Px:te[0,l]^{\[P{t,s)]x{s)eRn 
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V.l 

belongs to LPn for any xe BVn and the operator 

(1,3) P:xeBVn-+ \*d,[P{t, s)] x(s) e L>, 
Jo 

is linear and bounded. 

Proof. By 1.4.27 and 1.4.37 PxeL"„ and 

(1,4) |(Px) (f)| < Q(t) ( sup |x(s)|) a.e. on [0, 1] 
se[0,l] 

for any xeBVn. Since QeLP and sup \x(s)\ < \\x\\BV, our assertion follows im­
mediately. seL0'i] 

1.3. Remark. Since (1,4) holds also for any x e C„, the mapping x -+ Px is bounded 
as an operator Cn -> LPW as well. Let us notice, furthermore, that if xk, x e Cn 

(k = 1,2,...) and lim ||xk - x||c = 0, then in virtue of (1,4) lim (Pxk)(t) = (Px)(t) 
/c->oo fc-+oo 

a.e. on [0,1]. In other words, P maps sequences converging uniformly on [0,1] 
onto seuqences converging a.e. on [0,1]. It was shown in Kantorovic, Pinsker, 
Vulich [1] that 

xeC„-> \lds[P(t,s)]x(s)eLn, 
Jo 

with the L^BVJ-kernel P(t,s), is a general form of operators Cn -> L„ possessing 
this property. 

1.4. Proposition. If P(t,s) is an Lp[BV]-kernel, then the operator P: BVn -> Lp 

given by (1,3) is compact. 

Proof. Let xkeBVn and ||x||BF < 1 for each k = 1,2,.... By the Helly Choice 
Theorem the sequence {xk}^=1 contains a subsequence {x^}^! such that 

lim xk|(r) = x(t) on [0,1] 

for some xeBVn. For t, s e [0,1] let us denote 

p(r,s) = vars
0P(t, .) 

and 

^ ) = f ̂ IXt,*)] W s ) - X(5)| . 
Jo 

Given / = 1,2,... and s e [0,1], 
\xkl(s) - x(s)| < ||xki - x||By < \\xkl\\BV 4- \\x\\BV < 1 + \\x\\BV < ao 

and hence by 1.4.27 

\z,(t)\ < (vari P(t, .))(! + | X | | B F ) < (1 + | X | | B K ) g{t) a.e. 0n [0,1] . 
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Moreover, according to 1.4.24 

lim zt(t) = 0 a.e. on [0,1] . 

By the assumption QELP and hence applying the classical Lebesgue Convergence 
Theorem we obtain 

(1,5) lim \zt(t)\
p dt = 0. 

'-*00 Jo 
= 1,2,... 

f \1ds[P(t9s)](xkl(s)-x(s))Pdt< f h W I ' d t , 
Jo Jo Jo 

Since for any / = 1,2,... 

(1,5) implies 

and this completes the proof. 

lim Pxkl - Px ^ = 0 
/—> 00 

1.5. Notation. Throughout the chapter P denotes the operator defined by (1,3) 
or its restriction on Wp (1 < p < oo), where Wp stands for the Sobolev space defined 
in 1.5.10. Furthermore, 

(1.6) D: xeWp-*x'eLp
n 

and 

(1.7) L = D-P: xeWp-*x' -PxeLp 

for any peR, p > 1. 

1.6. Remark. Clearly, D is linear and bounded for any peR, p > 1. Hence if 
P(t, s) is an LP[£V] -kernel, then L is also linear and bounded. We shall show that 
it has a closed range and hence by 1.3.14 it is normally solvable. 

1.7. Proposition. Let P: [0,1] x [0,1] -> L(Rn) be an Lp[BV\kerne\ (\<p< oo). 
Then the operator L: WP->LP given by (1,7) has'a closed range in Lp. 

Proof. Let feLp. Then feR(L) if and only if there exists xeWp such that 

(1.8) x(t) - x(0) - £ (£d s[P(r , s)] *(,)) dx = j V ) d t . 

Hence denoting 

(1.9) <F:heUn^ | h(r)dxeW„", 
Jo 

II: xeWf-* z(t) = x(0) e Wn", 
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we have feR(L) if and only if YfeR(l - (TI + ¥P)), where / stands for the identity 
operator on Wp. 

The operators Tl and V are evidently linear and bounded. As R(n) is finite dimen­
sional, II is compact (cf. 1.3.21). Since, given xeWp, \\x\\BV < \\x\\WP, it follows from 
1.4 that also P: Wn

p->LP is compact. Hence the operator 0 = J7 + <PP: Wp-+Wp 

is linear bounded and compact. Consequently R(l — 0) is closed (cf. 1.3.20). 
Since V(R(L)) = R(l - 6>), R(L) is closed. 

1.8. Proposition. If P(t, s) is an U\BV\keme\, then 

n < dim N(L) < oo , 

while dim N(L) = n if and only if R(L) = Lp. 

Proof. By the proof of 1.7 the equation Lx = f is equivalent to the equation 

x - 0x = ¥f, 

where 0 = /I + ¥P: Wp -> Wp is defined by (1,9). Since 0 is compact, by 1.3.20 
we have dim N(L) = dim N(l — 0)<oo and 

(1,10) dim N(L) = codim R(l - 0) = dim WP\R(I - 0). 

It follows from the definition of 0 that 

R(l-0)<={geWn<>;g(O) = O} = KP-
Consequently 

dim Wp\R(l -0)> dim WP\VP. 

If {e1? e2,..., e„} is a basis in Rn and ^{t) = e7- on [0,1] (j = 1,2,..., n\ then the 
system of equivalence classes £j + Vp (j = 1,2,..., n) forms a basis in WP\VP. 
Hence 

dim Wp\Vp = n 

and by (1,10) dim N(L) = n if and only if 

dim Wp\Vp = dim PV//K(/ - 0). 
Since R(/ - 0) = V„p if and only if R(L) = Lp, the proof will be completed by 
means of the following assertion. 

1.9. Lemma. Given a Banach space X and its closed linear subspaces M, N such that 
M c iV c I , dim X\M = dim X\N < oo holds if and only if M = N. 

Proof. Let dimK/M = dimK/N = k < co and let xeN\M. Let Sj = ^ + N 
(j = 1,2,..., k) be a basis in K/N and let 

k 

ax + J ^ e A f c N 
1=i 
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for some real numbers a, A,- (j = 1,2,..., k). Since ax e N, this may happen only if 
^i£i + 2̂<?2 + ••• + hZk^N, i.e. kx = A2 = ... = 4 = 0. Thus axeM and for 
x ^ M , a = 0. This means that the classes {x + M, ^ + M; j = 1, 2,..., k} are 
linearly independent in XJM and dim XJM > k + 1 > dim K/IV. This being con­
tradictory to the assumption, we have M = N. 

1.10. Remark. By 1.8 there exists an n x k-matrix valued function X (k = dimIV(L)) 
such that x e Wp is a solution to Lx = 0 if and only if x0(f) = X(t)c on [0, 1] 
for some c e Rk. Unfortunately, even if k = n, it need not be det (X(t)) + 0 on 
[0,1]. For example, the equation 

(1.Ц) *'(í) (т) dт = f(t) a.e. on [0,1] 

possesses for any feLn and c e Rn the unique solution 

x(t) = 1(1 -At)c + At ( f (T) dr ) ds + f (T) dr on [0,1] 
Jo VJo / Jo 

such that x(0) = c. In particular, xeACn is a solution of the corresponding homo­
geneous equation if and only if x(t) = 1(1 — At) c for some ceRn and X(t) = 1(1 — At) 
is the fundamental matrix solution for (1,11). Let us notice that X(̂ ) = 0. 

1.11. Remark. Putting R(t,s) = P(t,s+) - P(u 1) for se(0,1), R(t,0) = P(t,0) - P(t, 1) 
and R(_, 1) = 0, we would obtain 

R(t,s + ) = P(t,s + ) - P ( . , l ) if s e [ 0 , l ) , 

R(t,s-) = P(t,s-)- P(t,l) if 5G(0, 1] 

and hence according to 1.5.5 

ds[P(t, s)] x(s) = ds[R(t, s)] x(s) for each x e ACn. 
Jo Jo 

Given a subdivision a = {0 = s0 < sx < ... < sm = 1} of [0,1] and 5 > 0 such 
that 0 = s 0 < s 0 + O?<s1<s1 + ( 5 < . . . < sw_x < sm_1 + S < sm = 1, we have 

m - l 

F,(t) = |P(t, s0 + 5) - P(t, 0)| + £ |P(t, s, + S) - P(t, S j_. + 8)\ 
I=l 

Consequently 
+ \P(t, 1) - P(í, sm_ l + S)\ < g(t) a.e. on [0,1] . 

m 

YMusJ-R^Sj^^^ lim Vs(t)<e(t) 

and var* R(t, .) < o(t) a.e. on [0,1]. Since |R(t,0)| < 2g(t) a.e. on [0,1] (cf. 1.1), 
it follows that R: [0,1] x [0,1] -> L(Rn) is also an Lp[_5V]-kernel. 
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V.2 

This means that without any loos of generality we may assume that P(t, .) is 
right-continuous on (0,1) and P(t, 1) = 0 for almost all t e [0, 1] . 

1.12. Remark. Let 

PM = 

-A(t) - C(t) - D(ř) if s = 0, 
-A(t) - D(t) if 0 < s < t , 
-D(ř) if í < s < 1, 

0 if s = 1 , 

where A, C, D are n x rc-matrix valued functions whose columns are elements of LFn. 
Then 

var0 P(t, .) = \A(t)\ + |C(r)| + \D(t)\ a.e. on [0,1] 

and hence P(t,s) is an Lp[BV]-kernel. Furthermore, given xeAC„, 
•i 

ds[P(r, s)] x(s) = 4(f) x(t) + C(t) x(0) + D(t) x(l) a.e. on [0,1] 
o 

and the integro-differential operator L = D — P reduces to the differential-boundary 
operator 

xeWn
p-> x'(t) - A(t) x(t) - C(t) x(0) - D(t) x(l) e L^. 

2. Duality theory 

Our wish is now to establish the duality theory for BVP 

(2,1) 

(2,2) 

*(t) 
o 

Sx 

ds[P(í,s)]x(s) = f(t) a.e. o n [ 0 , l ] , 

= УИ x(0) + K(t) x'(t) dí = г. 
Jo 

In particular, we shall show the normal solvability and qyaluate the index of this 
boundary value problem under the following assumptions. 

2.1. Assumptions. P: [0,1] x [0,1] -> L(Rn) is an Lp-[BV]-kernel, 1 < p < oo, 
feLp, MeL(Rn,Rm), K: [0,1] - L(K„, KJ, ||K||L, < oo, q =pj(p - 1) (/" p > 1, 
q = co if p = 1 a^d r e Km. 

2.2. Definition. A function x: [0,1] -> P„ is said to be a solution of BVP (2,1), 
(2,2) if x e ACn and (2,1), (2,2) hold for a.e. t e [0,1]. 

2.3. Remark. According to 1.13 we may assume that for a.e. £e[0,1] P(t, .) is 
right-continuous on (0,1) and P(t, 1) = 0. Furthermore, let us mention, that if 
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P(t,s) is an Lp[J3V]-kernel and feLp, then obviously x'eLPn for any solution 
xeACn of the integro-differential equation (2,1). Thus given a solution x of BVP 
(2,1), (2,2), xeWp. 

2.4. Notations. The operators DeB(Wp,Lp

n) and PeK(Wn

p,Lp) are defined by (1,3) 
and (1,6), -x 

S: x G Wp - M x(0) + K(r) x'(r) dt G Rm 

and 
~Dx - Px 

(2,з) æ-.xewf . Sx £ L? x Rm . 

Making use of 2.4, we may reformulate BVP (2,1), (2,2) as the operator equation 

(2,4) SЄ* 

It appears to be convenient to handle instead of (2,4) the operator equation for 

S = (*)eW>>xRm 

\ d / 

(2.5) t-Tt = q>, 

where 

(2.6) V: u e L £ - u(x)AxeWp, <f>: XG WP -> v(f) = X(0)G KV/, 
Jo 

/x\ r*x + ypxi / ^ A 
T : ( d J e W ? x l J - ^ l d _ S x J eWyxH, , , and q> = ^ JeWp x Rm. 

