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Abstract. This paper presents several sufficient conditions for the existence of weak
solutions to general nonlinear elliptic problems of the type

{

−div a(x, u,∇u) + b(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain of Rn, n > 2. In particular, we do not require strict mono-
tonicity of the principal part a(x, z, ·), while the approach is based on the variational method
and results of the variable exponent function spaces.
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1. Introduction and main results

We deal with the existence of weak solutions to general elliptic Dirichlet problems

of the type

(1.1)

{

−div a(x, u,∇u) + b(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain of Rn, n > 2. Hereafter, a(x, z, ξ) and b(x, z, ξ) are

always supposed to satisfy the assumption

(H1) a : Ω × R × R
n → R

n and b : Ω × R × R
n → R satisfy the Carathéodory

conditions and

|a(x, z, ξ)| 6 a0|ξ|
p(x)−1 + a1|z|

q(x)/p′(x) + f1(x),(1.2)

|b(x, z, ξ)| 6 b0|ξ|
p(x)/q′(x) + b1|z|

q(x)−1 + f2(x)(1.3)

c© The author(s) 2022. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2022.0069-21 283

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2022.0069-21


for a.e. x ∈ Ω and all (z, ξ) ∈ R× R
n, where p and q are functions such that

p, q ∈ C(Ω),(1.4)

1 < p− := inf
Ω

p(x) 6 p+ := sup
Ω

p(x) < ∞,(1.5)

p(x) 6 q(x) < p∗(x) :=







np(x)

n− p(x)
if p(x) < n,

∞ if p(x) > n,

(1.6)

and a0, a1, b0 and b1 are given nonnegative constants, f1 ∈ Lp′(·)(Ω), f2 ∈

Lq′(·)(Ω) and p′(x) := p(x)/(p(x)− 1).

The study of partial differential equations and variational problems involving op-

erators with variable exponent growth conditions has received more and more in-

terest in the last few years. It was found that these problems with the p(x)-growth

are related to modeling of electrorheological fluids, nonlinear elasticity and image

restoration; see, e.g., [4], [27], [31].

Elliptic Dirichlet problems with variable exponent have been studied by several

authors. In [3], [9], [7], [11], [30] the existence of nontrivial weak solutions for the

p(x)-Laplacian Dirichlet problem

{

−div(|∇u|p(x)−2∇u) = b(x, u) in Ω,

u = 0 on ∂Ω

has been established assuming, among others, that the lower order term b satisfies

|b(x, z)| 6 b1|z|q(x)−1 + b2. Similar results have been proved for the problem with

b(x, u) replaced by k(x)|u|q(x)−2u+ b(x, u); see, e.g., [8], [18], [22].

The principal part of the above equation, the p(x)-Laplacian, was generalized

in some papers. Galewski (see [15]) and Zhou (seen [32]) studied the cases that

a(x, z, ξ) ≡ α(x)|ξ|p(x)−2ξ and a(x, z, ξ) ≡
(

1 + |ξ|p(x)/
√

1 + |ξ|2p(x)
)

|ξ|p(x)−2ξ, re-

spectively, where 0 < α0 6 α(x) 6 α1 < ∞. In particular, Pucci and Zhang

(see [24]), and Rădulescu (see [25]) considered the equation with a(x, z, ξ) ≡ a(x, ξ),

provided that a(x, ξ) is strictly monotone in ξ, i.e.,

(a(x, ξ) − a(x, η))(ξ − η) > 0 when ξ 6= η,

among other requirements, while b(x, z, ξ) is independent of ξ. Mihăilescu and Re-

povš (see [23]) studied the existence of weak solutions to the Dirichlet problem for a

special equation

−div(α(x, u)〈A∇u,∇u〉(p(x)−2)/2A∇u) = f(x), x ∈ Ω,
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where A(x) = (aij(x))n×n, aij = aji, aij ∈ L∞(Ω) ∩C1(Ω),

〈Aξ, ξ〉 =
n
∑

i,j=1

aij(x)ξiξj > |ξ|2 ∀x ∈ Ω ∀ ξ ∈ R
n

and α : Ω × R → R is a Carathéodory function for which there exist constants

0 < α0 6 α1 such that

α0 6 α(x, z) 6 α1 for a.e. x ∈ Ω ∀ z ∈ R.

Moreover, they assumed that a continuous function p(x) is in (2,∞) and satisfies the

inequality

λ1 := inf
u∈C∞

0
(Ω)\{0}

∫

Ω |∇u|p(x) dx
∫

Ω
|u|p(x) dx

> 0,

which condition is very restrictive. Indeed, a sufficient condition on p(·) in order to

satisfy λ1 > 0 is that there exists a vector l ∈ R
n \ {0} such that, for any x ∈ Ω, the

function f(t) := p(x+ tl) is monotone in t ∈ Ix := {t : x+ tl ∈ Ω}, see [12].

In our opinion the paper which dealt with the existence of weak solutions for the

most general elliptic Dirichlet problem with variable exponents seems to be that of

Fu and Yu (see [14]) up to date. They considered the Dirichlet problem for the higher

order elliptic equation







∑

|α|6m

(−1)|α|Dαaα(x, ξm(u)) = G+ f(x, u), x ∈ Ω,

Dβu = 0, x ∈ ∂Ω ∀ |β| 6 m− 1,

where ξm = {ξα : |α| 6 m}, G is a bounded linear functional on W
m,p(·)
0 (Ω),

and f(x, z) is a Carathéodory function and satisfies some structural conditions

including the critical growth. Moreover, they assumed that the principal part

(aα(x, ξm−1, ζm))|α|=m is strictly monotone in ζm, i.e.,

∑

|α|=m

(aα(x, ξm−1, ζm)− aα(x, ξm−1, ζ
′
m))(ξα − ξ′α) > 0

when ζm 6= ζ′m, where ζm = {ξα : |α| = m}, and

∑

|α|6m

aα(x, ξm)ξα > C|ζm|p(x) − h(x), h ∈ L1(Ω), C > 0,

|aα(x, ξm)| 6 C|ξm|p(x)−1 + h0(x), h0 ∈ Lp′(·)(Ω),

and, in particular, p(x) is Lipschitz continuous and satisfies 1 < p− 6 p+ < n/m.
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To our knowledge, [13] is the only paper concerning the existence of weak solutions

for elliptic Dirichlet problems with variable exponent of the type (1.1) under the

condition that a(x, z, ξ) is monotone in ξ, but not strictly monotone. In that paper,

the authors have considered the Dirichlet problem for the quasilinear elliptic system
{

−div a(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,

where f ∈ (W
1,p(·)
0 (Ω,Rm))∗, p(x) is Lipschitz continuous and 1 < p− 6 p+ < n,

and a : Ω × R
m ×Mm×n → Mm×n, where Mm×n denotes the real vector space of

m × n matrices equipped with the inner product M : N = MijNij (with the usual

summation convention), satisfies the growth condition similar to (1.2) and coercivity

a(x, z, ξ) : ξ > a0|ξ|p(x) − a1(x), a1 ∈ L1(Ω), a0 > 0, and for any x ∈ Ω and z ∈ R
m,

ξ → a(x, z, ξ) is a C1-function and monotone, i.e.,

(a(x, z, ξ)− a(x, z, η)) : (ξ − η) > 0 for any ξ, η ∈ Mm×n.

For an overview of elliptic equations with variable growth, we refer to [17] and [25].

The aim of the present paper is to improve the existence results of [13] and [14].

As seen above, the conditions on p(·) assumed in [13], [14] to obtain the existence

of weak solutions are too restrictive, while such strong conditions on p(·) need for

using the embedding results from [10]. In contrast to [13] and [14], we assume that p

is only continuous in Ω and satisfies (1.5), and we employ the embedding results

from [20] (see Propositions 2.2 and 2.3 below).

The following assumptions on a and b will be used.

(H2) For a.e. x ∈ Ω, all z ∈ R and all ξ, η ∈ R
n, the inequality

(1.7) (a(x, z, ξ)− a(x, z, η))(ξ − η) > 0

holds.

(H3) For a.e. x ∈ Ω, ai(x, ·, ·), i = 1, . . . , n, and b(x, ·, ·) belong to W 1,1
loc (R×R

n) and

impose the symmetry conditions

(1.8)
∂ai(x, z, ξ)

∂ξj
=

∂aj(x, z, ξ)

∂ξi
,

∂ai(x, z, ξ)

∂z
=

∂b(x, z, ξ)

∂ξi

for all 1 6 i, j 6 n and for a.e. (x, z, ξ) ∈ Ω× R× R
n.