Clearly, xeWp is a solution to BVP (2,1), (2,2) if and only if for an arbitrary deRm 

fx\ 
the couple £ — I ) is a solution of (2,5). In particular, 

\dj 

(2.7) dim N(/ - T) = dim N(^) + m. 

Furthermore, f J G L£ X Rm belongs to R(Se) if and only if ( j e R(l - T). 

As according to 1.4 and 1.3.21 the linear operator T given by (2,6) is compact and 

ff\ /*T\ 
the linear operator W: ( 1 e LPn x Rm -> I 1 G K^P X Rm is obviously bounded, 

we have 
2.5. Proposition. Under the assumptions 2.1 the operator 5£ given by (2,3) has a closed 
range in Lp x Rm. 

Since by 1.5.13 the dual space (Wp)* to Wp is isometrically isomorphic with 
LI x R* and (LPn x Rm)* is isometrically isomorphic with Lq

n x R* (cf. 1.3.9 and 
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1.3.10), the adjoint operator to ££ may be represented analytically by the linear 
bounded operator 

(2.8) &*: (y*, X*) e Un x R*m - (L*(y*, A*), L*(y*, A*)) e L J x R* 

which is defined by the relation 

f1 f1 

(2.9) y*(f) [Dx - Px] (t) dt + A*[Sx] = L*(y*, X*) (t) x'(t) dt + L*(y*, X*) x(0) 
Jo Jo 

for all XGKV/, y*eL« and X*eR*. 

Analogously, the operator 
(2.10) T*:(y*,x*,A*)eL«xK* x K* 

-> (T*(y*,x*,A*), T*(y*,x*,A*), T*(y*,x*,X*))e Lq
n x R* x R* 

defined by 

(2.11) y*(t) (Px) (t) dt + x* x(0) + X*(d - Sx) 

T*(y*, x*, A*) x'(t) dt + T*(y*, x*, X*) x(0) + T*(y*, x*, X*) d 
o 

for all x e l V / , deRm, y*eL£, x*eR*, X*eR* 

represents analytically the adjoint operator to the operator T. 

2.6. Theorem. If 2,1 holds and P(t, 1) = 0 a.e. on [0,1], then the operator 
££*'. L\ x R* -> L« x K* aiven by (2,8) venfes (2,9) if and on/)/ if 

(2,12) L*(y*, A*) (t) = y*(t) + y*(s) P(s, t) ds + A* K(t) a.e. on [0,1] , 

(2,13) L*(y*,A*) = A*/И + y*(s)P(s,0)ds. 

Proof. Let x e W>, y*eLq„ and X*eR*. By 1.4.38 

Í y*(í)(Px)(t)dt= d, 
o LJo 

y*(s) P(s, t) ds 
« ( - ) • 

Furthermore, integrating by parts (1.4.33) and taking into account the assumption 
P(t, 1) = 0 a.e. on [0,1], we obtain 

j (t) (Px) (t) dt = - ( j V ( - ) P(s, 0) ds) x(0) - £ y*(s)P(s,í)ds x'(í)dt 
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Hence 
ү*(t) [Dx - Px] (f) df + k*(Sx) 

k*M + y*(s) P(s, 0) ds 
Jo 

<(0) + ү*(t)+ y*(s)P(s,f)ds +A*K(ř) c'{ř) dř 

for all x e Wf, y* e U„ and A* e R*. 

In virtue of (2,9) this yields that 

Ц(y*, k*) (t) - y*(f) - y*(s) P(s, t) ás - A* K(f) x'(ř) df 

+ L*(y*, A*) - k*M - y*(s) P(s, 0) ds x(0) = 0 

holds for all x e Wn
p, y* e Un and A* e R%. 

The proof will be completed by making use of 1.5.15. 
Similarly 

2.7. Proposition. If 2.1 holds and P(t, 1) = 0 a.e. on [0,1], then the operator 
T*: L;; x P* x R* -> L« x R* x K* aiverz by (2,10) verifies (2,11) i/ and on/y if 

T*(y*, X*9 A*) (t) = - L*(y*, A*) (t) + Y*{t) a.e. on [0,1] , 

T*(y*, **, A*) = - L%(y*, A*) + x* , T*(y*, X*9 A*) = A* 

for all Y* e L«, x* e R* and A* e R*. 

2.8. Corollary. dimN(i?*) = dimN(/ - T*) - n < oo. 

Proof follows readily from 2.6, 2.7 and 1.3.20. 

2.9. Theorem. If 2.1 /zoWs and P(r, 1) = 0 a.e. on [0,1], then 

ind («=£?) = dim N[£e*) - dim N(&) = m-n. 

Proof. By 2.5 and 1.3.15 codimR(.Sf) = dim N(«S?*). Hence by (2,7) and 2.8 and 
1.3.20 

ind (Se) = dim N(/ - T*) - n - dim N(/ - T) + m - m - n. 

2.10. Remark. The relation (2,9), where l*^*,**) and L|(y*, A*) are given by (2,12) 
and (2,13) is the Green formula for BVP (2,1), (2,2). 

2.11. Remark. Let A,C,D\ [0,1] --> L(Rn) be Lebesgue integrable on [0,1], let 
P: [0,1] x [0,1] -* Lfo) be an I}\BV\-kernel and let K: [0,1] - L(Rn, Rm) be 
of bounded variation on [0,1] and M, N e L(-Rn, -Rm). Let us consider the problem 
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of determining xeACn which verifies the system 

(2,14) x'(t) - A(t) x(t) - [C(t) x(0) + D(t) x(l)] - Pd s[P(t, s)] x(s) = f(t) 

a.e. on [0,1] 

M x(0) + N x(l) + d[K(ŕ)] x(ř) = r, 

and 

(2,15) 

where feLn and r e Rm. Again we may assume that P(t, .) is for almost all t e [0,1] 
right-continuous on (0,1). Moreover, if we put 

rP(t,0 + ) - P ( t , l - ) if 5 = 0, 
p0(t, s) = J P(u s) - P(t, 1 - ) if 0 < s < 1, 

(0 if 5 = 1 

and C0(t) = C(t) - [P(t,0 + ) - P(t, 0)1 D0(t) = D(t) - [P(t, 1) - P(t, 1-)], for any 
xeACn we should obtain 

C(t)x(0) + D(t)x(l)+ rds[P(t,s)]x(s) 
Jo 

= C0(t) x(0) + D0(t) x(l) + | ds[P0(t, s)] x(s). 
Jo 

Hence, without any loss of generality we may assume that for almost all t e [0,1] 
P(t, .) is right-continuous on [0,1), left-continuous at 1 and P(t, 1) = 0. Analogously, 
K may be assumed right-continuous on [0,1), left-continuous at 1 and K(l) = 0. 

According to 1.12 we may rewrite the equation (2,14) in the form 

(2,16) 

where 

x í - ds[R(t,s)]x(s) = f(î) a.e. o n [ 0 , l ] , 

R(í, s) = Ңt, s) + 

f -A(t) - C(t) - D(í) if s = 0, 

-A(t)-D(t) if 0 < s < t , 

-D(í) if t < s < 1, 

0 if s = 1 

is again an L1[JBV]-kernel. Furthermore, applying the integration-by-parts formula 
and taking into account that K(l) = 0 and 

x(l) = x(0) + X'(T) dt for any x e ACn, 

173 



V.2 

we transfer the side condition (2,15) into 

(2,17) Hx(0)+ F(t)x'{t)dt = r, 

where 
H = M + N - K(0), F(t) = N - K(r). 

The system (2,16), (2,17) may be written as the operator equation 

Mx = 
\ r 

with 01: AC„ -* Lj, x J?m defined in an obvious way. Now, proceeding analogously 
as in the close of the proof of IV.3.13 we may deduce from 2.6 that (y*, k*) e N(38*) 
if and only if there exists z e BV„ such that z(t) = y(i) a.e. on [0,1], z(0+) = z(0), 
z ( l - ) = z(l) and 

(2.18) z*(t) + z*(s) R(s, t) ds + k* F(t) = 0 on (0,1), 

(2.19) k*H + z*(s) R(s, 0) ds = 0 . 

As F(1-) = F(1) = N and R(t, 1 - ) = -D(t) for almost all re[0,1] , we have 
by (2,18) 

(2.20) z*(l) = z*(s) D(s) ds - k*N . 
Jo 

Since F(0+) = F(0) = N - K(0) and R(t,0+) = P(t,0) - A(t) - D(t) for almost 
all t e [0,1], the relations (2,18) and (2,19) imply 

z*(0) = - I z*(s)P(s,0)ds + J z*(s)D(s)ds + z*(s) A(s)ds - k*N + k* K(0) 
Jo Jo Jo 

= - \k*H + z*(s)R(s,0)ds - z*(s)C(s)ds + k*M 

= - z*(s)C(s)ds + A*M. 
Jo 

By the definition of R and F we have for any zeBV„ and keRm fulfilling (2,20) 

z*(s)R(s,t)ds + A*F(t) 

= U * N - z*(s)D(s)ds)- z*(s)A(s)ds+ z*(s) P(s, t) ds - k* K(t) 

= -z*(l) - z*(s) A(s) ds + z*(s) P(s, t) ds - k* K(t) on [0,1] . 
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Thus, the adjoint problem to BVP (2,14), (2,15) is equivalent to the problem of de­
termining zeBV„ and X*eR* such that 

(2.21) z*(t) = z*(l) + z*(s)A(s)ds - z*(s) P{s, t) ds - X* K(t) on [0,1] 

(2.22) z*(0) + X*M + z*(s) C(s) ds = 0, 

- я * N " f 2*(1)-A*N - 2*(s)D(s)ds = 0. 

2.12. Theorem. Let us assume 2.1 and P(t, 1) = 0 a.e. on [0,1]. Then for given 
feLPn and reRm BVP (2,1), (2,2) possesses a solution if and only if 

y*(t)f(t)dt + A*r = 0 

for any couple (y*, k*) eL\ x R* which verifies the adjoint system 

(2.23) y*(t) + y*(s) P(s, t) ds + k* K(t) = 0 a.e. on [0,1] , 
Jo 

(2.24) k*M + J y*(s) P(s9 0) ds = 0. 
Jo 

Proof follows from 2.5, 2.6 and 1.3.14 (cf. 1.3.23). 

2.13. Theorem. Let us assume 2.1 and P(t, 1) = 0 a.e. on [0,1]. Then for given 
g* e LI and q* e R*, the system 

y*(t) + y*(s) P(s, t) ds + k* K(t) = g*(t) a.e. on [0,1] , 
Jo 

k*M+ y*(s)P(s,0)ds = q* 

possesses a solution (y*,k*)eLl x R* if and only if 

I 

g*(t)xf(t)dt + q*x(0) = 0 f 
holds for any solution x e Wn

p of the homogeneous problem i f x = 0. 

Proof follows again from 2.5, 2.6 and 1.3.14. 

2.14. Remark. Let us notice that the side condition (2,2) is linearly dependent if 
there exists qeRm such that q*M = q* K(t) = 0 a.e. on [0,1] (q*(Sx) = 0 for all 
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x G Wp implies that 

xeWn
p-> q*(Sx) = (q*M) x(0) + (q* K(t)) x'(t) dteR 

Jo 
is the zero functional on Wp). 

Analogously as in the case of Stieltjes-integral side conditions (cf. IV. 1.14, where 
no use of the special form of side conditions was made), we can also show that to 
any nonzero linear operator S0: Wp -> Rk and r0 e Rk such that q*(S0x) = 0 
for any xeACn implies q*r0 = 0, there exist m < k, S: Wp -> Rm and reRm 

such that the condition Sx = r is linearly independent and equivalent to S0x = r0. 

2.15. Remark. It follows from the proof of IV. 1.15 that if (2,2) is reasonable and 
linearly independent, then there exists a regular m x m-matrix 0 such that 

[M,K(t)] 
Mo,0 
Mu K.(í) 
o, K2(t) 

a.e. OП [0, 1] , 

where Ai0 e L(Rm Rmo), M, and Kx(t) 

that m0 + m^ + m2 = m, rank 

linearly independent in L% i.e. 

implies q* = 0. The system 

м0 

L-vi.. 

eL(R„Rmi) and K2(t) e L(Rn, Rj are such 

= m0 + ml and the rows of are 

0 a.e. on [0,1] 

/Иox(0) = ro 

УИ 1 x(0)+ K.(í) Jť(í) dt = r. 

K2(t)x'(t)dt = r 2 

is the canonical form of the side condition (2,2). 

2.16. Remark. Another possible functional analytic way of attacking BVP (2,1), 
(2,2) with reRm fixed consists in considering the linear operator £fr defined on 
D(Ser) = {XGWP; SX = r} CZ WP by 

<£r\ xeD(&r)-+Dx - PxeLp. 

BVP (2,1), (2,2) may be rewritten as the operator equation 

j£x = f. 
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As R(<er) is the set of all feLp for which (')eR(^) and R(&) is closed by 2.5, 

R(Ser) is also closed. By 2.12 R(<£r) is the set of all feLp which fulfil the relation 

y*(t)f(t)dt + X*r = 0 

for all couples (y*, A*) e N(,&*) c L* x R*. In particular, if N*. denotes the set 
of all y* e L^ for which there exists A* e JR* such that (y*, A*) e N(&*), then 

K( <2>0) = iN*) 

(the set of all feLp for which <f, y*>L = 0 for any y* e N*.). 

2.17. Proposition. K ^ o ) 1 = -V*, where ^ (^o) 1 denotes the set of all y* e Lq
n such 

that 
M 

y*(f)f(t)dt = 0 /or any fe .R(^0) 
0 

and N*. is the set of all y* e Lq
n for which there exists A* e K* such that (y*, A*) G 7V(if *) 

(i.e. (2,23), (2,24) hoW). 

Proof. Let y* e L% Then y* e R(Seo)
L if and only if 

n 0 = y*(ř)[Dx - Px](ř)dř 

y*(ř)+ y*(s)P(s,ŕ)ds 
Jo 

x'(ŕ) dř + 
L J O 

ү*(s) P(s, 0) ds c(0) 

holds for every xeD(Seo) = N(S). 

This is true if and only if (u*, v*) e N(S)-1, where 

(2,25) u*(í) = y*(í) + y*(s)P(s,í)ds on [0,1], 

y*(s)P(s,0)ds. 

Since R(S) is a linear subspace in Rm, it is certainly closed and thus according to 
1.3.14 N(S)1 = R(S*), where 

S*: A* e R* -> (SJA*, S*Jl*) e L« x R* 

is the adjoint of S defined by the relation 

A*(Sx) = I '(S*A*) (t) x'(t) dt + (S*A*) x(0) for all x e W„" and A* e £*,. 
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Obviously, (S*A*)(r) = k* K(t) a.e. on [0,1] and S*A* = X*M. This means that 
(u*, v*)eiV(S)J if and only if there exists A*eRm such that 

u*(t) = A* K(t) a.e. on [0,1] , v* = A*M , 

wherefrom R^o)1 = -V* follows immediately by (2,25). 

2.18. Remark. Since by 2.8 dimNJ < oo, Proposition 2.17 is a consequence of 
the following general assertion due to J. Dieudonne (cf. Goldberg II.3.6). 

If Y is a linear normed space, N a Y*, dim N < oo, then ^N)1 = N. 

3. Green's function 

Let us continue the investigation of the operator 

[ Dx —• Px~ 
Sx JeL*xKm, 

given by (2,15). (cf. also (1,6), (1,3) and (2,2).) We assume again that 2.1 holds. More­
over, we assume that P(t, 1) = 0 a.e. on [0,1] (cf. 1.15 and 2.2). 

Of particular interest is the case when the operator equation 

(3.1) 2>x = (J 

(or BVP (2,1), (2,2)) has a unique solution for any feLPn and reRm. 

3.1. Notation. Throughout the section / = dim N(D — P), X(t) is an arbitrary 
n x /c-matrix valued function whose columns form a basis in N(D — P) and (SX) is 
the m x /-matrix 

(3.2) (SX) = A4X(0)+ K(t)X'(t)dt. 

(According to 1.8 n < I < oo.) 

3.2. Lemma, dim N(&) = / - rank (SX). 

Proof. By the definition of X(t) we have X6/V(-Sf) if and only if x(t) = X(t)c 
on [0,1], where ceRt is such that 

(3.3) (SX)c = 0. 

Obviously, the functions X(t)cj with CjeRi (j — 1,2,..., v) are linearly dependent 
in Wn

p if and only if the vectors Cj (j = 1,2,..., v) are linearly dependent. The 
assertion of the lemma follows immediately. 
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3.3. Remark. Since rank (SX) < m and / > n, 3.2 implies 

dim N(Se) >n-m. 

3.4. Lemma. R(S£>) = Un x Rm if and only if dimN(if) = n - m. 

Proof. Since by 2.5 JR(=S?) is closed in Un x Rm, R(S?) = Un x Rm if and only if 

(3.4) 0 = codim R(se) = dim ((Un x Rm)\R(Se)) = dim N(Se*) 

(cf. 1.3.11). According to 2.9 

dim N(Se*) = dim N(Se) + m-n 

wherefrom by (3,4) the assertion of the lemma follows. 

3.5. Corollary. BVP (2,1), (2,2) possesses a unique solution for any feUn and reRm 

if and only if 

(3.5) m = n and dim N(S?) = 0. 

Proof follows from 3.4 taking into account that (3,1) has a unique solution for any 

(f J e R(&) if and only if dim N(S?) = 0. 

Analogously as in the case of ordinary differential equations we want to represent 
solutions to (3,1) in the form 

(3.6) x(t) = G(t, s) f(s) ds + H(t) r on [0,1] . 

3.6. Definition. A couple of functions G: [0,1] x [0,l]^L(Rn) and H: [0,l]->L(Rn) 
is said to be a Green couple of BVP (2,1), (2,2) if for any t e [0,1] the rows of G(t, .) 
are elements of Un and the function (3,6) is for any feUn and reRn the unique 
solution of BVP (2,1), (2,2). 

Clearly, (3,6) verifies (3,1) for any feUn and r e Rn if and only if 

(3.7) x(t) = f XG(r, 5) lx'(s) - ( \ [ P ( s , d)] X(<7)"| ds 

+ H(t) M x(0) + K(s) x'(s) ds on [0,1] 

holds for any x e Wn
p. If for any t e [0,1] the rows of G(t, .) are elements of L% 

then by 1.4.33 and 1.4.38 

[1G(Ua)([ds\P(o,s)]x(s)da\ = f 'd S T[^( t ,a) P(a,s)do]x(s) 

= - M G(t, a) P(a, 0)da) x(0) - M G(t, a) P(a, s) da)x'(s) ds 
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for any t e [0,1] and any x e Wp. (We assume P(t, 1) = 0.) Consequently the right-
hand side of (3,7) becomes 

G(t, s) + G(t, a) P((7, s) do- + H(t) K(s) x'(s) ds 
o L Jo J 

+ |H(r)M + 

Thus, since for any x e Wp 

["(')' G(í, o) P((7,0) da <(0). 

<(t) = x(0) + x'(т) dт = x(0) + A(u s) x'(s) ds on [0,1] , 
Jo Jo 

where 

(3,8) A(t, s) •-

the relation (3,7) may be rewritten as follows 

if ř < s, 
if ř > s, 

(3,9) 

+ H(t)ЛH 

s) + G(ř, a) P(a, s) dст + H(t) K(s) - Л(t, s) x'(s) ds 

G(t,a)P(a,0)da- I ]x(0) = for any x є Wp. 

Applying 1.5.15 we complete the proof of the following 

3.7. Proposition. Let us assume 2.1 and P(u 1) = 0 a.e. on [0,1]. Let G: [0,1] x [0,1] 
-» L(Rn) and H: [0,1] -• L(Rn) and let G(t, .) be U-intergrable on [0,1] for any 
te[0,1]. Then G(t,s\ H(t) is a Green couple of BVP (2,1), (2,2) if and only if (3,5) 
holds and for any t e [0,1] 

(3,10) G(t,s)+ G[t,(r)P((T,s)dG + H(t)K(s) = A(t,s) for a.e. se [0,1], 

H(t)M+ G(t,c/)P(o-,0)do- = J, 
Jo 

where A(t, s) is given by (3,8). 

Moreover, we have 

3.8. Proposition. Let the assumptions of 3.1 be satisfied. If m = n and for any 
t e [0,1] G(r, s) and H(t) satisfy the system (3,10), then G(t, s), H(t) is a Green couple 
of BVP (2,1), (2,2). 

Proof. Since (3,10) implies that (3,9) and consequently also (3,7) hold for any 
x G W*, it is easy to see that then (3,6) is a solution to BVP (2,1), (2,2) for any couple 
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(J\eR(se). Furthermore, if x l 9 x 2 e Wn

p and Sex{ = Sex2 = ( j , then inserting 

x = Xi and x = x 2 into (3,7) we obtain 

xx( í ) = G(t, s) f(s) ds + H(t) r = x2(t) on [0,1] , 

i.e. dim N(se) = 0. If m = n, then by 2.9 codim R(S£) = dim N(Se) = 0. Thus 
R(Se) = Lp

nx Rm (cf. 1.9) and this completes the proof. 

Let Se*: Lq
n x R*-+ L\ x R* denote again the analytical representation of the 

adjoint operator to S£ given by 2.6. 

3.9. Lemma. / / (3,5) holds, then dim N(Se*) = 0 and R(Se*) = Un x R*. 

Proof. By 2.9 (3,5) implies 0 = dimN(^) = codim R(Se*) = dimN(^*) and the 
proof will be completed by means of 1.9. 

Lemma 3.9 together with the Bounded Inverse Theorem 1.3.4 yields 

3.10. Proposition. The operator Se*: Lq x R* -> Lq
n x R* defined by 2.9 possesses 

a bounded inverse. 

3.11. Theorem. Let us assume 2.1 with P(t, 1) = 0 a.e. on [0,1] and (3,5). Then 
there exist junctions G: [0,1] x [0,1] -> L(Rn) and H: [0,1] -» L(Rn) which verify 
the system (3,10) for any te [0,1]. Moreover, 

(i) given te [0,1], \G(u .)\\Lq < co (q = p\(p - 1) if p > 1, q = oo if p = 1), 
(ii) there exists fieR such that 

\\G(t, .)||L, + |H(r)| <JS< oo for any re [0,1], 

(iii) if G: [0,1] x [0,1] -• L(Rn) and H: [0,1] -> L(Rn) also fulfil (3,10) for any 
t e [0,1], (i) and (ii), then G(t, s) = G(t, s) and H(t) = H(t) for all t e [0,1] 
and for a.e. se[0,1] . 

Proof. Let dj(t9 s) and e* (j = 1,2,..., n) be the rows of A(t, s) and /, respectively. 
By 3.10 any equation from the system 

(3,11) <t>*(g*,h*) = (8*(t,.),ef), f 6 [ 0 , i ] , j=l,2,...,n 

has a unique solution (g*(t, .), h*(t)) in L« X R* and 

P'12) l«T(«. Olw +1*7(')| < 4\sj(t, .) |„ + |e;|) 
for any t e [ 0 , l ] a n d j = l,2,...,n, 
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where x = IK^?*)"1!! < oo. Let us put 

G(t, s) = [gl(t, 5), g2(t, 5), ..., gn(t, 5)]* on [0,1] x [0,1] , 

H(t) =[h1(t), h2(r), ..., hn(t)]* on [0,1]. 

Then, given re[0,1], the couple (G(t,s), H(t)) verifies (3,10). By (3,12) 

\\G(t9 .)\\Lq + \H(t)\ < nx < 00 for any re [0,1] 

whence (ii) follows. The assertion (iii) is a consequence of the uniqueness of solutions 
to the equations (3,11). 