(H4) There exist c0 > 0, f3 ∈ Lp(·)/(p(·)−r1(·))(Ω), f4 ∈ Lq(·)/(q(·)−r2(·))(Ω) and func-

tions r1, r2 ∈ C(Ω) with r1(x) < p(x) for any x ∈ Ω and 1 6 r−2 6 r+2 < p−

such that

a(x, z, ξ)ξ + b(x, z, ξ)z > c0|ξ|
p(x) − f3(x)|ξ|

r1(x) − f4(x)|z|
r2(x)

for a.e. x ∈ Ω and all (z, ξ) ∈ R× R
n.
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Our first main result is the following.

Theorem 1.1. Let (H1)–(H4) be satisfied. Then the Dirichlet problem (1.1) has

a weak solution.

In the present paper, we also show that there exists a weak solution of (1.1) without

requiring the assumption (H3). Namely, in Theorem 4.4, we prove the existence of

weak solutions of (1.1), assuming the lower order term b(x, z, ξ) is independent of ξ

or linearly dependent on ξ and some growth conditions are satisfied, where we do

not require (H3). Moreover, the following theorem shows the existence result under

the further assumption that a(x, z, ·) is strictly monotone and b(x, z, ξ) is nonlinearly

dependent on not only z but also ξ. The second result of this paper is the following.

Theorem 1.2. Let (H1) be satisfied. Assume that the following conditions hold:

(H5) For a.e. x ∈ Ω and all z ∈ R, the inequality

(1.9) (a(x, z, ξ)− a(x, z, η))(ξ − η) > 0 when ξ 6= η

holds.

(H6) There exist c0 > 0, f4 ∈ Lq(·)/(q(·)−r2(·))(Ω) and f5 ∈ L1(Ω) such that

(1.10) a(x, z, ξ)ξ + b(x, z, ξ)z > c0|ξ|
p(x) − f4(x)|z|

r2(x) − f5(x),

where r2 is continuous on Ω and satisfies 1 6 r−2 6 r+2 < p−. Then the prob-

lem (1.1) has a weak solution.

Compared with the known existence results for the elliptic Dirichlet problems

with variable exponent, our results are more general in the following sense. As

mentioned above, in [13] and [14] the authors assumed that p is Lipschitz continuous

and 1 < p− 6 p+ < n, but in this paper we only require that p is continuous on Ω

and 1 < p− 6 p+ < ∞. Fu and Yang in [13] studied the general elliptic systems with

variable growth in which the principal part a(x, z, ξ) is monotone in ξ, but not strictly

monotone, and the lower order term b is independent of u and ∇u : b(x, z, ξ) = b(x),

while in Theorems 1.1 and 4.4 we generalized the condition on b to the case when b is

dependent on u and ∇u. Fu and Yu (see [14]) studied the elliptic equation in which

a(x, z, ξ) is strictly monotone and b satisfies a critical growth condition that is more

general than (1.3), but the conditions in [14] on the power exponents of |z| in (1.2)

and |ξ| in (1.3) are stronger than those of Theorem 1.2 due to the assumption (1.6).

The proofs of Theorems 1.1, 1.2 and 4.4 are more difficult in comparison

with [13], [14] for the reason of general and sharp conditions on the coefficients

a(x, z, ξ) and b(x, z, ξ). The proof of Theorem 1.1 is based on the variational method

and several properties of variable exponent spaces. Here, we adapt some ideas

explored in [26] for the constant exponent case.

287



Theorems 1.2 and 4.4 are proved by using the theory of pseudomonotone operators.

For more details on this topic see, e.g., [1], [16], [26]. For the proofs of Theorems 1.2

and 4.4 we need Lemmas 4.2 and 4.3, respectively, such lemmas are proved by using

Leray-Lions’ technique (see [21]) under suitable variable exponent growth conditions

on the lower order term b.

The paper is divided into four sections. In Section 2 we present some preliminary

knowledge of the variable exponent spaces and some results which we use in the next

sections. In Section 3, we prove Theorem 1.1. In Section 4, by using the theory of

pseudomonotone operators, we prove some existence results including Theorem 1.2.