3.12. Corollary. Under the assumptions of 3.11 the given operator $£ possesses 
a bounded inverse 

Se~l: r J E Lp x Rm -> I ^(t , s) f(s) ds + H(t) r e Wp. 

3.13. Theorem. Let us assume 2.1 wit/i P(t, 1) = 0 and (3,5). 77zen the couple 
G(f, s), H(t) given by 3.11 is a Green couple ofBVP (3,1). If6(f, s), H(t) is a/so a Green 
couple to (3,1), then 6(r,5) = G(t,s) ana1 H(t) = H(t) for a// te\0,1] and almost 
all s €[0,1]. 

Proof follows from 3.7 and 3.11. 

3.14. Remark. Let r e Rn. According to the definition 3.1 of X, x e Wp is a solution to 

(3,13) Dx-Px = 09 Sx = r 

if and only if x(t) = X(t) c on [0,1], where CERL fulfils (SX) c = r. In particular, 
if we assume (3,5), then by 1.8 / = n and by 3.2 det(SX) 4= 0, i.e. x e Wp verifies 
(3,13) if and only if x(t) = H(t) r on [0,1], where 

ft(t) = X(t)(SX)-1 on [0,1]. 

On the other hand, if G(t, s), H(t) is the Green couple of BVP (2,1), (2,2), then 
x(t) = H(t) r on [0,1] is for any reRm the unique solution of (3,13) on Wp. Hence 
(H(t) - H(t)) r = 0 on [0,1] for any r e Rn or 

H(t) = X(t)(SX)~l on [0,1]. 

Let us notice that the columns of X being elements of Wp, the columns of H(t) are 
also elements of Wp. 

4. Generalized Green's couples 

If P: [0,1] x [0,1] -> L(Rn) is an L2[£F]-kernel, then obviously 

I |P(T,s)|2dt+ |1 |P(t,tr)|2d(7<oo 
Jo Jo 
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for almost all Use[0,1] (cf. 1.1). Moreover, according to the assumptions (1,1) 
and (1,2) (where p — 2) 

|P(ř,s)|2ds dř < g2(t) dř < oo . 

By the Tonelli-Hobson Theorem 1.4.36 this implies that if an L2[BV]-kernel P(t, s) 
is measurable in (t, s) on [0,1] x [0,1], then 

(4Д) \P(t, s)\2 dí ds = ( |P(í, sf ds j dř < oo . 

[0, l jx[0, l] 

4.1. L2-kernels. The function P: [0,1] x [0,1] -• L(Rn) is said to be an L2-kernel 
if it is measurable in (r, s) on [0,1] x [0,1] and fulfils (4,1). Given an L2-kernel P, 
|||P||| is defined by (4,1). 

Let us recall some basic properties of L2-kernels and of Fredholm integral 
equations for ueL2

n 

(4Д) u ( í ) - P(f,s)u(s)ds = g(íj 
Jo 

with an L2-kernel P. (For the proofs see e.g. Dunford, Schwartz [1] or Smithies [1].) 
Let P: [0,1] x [0,1] -• L^Rn) be an L2-kernel. Then for any u e L2, the n-vector 

valued function 

g(t)= P(í,s)u(s)ds, í є [ 0 , l ] 

is L2-integrable on [0,1] and the mapping ueL2

n-+ geL2

n is linear and bounded. 
(This may be shown easily by making use of the Cauchy inequality and the Tonelli-
Hobson Theorem 1.4.36.) Moreover, a linear operator 0: L2

n->L2

n is compact if 
and only if there exists an L2-kernel T: [0,1] x [0,1] -* L(Rn) such that 

0: ueL2

n-» T(t,s)u(s)dseL2

n. 

If | | |P| | < 1, then the equation (4,2) possesses for any g e L2 a unique solution u 
in L2 and there exists an L2-kernel R: [0,1] x [0,1] -> L(Rn) such that for any 
g e L2 the unique solution ueL2

n of (4,2) is given by 

f1 

u(t) = g{t) + *(*, s) g(s) ds, te [0,1] . 
Jo 

R is called the resolvent kernel corresponding to P. 
Finally, given an L2-kernel P, there exist a natural number n\ functions Px: [0,1] 

-> L(Rn, Rn) and P 2: [0,1] -• L(Rn, Rn.) L2-integrable on [Q, 1] and an L2-kernel 
P0: [0,1] x [0,1] -> L(Rn) such that 

(4,3) | | |P 0 | | < 1 and P(t, s) = P0(t, s) + Px(t) P2(s) on [0,1] x [0,1] . 
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Let us turn our attention to BVP (2,1), (2,2) fulfilling 2.1 with p = q*=2 and 
P(t, 1) = 0 a.e. on [0, l ] . (P(t,s) is an L2[BV]-kernel, K is L2-integrable on [0, l] 
and feL2

n) 
A function x G W2 is a solution to BVP (2,1), (2,2) if and only if 

where x = 0c + Vu + •Ff, 

U(T) dx 6 W„2 (4.4) <*>: ceRn^z(t) = ceW2, Y: ueL2
n 

and the couple ( J e L2 x Rn verifies the system 

(4.5) u - P<f>c - PVu = PYf, 

(4.6) S<f>c + S<Fu = r - S<Ff. 

In fact, if x e W2 is a solution to BVP (2,1), (2,2), then x = # x(0) + YPx + Yf 
and Sx = S# x(0) + SYPx + SVf = r. Consequently, u = Px and c = x(0) 

satisfy (4,5) and (4,6). (Clearly u e L2.) On the other hand, if ( 1 e L2 x Rn is a solu­

tion to the system (4,5), (4,6) and x = # c + *Pu + ?Pf, then x(0) = c, Px = P4>c 

+ P¥*u + PYf = u and hence x - <f> x(0) - fPx = !Pf and Sx = r. 
Let us mention that in virtue of 1.4.33, the composed operator P*P: L2 -> L2 

is given by 

(4.7) P¥: ueL2
n-> - \ P(t,s)u(s)dseL2 . 

Now, let a natural number n\ an L2-kernel P0: [0,1] x [0,1]-> L(.R„) and 
LMntegrable functions Px: [0,1] -> L(R^,R„) and P2: [0,1] — L(Rn,Rn) be such 
that (4,3) holds. Furthermore, let R0: [0,1] x [0,1] -> L(K,.) be the resolvent 
kernel corresponding to P0. The symbols P0, Pu P2 and R0 will denote the linear 
operators 

(4,8) P0: ueL2
n-* - P0(í,s)u(s)dsєL2 

P , : d є Я я . - > - P , ( t ) d є L 2 , 

P 2: u e L ^ I P 2(s)u(s)dsєҚ,, 

R0: uєL 2 -* -
*i 

R0(t,s)u{s)dseL2„ 
0 

as well. All of them are obviously compact. 
By (4,3) and (4,8) we may write 

P*P = P0 + P,P2 
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and the equation (4,5) becomes 

u - P0u = P#c + PxP2u + PVf. 

Accordingly 

(4.9) u - [/ + R0] (P4>c + PxP2u) = [/ + R0] P«Pf. 

Let us denote 

d = P2u. 

Then the equation (4,9) reduces to 

(4.10) u = [/ + R0] P#c + [/ + R0] P-d + [/ + R0] PVf. 
Applying P2 to (4,10) and inserting (4,10) into (4,6) we reduce the system (4,5), (4,6) 
to the system of equations for c e Rn and d e Rn* 

•GK-%, 
where 

U 12. B f ^ U R - ( / _ P 2 [ ' + R o ] P < ? C + (' - P ^ + R ^ P l ^ V R 
{' ' \d) n+" \S(I - T[l + Ro]P)0c + S<F[I + R0]P1dy e K"+- , 

and 

(4.13) F,: f e L2„ - P2[/ + R0] P¥»f e J?„,, 

F2: f 6L
2„ -> S«P(/ + [/ + R0] P<F) f eRm. 

The operator B may be represented by a uniquely determined (m + rt) x (n + rt)-
matrix. Let us denote this matrix again by B. 

Thus BVP (2,1), (2,2) possesses a solution x e Wn
2 if and only if the system (4,11) 

possesses a solution I )eRn+n> and x is then given by 

(4.14) x = (# + <P[/ + R0] P#) c + «P[/ + R0] P0d + Y[l + R0] P<Pf + Tf. 

Let J i ^ ^ R j , Jl52eL(Rm,Kw), A2AeL(Rn) and J u 6 L ( R m , K , ) be 
chosen in such a way that 

в+ = ' ' ' \eL(Rm+n,, Rn+n) 
_/-2,l> Z I2,2J 

fulfils BB+B = B (e.g. B+ = B*). Then if (4,11) has a solution, the couple 

(4,15) c = [AUA - Au2F2]f+AU2reRn , 

d=[A2AF1-A2aF2]f+A2r2r<=Rn<, 

is also its solution. 
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Inserting (4,15) into (4,14) we obtain that if BVP (2,1), (2,2) has a solution, then 

(4.16) x = 0[GJ + H-r] + «P[f + R0] (G2f + H2r) + <Pf 

with 

(4.17) G^A^-A^F,, H,=AU2, 

G2 = P4»(dlflFx - AU2F2) + P.(d2f.F. - A2aF2) + P?P, 

H2 = P«Pd12 + P 1 J 2 2 

is also its solution. As G t : L
2 -> i?n is a linear bounded n-vector valued functional 

on L2 and [I + R0] G2 e K(L2), there exist an L2-integrable function Gx: [0,1] 
-> L(R„) and an L2-kernel G2: [0,1] x [0,1] -• L(Rn) such that 

(4.18) Gt:feLl^ [G,(s) f(s) dseR„, 
Jo 

[I + R0]G2: feL2
n^ ^G2(t,s)f(s)dseLl. 

Applying the Tonelli-Hobson Theorem 1.4.36 we may show that 

J ( I G2(T,S) f(s)ds)dT = I ( f G2(T,S)dT) f(s)ds 
Jo \Jo / Jo \Jo / 

for any feL2
n and t e [0,1], i.e. 

(4.20) <P[l + R0]G2: f e L2 - £ (JG2(T, S) d r ) f (s) ds e PV„2 . 

Furthermore, by (4,3), (4,4) and (4,8) there exist an L2-integrable function H2: [0,1] 
-• L(Km, Rn) such that 

H2 = P # J l j 2 + P1zl2>2: r€Rm-^H2(t)reL2
n. 

Consequently, 

(4.21) «P[/ + R0] H2: reR m - ( T H 2 ( T ) d T V 

where 

H2(f) = fl2(t) + J R0(t, T) H2(T) dT, te [0,1] 

is also L2-integrable on [0,1]. Inserting (4,18), (4,20) and (4,21) into (4,16) we obtain 
that if BVP (2,1), (2,2) has a solution, then also 

(4.22) x(t)=\G0(t,s)f(s)ds + H0(t)r, t e [0 , l ] , 
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with 

(4.23) G0(t, s) = G,(s) + G2(T, S) dT + A(t, s) on [0,1] x [0,1] , 
Jo 

A(t, s) = 0 if t < s, A(t, s) = / if t > s, 

H^^H, + H2(T)dT on [0,1] 
Jo 

is a solution to BVP (2,1), (2,2). It follows from the definition of the functions 
G0(t, s) and H0(t), that the linear operator 

(4.24) S£+: (^ e L2 x Rm - £ c o ( t , s) f(s) ds + H0(t) r e *VM
2 

is bounded. The results obtained are summarized in the following theorem. 

4.2. Theorem. Let the assumptions 2.1 with p = q = 2 be fulfilled and, moreover, 
let P(t, s) be measurable in (t, s) on [0,1] x [0,1]. Then there exist functions 
G0: [0,1] x [0,1] ^L(Rn) and H0: [0,1] -» L(Rm, £„) swc/i tha* for any feL2 

and reRm the function x(t) given by (4,22) belongs to W2 and the linear operator ££+ 
given by (4,24) is bounded. Furthermore, if BVP (2,1), (2,2) possesses a solution, then 

(4,22) (i.e. x = =öf+ I I) is also its Solution. 

4.3. Remark. According to the definition IV.3.10 we may say that G0(t,s), H0(t) 
is a generalized Green's couple of BVP (2,1), (2,2). The operator cSf+ given by (4,24) 
fulfils the relation &&+<£ = <£. 

4.4. Proposition. The functions G0(t, s) and H0(t) defined by (4,23) have the following 
properties 

(i) H0 possesses a.e. on [0,1] a derivative which is L2-integrable on [0,1], 
(ii) G0 is an 1}-kernel, G0(.,s) is of bounded variation on [0,1] for a.e. se [0,1], 

(hi) y(s) = |G0(0,5)| + varl
0 G0(.,s)eL2, 

(iv) for almost every se[0,1] the columns of G0(.,s) — A(.,s) belong to the 
space W2. 

Proof follows from the construction of the functions G0(t,s) and H0(t) (Go(0,s) 
= G^s), varjzl(.,s) < 1 and hence 

y(s) < \Gx(s)\ + J |G2(T, S)\ dT + 1 a.e. on [0,1] .) 

4.5. Remark. If k = dim jV(if) > 0, let X0 denote the n x fc-matrix function whose 
columns form a basis in N(&\ If k* = d i m N ^ * ) > 0, let Y0: [0,1] -> L(Rn,Rk*) 
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and A0eL(Rm, Rk*) be such that the couples (y*, A*) (j = 1,2,..., fc*) of their 
rows form a basis in N(££*\ Then evidently for any L2-integrable function 01: [0,1] 
-• L(1vn, Rk), any matrix 02eL(Rm,Rk) and any function Z: [0,1] -• L(Kfc*, Rn) 
of bounded variation on [0, 1] 

(4.25) G(t, s) = G0(t, s) + X0(r) 0t(s) + Z(t) Y0(s), t,se [0,1] , 

H(t) = Ho(t) + Xo(t)02 + Z(t)Ao 

is also a generalized Green's couple of BVP (2,1), (2,2) and fulfils (i) — (iv) from 4.4 
in place of G0(t, s) H0(t). 

4.6. Definition. Generalized Green's couples of the form (4,25) will be called standard 
generalized Green's couples. 

4.7. Remark. It is easy to verify that given a standard generalized Green couple 
G(t, s), H(t), the operator 

(4.26) ££+: ft) e L\ x Rm -+ PG(t, s) f(s) ds + H(t) r 

is bounded and fulfils the relation <£<£+<£ = <£. *) 

4.8. Remark. Making use of the equivalence between BVP (2,1), (2,2) and the linear 
algebraic equation (4,11) we could obtain (under the assumptions 2.1 with p = q = 2) 
the basic results of the Section V.2 in a more elementary way. An analogous procedure 
can be applied also to BVP 

(4.27) x'(t) - A(t) x(t) - C(t) x(0) - D(t) x(l) - J 'dj/ ty, s]\ x(s) = f(t) 

a.e. on [0,1] , 

(4.28) M x(0) + K(t) x'(t) dt = r, 

where A is supposed to be only L-integrable on [0,1] and K is measurable and es­
sentially bounded on [0,1]. (In general BVP (4,27), (4,28) cannot be rewritten as 
the system of the form (2,1), (2,2) fulfilling the assumptions of this section.) If X(t) 
denotes the fundamental matrix solution of the equation x'(t) — A(t) x(t) = 0, 
then BVP (4,27), (4,28) will be transferred to a system of integro-algebraical equations 

*) Since in general we may not assume that X0(r) has a full rank on [0,1] (cf. 1.10), we may not apply 
the procedure from IV.3.12 to show that ^ + e B(L;, x Rm, W2) fulfils SfSf^Sf = 2> if and only if Sf+ 
is given by (4,26), where G(t, s), H(t) is a standard generalized Green's couple. 
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for u e L2 and ceRn of the form (4,5), (4,6) (with an L2-kernel) by means of the 
substitution 

u(t) = C(t) x(0) + D(t) x(l) + j \ [ R ( t , s)] x(s) 

c = *(0). 

On the other hand, 

x(í) = X(í)c + X(t) 

i.e. x = Uc + Vu + Vf. 

X-^sMsJds + Xíí) X-^fisjds, 

5. Best approximate solutions 

We still assume that P: [0,1] x [0, l ] -> L(Rn) is a measurable L2[BV]-kernek 
P(t, 1) = 0 a.e. on [0,1], the columns of K: [0,1] -> L(R„Rm) belong to L2, feL2

n 

and r e Rm. Given x, u e W2, let us put 

(5Д) (x,u)x = u*(t)x(t)dtєR. 

Clearly, x, u e W2 -> (x, u)x e R is a bilinear form on VV„2 x W2, while (x, u)x 

= (u, x)x for all x,ue W2 and (x, x) x = 0 if and only if x(t) = 0 on [0,1]. It means 
that (., .)x is an inner product and x e W2 ~> | |x| |x = (x,x)x

12 is a norm on W2. 

Analogously, 

(5,2) <p = Q tfr = Q e L 2 x Rm -> (<p^)Y = <<p, r>L2«R 

I 

g*(t)f(t)dt+ q*reR 

is an inner product on L2 x Rm and <peL2

n x Rm -> ||<p||y = (<p, <p)1/2 is a norm 
on L2 x Rm. Moreover, as |c| < |c| e = (c*c)1/2 < njcj for any ceRn, 

2 

L 2 * Я 
WV dř f + |r|J> ~((jjf(42 dt)1^ | r | ^ [~ 

On the other hand, 

for all feL\ and reRm. 

n|fW|2dt + |r|2-2(f|f(t)|2dtY/2 |r|>0 
o \Jo / 
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and hence 

2 > 2 ( [W* + ).î(([W*),в
+и),-KfO 

L 2 x R 

l .Є. 

(5,3) - | k | | Y < \\<P\\L2*R< V(2)lkllY for each q>eL2

nxRm. 

It follows immediately that the space L2

n x Rm endowed with the norm 
complete, i.e. it is a Hilbert space. 

1S 

5.1. Notation. In the subsequent text X stands for the inner product space of 
elements of W2 with the inner product (5,1) and the corresponding norm ||. \\x. 
Y denotes the Hilbert space of elements of L2

n x Rm equipped with the inner product 
(5,2) and the corresponding norm ||. ||y. The operator xeX -* 5£xe Y (cf. (2,3)) 
is denoted by si. 

5.2. Remark. Evidently s4 e L(K, Y), R(s/) = R(£e) and N(s/) = N(Se). It follows 
easily from (5,3) and 2.9 that R(s/) is closed in Y. 

5.3. Remark. Let us notice that in general s/ is unbounded. 

5.4. Notation. If k = dim N(£e) > 0, then X0 denotes the n x fc-matrix valued 
function whose columns form a basis in N(5£). If k* = dim N(££*) > 0 and (Yj, A*) 
e L\ x R* (j = 1,2,..., k*) is a basis in N(£e*\ let us put Y*(t) = [Yl(t\ y2(t),..., Yk*(t)] 
on [0,1] and A* = [Al5 A2,..., V ] . 

5.5. Lemma. If k* > 0, then the k* x k*-matrix 

C = J VoWYr*(t)dt + /l0/lS 

is regular. If we put 

iî k*>0, 

ni = » if fc* = o, 

then 17! is an orthogonal bounded projection of Y onto R(srf). 

Proof. If there were S*C = 0 for some deRk*, then it would be also 0 = 5*C5, i.e. 

0 = £ (á* Y0(t)) (Y$(t)S)át + (8*A0)(A*5) = |(¥J(í)í, /H?í)| 
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This may hold if and only if 5*[V0(t), A0~\ = 0 a.e. on [0,1]. Hence d*C = 0 implies 
S* = 0. 

Furthermore, it follows easily from 2.12 that II^eR^s/) for any <peY and 

nxq> = (p if <peR(&0). Finally, given <pe[ ) e Y and ^ = I I e ^ ( ^ ) , we have 
by 2.12 W V q y 

(9 - n1<P, *)Y = £1«*(f) Y?(0 dt + q*A*0 

The boundedness of II x is obvious. 

5.6. Lemma. If k > 0, t/ien the k x k-matrix 

D=\1X*(t)X0(t)dt 

C 1 ]> (s) f(s) ds + Л0r = 0. 

is regular. The mapping 

(5,5) n2: x G X -» X0(t) D"* ( Xg(s) x(s) ds J e X 

/J2 = 0 if k = 0 

is an orthogonal bounded projection of X onto N(#4). 

if k>0, 

Proof. The regularity of D follows analogously as the regularity of C. Obviously 
R(n2) c N(st). Furthermore, if 8 e Rk and x(t) = X0(r) 8 on [0,1] (i.e. x e #(-**)), 
then 

(/I2x)(t) = X0(t) D1 (Tx*(s)X 0(s)ds)8 = X0(t)8 = x(t). 

Consequently R(n2) = N(s/) and III = U2. Finally, given xeX, 8eRk and 
u(t) = X0(t)<5, 

(x - !72x, u)x 

= 5* ( Px^t) x(t) dt) - 5* ( fxS(t) X(t) dt) D- * ( Px$(t) x(t) dt) = 0. 

5.7. Definition. A function u0 e W? is said to be a least square solution or a best 
approximate solution of BVP (2,1), (2,2), if it is a least square solution or a best ap­
proximate solution of the operator equation 

(5,6) - - ( r 
sѓx 

respectively. 

Let us assume 2.1 with p = q = 2 and let P(t, s) be measurable in (t, s) 
on [0,1] x [0,1]. Then there exist a standard generalized Green's couple G(t, s), 
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H(t) ofBVP (2,1), (2,2) such that for any fe L2

n and reR„ 

(5Д) u0(í) = G(í, s) f(s) ds + H(t) r on [0,1] 

is the unique best approximate solution of BVP (2,1), (2,2). 

Proof. Let G0(t,s), H0(t) be the generalized Green's couple of BVP (2,1), (2,2) 
given by 4.2 and let Se+: L2 x Rm -> W2 be the corresponding generalized inverse 

operator to S£ given by (4,24). Let us define s/+: ( \eY-> &+ ( \eX and 

(5.8) s4*: (fjeY^(l-n2)s/ + nl(
fJeK, 

where IIleB(Y) and n2eB(X) are given by (5,4) and (5,5), respectively. Then 
srf+eL(XX\ sJ*eL(XX\ s4s4+st = stf and according to 1.3.28 and 1.3.29 

u0 = ss/* ( J is the unique best approximate solution of (5,6) for every feL2
n 

and r e Rm. Taking into account 4.4, (5,4), (4,24) and making use of 1.4.36 we obtain 
that for any feL2

n and reRm 

(5.9) s/+n, (fJ (t) = J G(t, s) f(s) ds + H(t) r on [0,1] , 

where 

(5.10) G(t, s) = G0(t, s)-( J XG0(t9 a) Yg(o) da J C ' Y0(s) on [0,1] x [0,1] , 

H(t) = H0(t) - H0(t) AtC~ M 0 on [0,1] . 

Obviously, fi(r, s) is an L2-kernel and (j(r, s), H(t) is a standard generalized Green's 
couple of BVP (2,1), (2,2). By 4.2 and 1.4.36 we have 

Г Xg(т) Ő(т, s) f(s) ds dт = X*(т) Ő(т, s) dт f(s) ds. 

Consequently, putting 

(5,11) G(t,s) = G(t,s)-X0(t)D-i X*(т)Ő(т,s)dт on [0,1] x [0,1] , 

H(t) = Й(t) - X0(t) D ^ X*(т) H(т) dт on [0,1] , 

we obtain 
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5.9. Remark. Let us notice that veX is a least square solution to BVP (2,1), (2,2) 
if and only if 

(5,12) 0 = (sfx9 s/v-r )) for any x e K . 