2. Preliminaries

Let Ω be a bounded domain in R
n, n > 2, and P(Ω) be the set of all Lebesgue

measurable functions p : Ω → [1,∞]. We put Ω∞ := {x ∈ Ω: p(x) = ∞}. Given

p ∈ P(Ω), let

p− := ess inf
x∈Ω

p(x), p+ := ess sup
x∈Ω

p(x)

and let the conjugate exponent function p′ be defined by the formula

1

p(x)
+

1

p′(x)
= 1, x ∈ Ω,

with the convention that 1/∞ = 0.

Given p ∈ P(Ω) and a measurable function u, define the modular associated

with p by

̺p(·)(u) :=

∫

Ω\Ω∞

|u(x)|p(x) dx+ ess sup
x∈Ω∞

|u(x)|.

We put Lp(·)(Ω) to be the set of measurable functions u such that ̺p(·)(u/λ) < ∞

for some λ > 0. Define the Luxemburg norm on Lp(·)(Ω) by

‖u‖p(·) := inf{λ > 0: ̺p(·)(u/λ) 6 1}.

Put

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω): |∇u| ∈ Lp(·)(Ω)}

with the norm

‖u‖1;p(·) := ‖∇u‖p(·) + ‖u‖p(·), where ‖∇u‖p(·) := ‖|∇u|‖p(·).

Denote by W
1,p(·)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(·)(Ω).

Given p ∈ P(Ω), for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), then uv ∈ L1(Ω) and the

Hölder inequality
∫

Ω

|u(x)v(x)| dx 6 Cp(·)‖u‖p(·)‖v‖p′(·)
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holds, where

Cp(·) :=
( 1

p−
−

1

p+
+ 1

)

‖χΩ0
‖∞ + ‖χΩ∞

‖∞ + ‖χΩ1
‖∞

and Ω1 := {x ∈ Ω: p(x) = 1}, Ω0 := Ω \ (Ω1 ∪ Ω∞), and χE is the characteristic

function of E (see Theorem 2.26 in [5]).

For every f ∈ (Lp(·)(Ω))∗ there exists a unique function v ∈ Lp′(·)(Ω) such that

f(u) =

∫

Ω

u(x)v(x) dx ∀u ∈ Lp(·)(Ω)

and
1

2
‖v‖p′(·) 6 ‖f‖ 6 3‖v‖p′(·),

provided p ∈ P(Ω) ∩ L∞(Ω). The dual space to Lp(·)(Ω) is Lp′(·)(Ω) if and only if

p ∈ P(Ω) ∩ L∞(Ω).

The variable exponent spaces Lp(·)(Ω), W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are complete

and, moreover, separable if p+ < ∞ or reflexive if 1 < p− 6 p+ < ∞.

For a measurable set E in R
n we denote by |E| the n-Lebesgue measure of E. If

p, q ∈ P(Ω) and p(x) 6 q(x) for a.e. x ∈ Ω, then Lq(·)(Ω) is continuously embedded

in Lp(·)(Ω) and

‖u‖p(·) 6 (1 + |Ω|)‖u‖q(·) ∀u ∈ Lq(·)(Ω).

Given p ∈ P(Ω) ∩ L∞(Ω), for every u ∈ Lp(·)(Ω) there holds the inequality

min{‖u‖p
−

p(·), ‖u‖
p+

p(·)} 6

∫

Ω

|u|p(x) dx 6 max{‖u‖p
−

p(·), ‖u‖
p+

p(·)}.

Given p ∈ P(Ω) ∩ L∞(Ω), and r ∈ L∞(Ω) with 0 < r− 6 r+ < ∞ and 1 6 r(x)p(x)

for a.e. x ∈ Ω, then for every u ∈ Lr(·)p(·)(Ω) it follows that

min{‖u‖r
−

r(·)p(·), ‖u‖
r+

r(·)p(·)} 6 ‖|u|r(·)‖p(·) 6 max{‖u‖r
−

r(·)p(·), ‖u‖
r+

r(·)p(·)}.