Since by the definition (5,2) 

= <x, se*(Sev)* - Se*(f*, r*)>L x R for any x e W„2 , 

the condition (5,12) is equivalent to 

se*(sev)* = se*(f*, r*) 
or 

(5,13) v'(t) + P(í,0)+ ľ l 

•J. P(t,s) + P*(s, í) + 

v(0) 

P*(a, t) P(a, s) áa + K*(t) K(s) v'(s)ds 

= f(t) + P*(s, t) f(s) ds + K*(t) r a.e. on [0,1], 

[ M*M + v(0) P*(a,0)P(a,0)da 
I _ 

+ #M*K(s) + P*(s,0)+ P*(a,0)P(a,s)da v'(s)ds 
Jo L Jo J 

ľp*(s,0)f(s)ds. = M*r + 

Let us notice that the system (5,13) of equations for u = v' e L2 and c = v(0) e Rn 

may be treated in the same way as the system (4,5), (4,6) (cf. also Lemma 3.1 in Tvrdy, 
Vejvoda [1]). If P(.,s) and K are of bounded variation on [0,1], then the system 
(5,13) may be reduced to the form (2,1), (2,2). 

5.10. Remark. Let rejRm be fixed and let us define 

Dr={xeW2; Sx = r} and Ser\ xeDr-* Dx - PxeL2
n. 

Then R{S£r) is closed in L2 (cf. 2.16). Hence if Dr 4= 0, then by the Classical Projection 
Theorem (Luenberger [ l ] , p. 64) R{S£r) contains a unique element y of minimum 
L2-norm and y e R ^ ) 1 . It follows from 2.17 that ||y||L2 < \\f \\L2 for all feR{Ser) 
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if and only if there exists A* e R* such that (y*, A*) e N(5£?*). Thus ueDr fulfils 
|| Du — Pu || L2 < || Dx — Px||L2 for all xeDr if and only if there exists X*eR* 
such that 

£>*((Du - Pu)*, A*) - 0 . 

6. Volterra-Stieltjes integro-differential operator 

Let P: [0,1] x [0,1] -> L(R„) be an Lp[BV]-kernel and let for a.e. re [0,1], 
P(U s) = P(t, t) if 0 < t < s < 1. Then 

% i 

P: xєИÍ" ds[P(t,S)]x(s)= ds[P( t ) S)]x(5)єЦ 
> Jo 

and the Fredholm-Stieltjes integro-differential operator <£ = D — P defined in 1.5 
reduces to a Volterra-Stieltjes integro-differential operator 

(64) ^ = D - P : xєw/->x'(t) ds[P(t,S)]x(S)єLS. 

If P(t, s) = P(r, t) = 0 for 0 < t < s < 1, then by 1.4.38 

«/u \«/ 

ds[P(т,s)]x(S) dт = X I ? s [ p { T ' s ) ] x ( s ) ) d T 

í' 
Jo 

P(т, s) dт Ф) P(т, :з) dт Ф). 

Thus, if f e Un, then by integrating the Volterra-Stieltjes integro-differential equation 
for x e Wf 

(6,2) 

we obtain 

c'(í) - ľds[P(t, S)] x(S) = f(t) a.e. on [0,1] 

6.1. Proposition. If P(t, s) = 0 for 0 < t < s < 1, then a function x e BVn is a solution 
to (6,2) if and only if 

(6,3) x(t) - I ds[Q(t, S)] x(S) = x(0) + I V(x) dT on [0,1] , 
Jo Jo 

where 

(6,4) Q(t, s) = P(T, S) dT if 0 < S < t < 1, Q(t, s) = 0 if 0 < t < s < 1 

(Obviously, if x e BV„ fulfils (6,3), then x e W/.) 
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6.2. Remark. Let us notice that if P0(t,s) = P(t,s) - P(t, t) on [0,1] x [0,1], then 
P0(t, s) = 0 for 0 < t < s < 1 and 

ds[P0(t, s)] x(s) = ds[P(t, s)] x(s) for any t e [0,1] and x e Cn. 
Jo 

This means that the assumption P(t, t) = 0 for every t e [0,1] does not cause any 
loss of generality. 

6.3. Proposition. v [ (U]x[01](Q) < oo, Q(0, s) = 0 on [0,1] and Q(_, t-) = Q(t, _) = 0 
/or any £e(0,1]. 

Proof. Let a net-type subdivision {0 = t0< tt < ... <tk = 1; 0 = s o <s 1 < ... <sk= 1} 
be given. Then 

m, ЛQ) = r. (P(т,_;)-P(т,_,_.))dт < 
J í ť - 1 

S j ) - P ( т , 5 J _ 1 ) | d т . 

Hence 

í Ž"ЧJ(Q)-Î 
i = l 7 = 1 

ľt̂ ,-/ 
Jo J = l 

)-P(т,_ J _ 1 ) |dт__ _(т)dт ÍV)« 
Jo 

and consequently v[0 1 ] x [ 0 4 ] ( Q ) < oo. The other assertions of the lemma follow 
immediately from (6,4). 

Making use of the results obtained for Volterra-Stieltjes integral equations in 
the Section II.3 we can deduce the variation-of-constants formula for Volterra-
Stieltjes integro-differential equations. 

6.4. Theorem. Let P: [0,1] x [0,1] -> L(Rn) be an U\BV\kerne\ such that for 
a.e. t e [0,1] P(t,s) = 0 if 0 < t < s < I. Then for any ceRn and feLp there 
exists a unique solution x of the equation (6,2) in Wp such that x(0) = c. 

Furthermore, there exists a uniquely determined function U: [0,1] x [0,1] -> L(Rn) 
such that for any feLn and ceRn this solution is given by 

(6,5) x(ř)= U(í,0)c + U(ř,s)f(s)ds, t є [ 0 , l ] . 

The function U satisfies the equation 

8 f' 
(6,6) — U(t, s) = dr[P(t, r)] U(r, s) for any s e [0,1] and a.e. t e [s, 1] . 

Moreover, v[0 1 ] x [ 0 n(U)-h varj U(0, .) < oo, U(.,s) is absolutely continuous on 
[0,1] for any s e [0,1] and U(t, s) = I if 0 < t < s < 1. 
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Proof. Let F: [0,1] x [0,1] -> L(Rn) correspond to Q by 11.3.10. In particular, 
the function x: [0,1] -• Rn given by 

x(í) = c + f(x) dx + ГW.-)] 
Jo 

c + f(т)dт 

is for any ceRn and f e LPn a unique solution to (6,3) such that x(0) = c. Integration 
by parts yields 

[*t 

(6.7) x(t) = [/ + r(t91)] c + [»+ r(t, t) - r(t, s)] f(s) ds on [0,1] . 
Jo 

Denoting 
(6.8) U M ^ ' + r ( M ) - F ( t ' S ) l f O ^ * ' * 1 ' 

if 0 < ř < s < 1, 
the expression (6,7) reduces to (6,5). (Recall that r(t,0) = 0 for every £e[0,1].) 
In our case the function T satisfies for 0 < s < t < 1 the relation (cf. (II.3.29)) 

r(r,s). 
t 

dr P(т,r)dт 
0 r _ 

(6,9) r(t, s) = P(T, S) dT - P(T, 0) dT + 
Js Jo 

Taking into account that P(T,r) = 0 if 0 < T < r < l and F(r,s) = F(r,r) if 
0 < r < s < 1 and employing L4.38 we obtain for 0 < s < t < 1 

dr [ [ P(T, r) d J r(r, s) = [dr \ [P(T, r) d J F(r, s) 
Jo LJr J Jo LJo 

= { (£«M;P(T, r)] F(r, 5)) dT = £ ( J \ [ P ( T , r)] T(r, s)) dT 

= [' (£dr[P(x, r)] T(r, s)) dT + ^ ( | \ [ P ( t , r)] T(r, r)) dT . 

It is easy to verify (cf. also (6,8) and (6,9)) that 

U(t,s) = / - J P(T, S)dT - P ( Pdr[P(T,r)] (r(r, s) - T(r, r))\dT 

for 0 < s < t < 1. 

On the other hand, it follows from (6,8) that 

J \ [ P ( T , r)] U(r, s) = -P(T, S) - J \ [ P ( T , r)] (r(r, r) - T(r, s)) 

for 0 < s < T < 1. 
Thus (U(s,s) = l) 

U(t, s) = U(s, s)+ \ l\ dr[P(T, r)] U(r, s) J dT if 0 < s < t < 1, 

which yields (6,6) immediately. 
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As v[0 1 ] x [ 0 1 ] ( r ) < oo (cf. II.3.10), also v [ 0 > 1 ] x [ 0 > 1 ](U) < oo. The other assertions 
of the theorem are evident. 

6.5. Remark. Denoting for ceR„ feLp and re [0,1] 

(6,10) (Фc)(íj=U(f,0)c and (Гf){t) = U(t,s)f(s)ds, 

the variation of constants formula (6,5) for solutions of (6,2) becomes 

(6,11) x(t) = (#c) (t) + (Vf) (t) on [0,1] (x = &c+ Vf). 

By 6.4 the functions 4>c and f f belong to Wp for every ceRn and feLp. More­
over, the linear operators # : ceRn-+&ceWn

p and !P: feLp->*PfeWp are 
bounded. Indeed, if feLp and ij/ = *Pf, then in virtue of 1.4.27, 1.6.6 and 6.4 we 
have for a.e. t e [0,1] 

m = 

Consequently 

ds[P(t,s)]ф(s) + f(t) 1dT[P(t,z)]([tU(x,s)f(s)ds 
o \Jo 

+ \m\ 
<Q(t) Štip \U(t,S)\ \\f\\L1 +\f(t)\. 

t,se[0,l] 

\*f\\w, = Mw < (1 + | e | M sup \U(t,s)\)) \\f\\LP., 
ř,se[0,l] 

i.e. *PeB(Lp, Wp). Analogously we could obtain &eB(Rn, Wp). 

6.6. Corollary. Let °Ubea linear normed space and let 0 e B(fll, Lp). IfP: [0,1] x [0,1] 
-> L(Rn) is an Lp[BV]-kernel such that for a.e. te[0,1], P(t,s) = 0 if se[t, 1], 
then for any uetft, feLp and ceRn there exists a unique solution x e Wp of 

Dx-Px = 0u-hf, x(0) = c. 

77ns solution is given by x = 0c + *P0u + *Pf 

6.7. Remark.Let r>0 and let P: [0,1] x [-r, 1] -> L(Rn) be an Lp[J5V]-kernel 
on [0,1] x [-r, 1] such that P(t, s) = 0 if t < s and P(r, s) = P(t, t - r) if s < t - r. 
Let u e BVn[ — r, 0] and f e Lp be given and let us lool^ for a function x e BVn[ — r, 1] 
absolutely continuous on [0,1] and such that x! is LMntegrable on [0,1] and 

(6,12) 

If we put 

Лi) ds[P(t,s)]x(s) = f(t) a.e. o n [ 0 , l ] , 
r 

x(t) = u(t) on [ - r , 0 ] . 

: u є' BV„[-r,0] -> | ° ds[P(t, s)] u(s)є U„, 
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then 0 is a linear compact operator (cf. 1.4). For any x e BVn[ — r, 1] and t e [0,1] 
we have 

ds[P(ŕ,s)]x(s) ds[P(í,s)]x(s) + ds[P(í,s)]x(s). 

Thus our problem may be formulated in the form of the operator equation 
Dx - Px = 0u + f and according to 6.6 (with % = £V„[-r,0]) the equation 
(6,12) has for any u e B ^ [ - r , 0 ] and xeLp a unique solution x e Wp such that 
x(t) = u(t) on [ - r , 0 ] . This solution is of the form x = <P0u + Vf, where 
0O: ueBVn[ — r,0] ->4>u(0) + *P0ueWn

p is a linear compact operator. (Let us 
notice that in virtue of 1.4.38 

(Ф ou)( í)=Ц í,0)u(0) + rU(ř,T)P(T,s)dTju| (s) on [0,1] 

for any ueBVn[ — r,0].) Thus, the variation-of-constants formula for functional-
differential equations of the retarded type (cf. Banks [1] or Hale [1]) is a con­
sequence of Theorem 6.2. 

Analogously we may show that if 0 < rt < r (i = 1,2,..., fc), At: [0,1] -> L(Rn) 
i= 1,2,..., k) are measurable and essentially bounded on [0,1] and _40: [0,1] 
x [-r,0]-» L(#J is measurable and essentially bounded on [0,1] x [-r, 0], 

then the system 

><\ v_wJ° if t-rt>0\ (6,13) 
i=í 

" 0 

u(t - ГІ) if t - ГІ < 0 

f 0 if ř + s > 0 
t + s) if ř + s < 0 

A 0 (M)|- ( f . :. - • " ' : M S 

ds[P(í,s)]x(s) = f(í) a.e. on [0,1] 

has for any f eLJ[0,1], u e L J [ - r , 0 ] a n d c e R „ a unique solution x e L j [ - r , 1] 
such that x(t) = u(t) a.e. on [-r ,0], u(0) = c and x | r 0 . i ] e Wn

p. This solution is 
of the form x = ^ c + ^P0u + *Pf, where 

l A ^ u í ř - r , ) if í - r ŕ < 0 

if f - rг > 0 
: u є L S [ - r , 0 ] - , . . , = ! 

l 0 

+ [>Гs) ï : : : : : i d ^ -
(Functional-differential equations of the type (6,13) were studied in detail in 
Delfour-Mitter [1] and [2].) 
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6.8. Theorem. Let A be a Banach space, SeB(Wp,A) and let P: [0,1] x [0, l] 
-• L(Rn) be an U\BV\kerne\ such that for a.e. te[0,1], P(t,s) = 0 if se[t, 1]. 
Then the linear bounded operator 

&\ xeWp 

has a closed range. 

Dx - Px 

Sx 
єL»„ x Л 

Proof. By 6.5, r j e L J x A belongs to R(£>) if and only if r - SVfeR(S&). As 

W:( leLJ x /l -• r — SVfeA is bounded and K(S4>) is a finite dimensional 

linear subspace in A (<l>e B(Rn, W
p% it follows that R(&) is closed. 

7. Fredholm-Stieltjes integral equations with linear constraints 

This section is devoted to the system of equations for xeBVn 

(7,1) x(r) - x(0) - [\\P(t9 s) - P(0,5)] x(s) = f(t) - f(0) on [0,1] , 
Jo 

(7Д) d[K(s)]x(s) = 

The following hypotheses are pertinent. 

7.1. Assumptions. P: [0,1] x [0,1] -> L(Rn) and there are t0, s0 e [0,1] such that 

(7,3) v[o, i ] x [o. I ](p) + var0 P(t0, .) + var0 P(., s0) < GO , 

K: [0,1] -> L(R„, .Rm) is of bounded variation on [0,1], feBV„ and reRm. 

7.2. Definition. Any function P: [0,1] x [0,1] -» L(R„) fulfilling (7,3) is called an 
SBV-kmn?/. 

7.3. Remark. If P: [0,1] x [0,1] -> L(R„) is an SBV-kernel and 

(141 Oft s) = i P ( t ' S ) ~ P ( ° ' S ) f ° r f 6 -°'1] a n d S £ ( ° ' 1 ] ' 
[ , ) V l ' ; | P ( j , 0 ) - P ( 0 , 0 ) - / for t e [ 0 , l ] and s = 0, 

then obviously Q(t,s) is an SBV-kernel and 

f1 f1 

(7,5) x(0) + ds[P(t, s) - P(0, s)] x(s) = ds[Q(t, s)] x(s) for any x e BV„ 
Jo J 0 
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(cf. 1.4.23). It means that the equation (7,1) is a special case of Fredholm-Stieltjes 
integral equations studied in Chapter II. Let us denote by Q the linear operator 

(7,6) Q: x e BV„ - x(0) + \ ds[P(t, s) - P(0, s)] x(s). 
Jo 

By (7,5) and II.1.5 R(Q) a BVn and QeL(BVn) is compact. 
The following assertion follows analogously as 1.8 from 1.3.20 and 1.9. 

7.4. Proposition. If P: [0,1] x [0,1] -> L(Rn) is an SBV-kernel and the operator Q 
is given by (7,6), then n < dim N(l — Q) < oo, while dimN(/ — Q) = n if and only 
if the equation (7,1) has a solution x e BVn for any feBVn. 

Let us mention that the following additional hypotheses do not mean any loss 
of generality (cf. II. 1.4). 

7.5. Assumptions. P(t, .) is right-continuous on (0,1) and P(t, 1) —. 0 for any t e [0,1] 
and P(0, s) = 0 for any se [0,1]; K is right-continuous on (0,1) and K(l) = 0. 

Analogously as in the case of BVP (2,1), (2,2) for Fredholm-Stieltjes integro-
differential operators we rewrite the system (7,1), (7,2) of equations for xeBVn 

as the system of operator equations for £ = I \eBVn x Rm 

where QeK(BVn) is defined by (7,6), 

(7.8) S:xeBV„^ f d ^ s ) ] x(s)€Rm , 

(7.9) T: (*) e BVn x Rm -> (^ ***\ e BV„ x Rm 

and 9* is now given by 

(7,10) V:feBVn^f(t)-f(0)eBVn. 

7.6. Proposition. If xeBVn is a solution to (7,1), (7,2), then £ = I J is a solution 

to (7,7) for any d e Rm. If xeBVn and there exists deRm such that t; = ( I verifies 
(7,7), then x is a solution of (7,1), (7,2). 

7.7. Proposition. Under the assumptions 7.1 the operator TeL(BVn x Rm) defined 
by (7,6), (7,8) and (7,9) is compact. 
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Proof. As obviously SeB(BVfVRm) = K(BV„Rm) (cf. 1.3.21) and QeK(BVn), it is 
easy to see that TeK(BVn x Rm). 

Our wish is now to establish the duality theory for problems of the form (7,1), 
(7,2). To this end it is necessary to choose a space BVn of functions [0,1] -* R* 
and an operator TeL(BVn

y x R*) in such a way that (BVn x Kw, BV; x R*) is 
a dual pair with respect to some bilinear form [., .] (cf. 1.3.1) and 

(7.H) T['d), (z*,X*) , Г(z*, X*) 

for all (j e BVn x Rm and (z*, A*) e BV; x R* . 

According to 1.5.9 the spaces BVn and NBVn form a dual pair with respect to the 
bilinear form 

xeBVn, <peNBVn d[ę*(t)] x(t) є R . 

For the purposes of this section a slightly different choice of the space BVn is more 
suitable. 

7.8. Definition. BVn denotes the space of all functions z*: [0,1] -> R* of bounded 
variation on [0,1], right-continuous on (0,1) and such that z*(l) = 0. 

7.9. Proposition. The space BVn defined in 7.8 becomes a Banach space if it is endowed 
with the norm z*eBVn -> \\z*\\BV> = |z*(0)| + var0 z*. Moreover, (BVn x Rm, BVn x R*) 
is a dual pair with respect to the bilinear form 

(7,12) eBVnxRm, (z*,X*)eBV;xR*„ 

, (**, X*) d[z*(í)]x(í) + X*dєR. 

(For the proofs of analogous assertions for NBVn see 1.5.2 and I.5.9.] 
In the following the bilinear form [., .] is defined by (7,12). 

7.10. Proposition. If the hypotheses 7.1 are fulfilled, Q: [0,1] x [0,1] -» L(Rn) is 
defined by (7,4) and 

(7,13) T:(z*,X*)єBV;xR% 
d[z*(t)]Q(t,s)-X*K(s) 

V X* J 

then (7,11) holds. If 7.5 is also assumed, then R(T') c BVn x Rm and TeK(BVn

y x Rm). 
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Proof. Let us denote 

Q:zeBVH Q(t,s)d[z(t)]. 

As Q(t,s) is an SBK-kernel, Q e K(BV„) (cf. II.1.9). Moreover, by 1.6.20 

£d[z*(t)] (£d,[Q(t, s)] x(s)) + A* (d - £d[K(s)] x(s)) 

d[z*(t)]Q(t,s)-A*K(s) x(s) + A*d 

for any x e BV„, de JRm, z* e BVn and A* e R*. If P(t, .) is right-continuous on (0,1), 
then according to 1.6.16 and 1.4.17 also QzeBVn is right-continuous on (0,1) for 
any zeBVn. Consequently, R(T') a BVn x R* provided that 7.5 is satisfied. The 
compactness of TyeL(BVn x R*) follows readily from the compactness of Q\ 

The operators T and "T being compact, 

(7,14) ind (I - T) = ind (/ - T) = 0 

(cf. 1.3.20) and we may apply Theorem 1.3.2. 

7.11. Theorem. If the hypotheses 7.1 and 7.5 are satisfied, then the system (7,1), (7,2) 
has a solution x e BVn if and only if 

•I 

(7,15) d[z*(s)](f(s)-f(0)) + A*r = 0 

for any z* e BVn and k* e R* such that 

(7.16) z*(s) - d[z*(t)] P(t, s) + k* K(s) = 0 on [0,1] , z*(0) = 0. 

Proof. By 1.3.2 the system (7,1), (7,2) has a solution if and only if (7,15) holds for 
any z* e BVn and k* e R* fulfilling the equation 

^i 

(7.17) z*(s) - d[z*(t)] Q(t, s) + k* K(s) = 0 on [0,1] , 
Jo 

i.e. (I - F ) (z*, k*) = 0 (cf. 7.9, 7.10 and (7,14)). Given z* e BVn\ 

fz*(l) - z*(0) if s = 0 
(7,18) I d[z*(t)]Q(t,s) = 
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(cf. (7,4) and 1.4.23). After the substitution (7,18), the equation (7,17) becomes 

(7,19) z*(s) - d[z*(t)] P(u s) + k* K(0) = 0 on (0,1] , 

- d[z*(t)]P(*,0) + k*K(s) = 0. 
Jo 

According to 7.5 P(0, s) = 0 on [0,1]. Thus the value of each of the integrals 

V«](fW-f(o)) d[z*(t)] P{t,s) ( S G [ 0 , 1 ] ) , 
Jo 

does not depend on the value z*(0) (cf. 1.4.23). Consequently (z*, k*)eBVn x R* 
is a solution to (7,19) if and only if (z*, k*) with z*,(s) = z*(s) on (0,1] and z*(0) = 0 
is also its solution. The proof is complete. 

The following assertion is also a consequence of 1,3.2. 

7.12. Proposition. Let 7.1 and 7.5 be satisfied and let heBVn. Then there exist 
z* e BVn and k* e R* such that 

(7.20) z*(s) - d[z*(t)] Q(t, s) + k* K(s) = h*(s) on [0,1] 

((I - F)(z*, k*) = (h*,0)) if and only if 
I 

d[h*(t)] x(t) = 0 
o 

holds for every x e N(=S?), where 

(7.21) ^ : x e B F ^ ( X " S x
Q X j e W „ x R M . 

7.13. Theorem. Let us assume 7.1 and 7.5 and let ££ eB(BVn, BVn x Rm) be given by 
(7,6), (7,8) and (7,21). Then k = dimN(if) < oo and the system (7,16) has exactly 
k* = k + m — n linearly independent solutions in BVn x R*. 

Proof. By 7.4 k = dim N(i?) < oo. Obviously dim N(l - T) = k + m. Since (7,14), 
it is by 1.3.2 dim N(l - T) = dim N(l - T) = k + m. The set Nr of all solutions 
to (7,16) consists of all (z*, k*) e N(l - T) for which z*(0) = 0. So dim Nv 

= dim N(\ — TN) — n = k + m — n. The proof is complete. 

In addition to 7.1 and 7.5 we shall assume henceforth that 

(7,22) P(t - , s) = P(r, s) for a// (*, s) e (0,1] x [0,1] , 

P(0 + ,s) = P(0,s) for all se [0,1]. 

In this case we may formulate the adjoint problem to (7,1), (7,2) in a form more similar 
to (7,1), (7,2). 
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Integrating by parts (1.4.33) we transfer the system (7,16) of equations for (z*, A*) 
eBV: x R* to the form т n -^m 

(7,23) *(-) + z*(t) d,[P(t, s)] + A* K{s) = 0 on [0,1] , 

z*(0) = z*(l) = 0. 