Proposition 2.1 ([20], Theorems 4.1 and 4.2). Let h : Ω × R
m → R be a

Carathéodory function, where m is a given natural number. If for given pi,

r ∈ P(Ω) ∩ L∞(Ω), i = 1, . . . ,m, there exist a function g ∈ Lr(·)(Ω) and a constant

C > 0 such that

|h(x, ξ)| 6 C

m
∑

i=1

|ξi|
pi(x)/r(x) + g(x)

for a.e. x ∈ Ω and every ξ ∈ R
m, then the Nemyckii operator Nh defined by

Nh(u1, . . . , um)(x) := h(x, u1(x), . . . , um(x)), x ∈ Ω,

maps Lp1(·)(Ω)× . . .× Lpm(·)(Ω) in Lr(·)(Ω), and is continuous and bounded.
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Proposition 2.2 ([20], Theorem 3.9). Assume that p ∈ C(Ω) with p(x) > 1 for

all x ∈ Ω. If q ∈ C(Ω) and 1 6 q(x) < p∗(x) for every x ∈ Ω, then there exists

a continuous and compact embedding

W
1,p(·)
0 (Ω) →֒ Lq(·)(Ω).

Proposition 2.3 ([20], Theorem 3.10). Let p ∈ P(Ω) ∩ C(Ω). Then

‖u‖ := ‖∇u‖p(·)

is an equivalent norm in W
1,p(·)
0 (Ω).

For more results on the variable exponent spaces Lp(·)(Ω) andW 1,p(·)(Ω), we refer

to [6], [20].

Now we list several well known results which will be used in the next sections.

Proposition 2.4 ([2], Corollary 2.8.7). Let ϕ : Ω× (a, b) → R be a function such

that for every t ∈ (a, b) the function ϕ(·, t) is integrable on Ω and for a.e. x ∈ Ω the

function ϕ(x, ·) is differentiable, and there exists an integrable function g such that

for a.e. x ∈ Ω we have |∂ϕ(x, t)/∂t| 6 g(x) for all t simultaneously. Then the function

F : t 7→

∫

Ω

ϕ(x, t) dx

is differentiable and

F ′(t) =

∫

Ω

∂ϕ(x, t)

∂t
dx.

Proposition 2.5 ([29], Proposition 42.6). Let ϕ : X → R be a functional on the

real Banach space X . Suppose the Gâteaux derivative ϕ′ : X → X∗ exists on X .

Then ϕ′ is monotone on X if and only if

ϕ(v) − ϕ(u) > 〈ϕ′(u), v − u〉 ∀u, v ∈ X,

where 〈·, ·〉 is the duality pairing between X and its dual X∗.

A functional ϕ : X → R ∪ {±∞} is called weakly lower semicontinuous if for any

u ∈ X the inequality

ϕ(u) 6 lim inf
k→∞

ϕ(uk)

holds for every sequence {uk} in X such that uk ⇀ u as k → ∞, where uk ⇀ u

means the weak convergence of the sequence {uk} to u.

A functional ϕ : X → R on the Banach space X is called coercive if

ϕ(u)

‖u‖
→ ∞ as ‖u‖ → ∞.
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Similarly an operator A : X → X∗ is called coercive if

〈A(u), u〉

‖u‖
→ ∞ as ‖u‖ → ∞.

An operator A : X → X∗ is called pseudomonotone if A is bounded and

uk ⇀ u, lim sup
k→∞

〈A(uk), uk − u〉 6 0

⇒ ∀ v ∈ X, 〈A(u), u − v〉 6 lim inf
k→∞

〈A(uk), uk − v〉.

Proposition 2.6 ([26], Theorem 4.2). Let J : X → R be Gâteaux differentiable

and weakly lower semicontinuous and A = J ′. Then, if J is coercive, the equation

Au = f has a solution for any f ∈ X∗.

Proposition 2.7 ([26], Theorem 2.6). Let A : X → X∗ be pseudomonotone and

coercive. Then, for any f ∈ X∗, the equation A(u) = f has solution.

We say that a function u ∈ W
1,p(·)
0 (Ω) is a weak solution to the problem (1.1) if

(2.1)

∫

Ω

(a(x, u,∇u)∇v + b(x, u,∇u)v) dx = 0 for every v ∈ W
1,p(·)
0 (Ω).