As by (7,22) P(0 +, s) = P(0, s) and P(l - , s) = P(l, s) for every s e [0,1], the value 
of each of the integrals 

| z*(t)df[P(;,s)], s e [ 0 , l ] 
Jo 

does not depend on the value z*(0) and z*(l). In particular, if z* e BVn\ z*(0) = 0, 
A*eR* and 

(7,24) y*(s) = z*(s) on (0,1), y*(0) = z*(0+), y*(l) = z*(l - ) , 

then the couple (z*, A*) solves (7,23) (i.e. (7,16)) if and only if 

(7,25) y*(s) + 

0 = 

y*(í) d,[P(t, s)] + A* K(s) = 0 on (0,1), 
) 
1 

y*(í) d[P(í, 0)] + A* K(0) (= z*(0)). 

Applying 1.6.16 and 1.4.17 we obtain 

y*(0) = y*(0+) = - y*(t)dt[P(î,0+) - P(t,0)] - A*[K(0+) - K(0)] 

and 

y*(l) = y*( l - ) = y*( t )d , [P( î , l - ) ] -A*K( l - ) 

for every y 6 BV„ and A e Rm fulfilling (7,25). If for t e [0,1] we put 

K(0+) if s = 0, 

K(s) if 0 < s < 1, 

[K( l - ) if s = l , 

P(t,0 + ) if s = 0, 

(7,26) P0{t, s) = P{t, s) if 0 < s < 1, K0{s) = 

P ( t , l - ) if s = l , 

C(t) = P(t,0+) - P(t,0), D{t) = -P(t, 1 - ) , 

M = K(0 + ) - K ( 0 ) , N = - K ( l - ) , 

then system (7,25) becomes 

(7,27) 

y*(s) = y*(l) - j V ( t ) d,[P0(t, s) - P0{t, 1)] - A*[K0(s) - K0(l)] on [0,1] . 
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(7,28) y*(0) + X*M + \ y*(t) d[C(í)] = O, 
Jo 

(7,29) y*(l) - Л*N - y*(í)d[D(í)] = 0. 

Given zeBVn with z(0) = z(l) = 0 and yeBVn such that (7,24) holds, we have 
in virtue of 1.4.23 

W-l-)] (f(s) - f(0)) = f 1d[y*(s)] f(s) - y*(l) f(l) - y*(0) f(0). 
Jo Jo 

This completes the proof of the following 

7.14. Theorem. If the hypotheses 7.1, 7.5 and (7,22) are satisfied, then the problem 
(7,1), (7,2) possesses a solution xeBVn if and only if 

(7,30) y*(l) f(l') - y*(0) f(0) - fd[y*(s)] f(s) = A*r 

for any solution y e BVn, keRm of (7,27) —(7,29), where P0, C, D, K0, M and N are 
defined in (7,26). 

7.15. Remark. If (7,22) holds and f(t~) = f(t) on (0,1], f(0 + ) = f(0), then by 
1.6.16 and 1.4.17 any solution xeBVn of (7,1), (7,2) is left-continuous on (0,1] and 
right-continuous at 0. On the other hand, if y e BVn and k e Rm satisfy (7,27) — (7,29), 
then provided that 7.5 holds, y is right-continuous on [0,1) and left-continuous 
at 1 (cf. 7.24). 

7.16. Remark. Let geBVn be right-continuous on (0,1), p ,qeR n . It is easy to 
see that ye£V„ arid keRm satisfy (7,27), (7,28), (7,29) with the right-hand sides 
g*(s) — g*(l), p* and q*, respectively, if and only if y is right-continuous on (0,1) 
and the couple (z*,k*\ z*(s) = y*(s) on (0,1), z*(0) = z*(l) = 0, fulfils (7,20), 
where h*(s) = g*(s) - g*(l) + %*(s) on [0,1], **(0) = q* - p*, z*(s) = q* on 
(0,1) and x*(l) = 0. It follows immediately from 7.12 that the system (7,27), (7,28), 
(7,29) with the right-hand sides g*(s) — g*(l), p* and q*, respectively, has a solution 
y e BVn, keRm\i and only if (cf. (7,21)) 

Í d[g*(t)]x(t) = q*x(l)-f>*x(0) for each xeN(^). 

7.17. Remark. If P: [0,1] x [0,1]-+L(R„) is an D[BV]-kernel (|P(t,0)| + var£ P(t, .) 
= g(t) < oo a.e. on [0,1] and geL1) and f&h\, then x: [0,1] -> iR„ is a solution 
to (2,1) on [0,1] if and only if 

x(t) - x(0) - \ds[R(t, s)] x(s) = f f(t) dr on [0,1] , 
J 0 
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where 

R(ř, s) P(т,s)dт on [0,1] x [0,1] 

Given a subdivision {0 = t0 < t1 < ... < tk = 1; 0 = s0 < sx < ... < sk = 1} of 
[0,1] x [0,1], we have 

I Ě lR(řp sj) - *(*«- i, -v) - R(ř„ s,-_ 0 + R(řř-_ l 9 s,._ ,)| 
І = I j=i 

к к 

= 1 I 
i = l j = l 

(l.т,_,)-P(т,_7_1))dт < |J(lK*.-;)-^.s.-i)Ddт 

* < °° • 
Consequently v[0 1 ] x [ 0 X](R) < oo. Clearly var0 R(., 1) < oo. (We may assume 
P(t, 1) = 0 a.e. on [0,1].) As R(0, .) = 0 on [0,1], this implies that R is an SJ5V-kernel 
and the Fredholm-Stieltjes integro-differential equation (2,1) is a special case of 
the equation (7,1). 

7.18. Remark. Let A: [0,1] -» L(Rn), var£ A < oo, M and NeL(R„Rm) and 

íA(0) - A(t) if 0 = s < f < 1 , -M- - N if s = 0, 
P(ř, s) = | A(.+ ) - A(t) if 0 < s < í < 1, щ = . -N if 0 < s < 1 , 

lO if 0 < í < s _ 1 , 0 if s = 1 . 

It can be shown that v[0 1]x[04](P) < var0 A. Furthermore, P(0, .) = 0 on [0,1], 
var£ P(., 0) = varj A and varj K = |M| + |N|. Since for any t e [0,1] P(t, .) and K 
are right-continuous on (0,1), K(l) = 0 and P(t, 1) = 0, the assumptions 7.1 and 7.5 
are satisfied in this case. If, moreover, A is left-continuous on (0,1] and right-con­
tinuous at 0, then P(t- ,0) = A(0) - A(t-) = A(0) - A(t) for 0 < t < 1, P(t-,s) 
= A(s + ) - A(t-) = A(s + ) - A(t) for 0 < s < t < 1 and P( t - , s) = 0 for 
0 < f _____ 1. Finally, P(0 + , s) = 0 for any se [0,1]. Thus P fulfils also (7,22). 
By 7.14 the system (7,1), (7,2) which is now reduced to BVP dx = d[A] x + df, 
M x(0) + Nx(l) = r has a solution if and only if (7,30) holds for all y eBVn and 
A e Rm satisfying (7,27), (7,29). In our case P0(t, s) = P(t, s), C(t) = D(t) = 0 and 
K0(s) = — N. Moreover, 

J y*(t) dt[P(t, s)] = J y*(t) d[B(r)] for any y G BVn and s e [0,1] , 

where B(s) = A(s + ) on (0,1), B(0) = A(0) and B(l) = A(l). It follows that under 
the assumptions of this remark the adjoint system (7,27) —(7,29) to (7,1), (7,2) reduces 
to BVP (111.5,12), (HI.5,13). Let us notice that now no assumptions on the regularity 
of the matrices (/ + A+A(t)) are needed. 
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7,19. Remark. Let the matrix valued functions A: [0,1] -> L(Rn), ^- . [0 ,1] 
- L(Rp, Rn), P2: [0,1] - L(Rn, Rp)9 C: [0,1] - L(Rn), D: [0,1] - Lfo) and 
K: [0,1] -> L(Kn, #m) be of bounded variation on [0,1], M, N e L(Rn, Rm), feBVn 

and reRm and let us consider the system of equations for xeBVn 

(7.31) x(t) = x(0) + fd[A(s)] x(s) + (C(t) - C(0))x(0) + (D(t) - D(0))x(l) 
Jo 

+ (P.(t) - P,(0)) J d[P2(s)] x(s) + f(t) - f(0) on [0,1] , 
Jo 

•1 

(7.32) M x(0) + N x(l) + d[K(_)] x(s) = r . 
Jo 

Introducing new unknowns a, /J, y, 5, / by the relations 

«(*) = f d[K(s)] x(s), flt) = f d[P2(s)] x(s), 
Jo Jo 

y(t) = x(0), 8{t) = x(l), Z(f) = /f(l), 

we reduce the given problem to the form 

dx = d[A] x + d[Px] p + d[C] y + d[D] 8 + df, 

da = d[K]x, d0 = d[P 2]x, dy = 0, d<5 = 0, d* = 0, 

M x(0) + N x(l) + a(l) = r , a(0) = 0, x(0) - y(0) = 0, 

x(l)-<5(0) = 0, 0(0) = 0, /!(1) - X(0) =-- 0 

which may be expressed in the matrix version 

d£ = d[8l] { + d<p, 9Jl<p(0) + 91 £(1) = Q, 

where {* = (x*, a*, /f*, y*, <5*, **) and 91: [0,1] -» L(KV) and Wl. 91 e L(RX, Rj 
are appropriately defined matrices, \i = 2m + 2n + 2p, v = m + 3rc + 2p, 

<p = ( J and Q = ( ). By this var0 91 < oo. The complicated problem 
Wv - «/ V J I - m/ 

(7,31), (7,32) was transferred to the two-point boundary value problem for a linear 
generalized differential equation. 

Notes 
In the case p = 1 the compactness of the operator P and hence also the closedness of R(L) (V.L4 

and V.1.7) were proved by Maksimov [1] and independently by Tvrdy [4], Theorem V.L8 is due to 
Maksimov and Rahmatullina [2]. Our proof follows a different idea. The proofs of the main theorems 
of Section V.2 (V.2.5, V.2.6 and V.2.12) are carried out in a similar way as the proofs of analogous results 
for ordinary differential operators in Wexler [1] (cf. also Tvrdy, Vejvoda [1], Tvrdy [3], Maksimov [l]). 
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For more detail concerning Green's couples see Tvrdy [6]. Systems of the form (4,27), (4,28) were treated 
in Tvrdy, Vejvoda [1]. Theorem V.6.4 follows also from the variation of constants formula for functional 
differential equations of the retarded type due to Banks [1]. Equations of the form (V.6,13) were introduced 
in Delfour, Mitter [1], [2]. Section V.7 is based on the paper Tvrdy [5]. The transformation similar to 
(7,33) was for the first time used in a simpler situation by Jones [1] and Taufer [ l ] . For more detail 
concerning the systems of the form (7,31), (7,32) (Green's function, Jones transformation, selfadjoint 
problems etc.) see Vejvoda, Tvrdy [1], Tvrdy [ l] and Zimmerberg [ l], [2]. 

The oldest papers on the subject seem to be Duhamel [ l], Lichtenstein [1] and Tamarkin [ l] . Further 
related references to particular sections are 

V.1 
V.2 
V.З 
V.6 
V.7 

Catchpole [1], [2]; 
Parhimovič [ l ] - [ 3 ] , Lando [ l ] - [ 4 ] , Krall [2], [5], Tvrdý [1]; 
Maksimov, Rahmatullina [1], [2]; 
Hale [1], Maksimov, Rahmatullina [ l], Rahmatullina [ l], Tvrdý [4]; 
Krall [6]-[8], Honig [ l ] , Tvrdý [2]. 

Related results may be found also in the papers by N. V. Azbelev and the members of his group 
(L. F Rahrnatullina, V. P. Maksimov, A. G. Terent'ev, T. S. Sulavko, S. M. Labovskij, G. G. Islamov a.o.) 
which have appeared mainly in Differencial'nye uravnenija and in the collections of papers published 
by the Moscow and Tambov institutes of the chemical machines construction. 

In Lando [3], [4] and Kultysev [ l ] the controllability of integro-differential operators is studied. 
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