3. Proof of Theorem 1.1

In what follows, for brevity, we writeX instead ofW
1,p(·)
0 (Ω). From Proposition 2.3

we are able to define the norm on X by ‖u‖ := ‖∇u‖p(·). The assumption (H1) and

the results on Lp(·)(Ω) and W
1,p(·)
0 (Ω) mentioned in Section 2 are sufficient for us to

define the operator A : X → X∗ by

(3.1) 〈A(u), v〉 :=

∫

Ω

(a(x, u,∇u)∇v + b(x, u,∇u)v) dx, u, v ∈ X.

It is easy to see that A is bounded. Obviously, u ∈ X is a weak solution of (1.1) if

and only if A(u) = 0. Put

(3.2) ϕ(x, z, ξ) :=

∫ 1

0

(a(x, tz, tξ)ξ + b(x, tz, tξ)z) dt.

It is known from the assumption (H3) that the equalities

∂ϕ(x, z, ξ)

∂ξi
= ai(x, z, ξ), i = 1, . . . , n,(3.3)

∂ϕ(x, z, ξ)

∂z
= b(x, z, ξ)(3.4)

hold for a.e. x ∈ Ω and all (z, ξ) ∈ R× R
n; see Roubíček [26], page 117.
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It follows that the functional J : X → R defined by

(3.5) J(u) :=

∫

Ω

ϕ(x, u,∇u) dx, u ∈ X,

is continuous by using the assumption (H1), Propositions 2.1 and 2.2.

Lemma 3.1. Let (H1) and (H3) be satisfied. Then J is Gâteaux differentiable

and J ′ = A with A given by (3.1).

P r o o f. Fix u, v ∈ X. Define the function

(3.6) t 7→ J(u + tv) =

∫

Ω

ϕ(x, u + tv,∇u + t∇v) dx.

Putting

ϕ′
ξ =

( ∂ϕ

∂ξ1
, . . . ,

∂ϕ

∂ξn

)

,

it follows from (1.2), (1.3), (3.3) and (3.4) that for any t ∈ [0, 1],

|ϕ′
ξ(x, u + tv,∇u+ t∇v)∇v|

6 (a0|∇u+ t∇v|p(x)−1 + a1|u+ tv|q(x)/p
′(x) + f1(x))|∇v|

6 Cp,q(|∇u|p(x)−1 + |∇v|p(x)−1 + |u|q(x)/p
′(x) + |v|q(x)/p

′(x) + f1(x))|∇v|,

|ϕ′
z(x, u + tv,∇u+ t∇v)v|

6 Cp,q(|∇u|p(x)/q
′(x) + |∇v|p(x)/q

′(x) + |u|q(x)−1 + |v|q(x)−1 + f2(x))|v|,

where the constant Cp,q depends on a0, a1, b0, b1, p(·) and q(·). It is obvious that the

right-hand sides of the above inequalities are integrable on Ω. Therefore, by Propo-

sition 2.4, J(u + tv) defined by (3.6) is differentiable with respect to t ∈ [0, 1] and

d

dt
J(u+ tv) =

∫

Ω

d

dt
ϕ(x, u + tv,∇u+ t∇v) dx

=

∫

Ω

(a(x, u + tv,∇u+ t∇v)∇v + b(x, u + tv,∇u+ t∇v)v) dx

by (3.3) and (3.4). Thus, the directional derivative DJ(u, v) of J at u in the

direction v is

(3.7) DJ(u, v) := lim
t→0

J(u+ tv)− J(u)

t
=

d

dt
J(u+ tv)|t=0

=

∫

Ω

(a(x, u,∇u)∇v + b(x, u,∇u)v) dx = 〈A(u), v〉.

292



We use (1.2), (1.3) and the Young inequality to get

|a(x, u,∇u)∇v + b(x, u,∇u)v|

6 C(|∇u|p(x) + |∇v|p(x) + |u|q(x) + |v|q(x) + |f1(x)|
p′(x) + |f2(x)|

q′(x)),

where the constant C depends on a0, a1, b0, b1, p(·) and q(·).

Finally, it follows from Propositions 2.1 and 2.2 that DJ(u, ·) : X → R is linear

and continuous, and therefore J is Gâteaux differentiable in X and J ′ = A by (3.7).

Lemma 3.1 is proved. �

Lemma 3.2. Let (H1), (H2), (H3) be satisfied. Then J is weakly lower semicon-

tinuous.

P r o o f. Suppose that a sequence of functions uk weakly converges to u in X .

Hence, by Proposition 2.2, uk → u strongly in Lq(·)(Ω). We have

|ϕ(x, z, ξ)| 6 C(|ξ|p(x) + |z|q(x)) + g(x)

by using (1.2), (1.3) and (3.2), where C is an constant and g is an integrable func-

tion on Ω. So, by Proposition 2.1, ϕ(x, uk,∇u) → ϕ(x, u,∇u) strongly in L1(Ω)

and by (1.2) and (3.3) we have ϕ′
ξ(x, uk,∇u) → ϕ′

ξ(x, u,∇u) strongly in Lp′(·)(Ω).

By (3.3), (H2), the monotonicity of a(x, z, ·) is just the monotonicity of ϕ′
ξ(x, z, ·),

hence from Proposition 2.5 we have

ϕ(x, uk,∇uk)− ϕ(x, uk,∇u) > ϕ′
ξ(x, uk,∇u) · (∇uk −∇u).

Therefore, by using the above limits we get

lim inf
k→∞

∫

Ω

ϕ(x, uk,∇uk) dx

= lim inf
k→∞

∫

Ω

(ϕ(x, uk,∇u) + (ϕ(x, uk,∇uk)− ϕ(x, uk,∇u))) dx

>

∫

Ω

ϕ(x, u,∇u) dx+ lim
k→∞

∫

Ω

ϕ′
ξ(x, uk,∇u)(∇uk −∇u) dx

=

∫

Ω

ϕ(x, u,∇u) dx.

Lemma 3.2 is proved. �

Lemma 3.3. Let (H1) and (H4) be satisfied. Then J is coercive.
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P r o o f. By (H4) and (3.2), we have

ϕ(x, z, ξ) =

∫ 1

0

tξa(x, tz, tξ) + tzb(x, tz, tξ)

t
dt

>

∫ 1

0

c0|tξ|p(x) − f3(x)|tξ|r1(x) − f4(x)|tz|r2(x)

t
dt

=
c0
p(x)

|ξ|p(x) −
f3(x)

r1(x)
|ξ|r1(x) −

f4(x)

r2(x)
|z|r2(x).

Suppose that ‖u‖ is large enough. Using the Young inequality with ε = c0/(2p
+)

and the results on Lp(·)(Ω) and W
1,p(·)
0 (Ω) and (3.5), we get

J(u) >
c0
p+

∫

Ω

|∇u|p(x) dx−

∫

Ω

(|f3(x)||∇u|r1(x) + |f4(x)||u|
r2(x)) dx

>
c0
2p+

‖u‖p
−

− C

∫

Ω

|f3(x)|
p(x)/(p(x)−r1(x)) dx

− 2‖f4‖q(·)/(q(·)−r2(·))max{‖u‖
r−
2

q(·), ‖u‖
r+
2

q(·)}

>

(

c0
2p+

‖u‖p
−−r+

2 − C

∫

Ω

|f3(x)|
p(x)/(p(x)−r1(x)) dx− C‖f4‖q(·)/(q(·)−r2(·))

)

‖u‖.

Since p− − r+2 > 0, thus J is coercive. �

P r o o f of Theorem 1.1. By combining Lemmas 3.1–3.3 and Proposition 2.6 it

follows that (1.1) has a weak solution. �

R em a r k 3.4. We emphasize that (H3) is not necessary forA to have a potential.

Indeed, for example, if n = 1 and a ≡ a(x, ξ) and b ≡ b(x, z), then the Carathéodory

condition is obviously sufficient; ϕ(x, ·, ·) is just the sum of the primitive functions

of a(x, ·) and b(x, ·).

4. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the theory of pseudomonotone operators.

Lemma 4.1. Suppose that a sequence of functions {uk} weakly converges to u

in Lp(·)(Ω) and converges to v almost everywhere in Ω. Then u = v.

P r o o f. From the assumptions it follows that {uk} is bounded in Lp(·)(Ω) and

lim
k→∞

|uk(x)|
p(x) = |v(x)|p(x) for a.e. x ∈ Ω.

Thus, by the Fatou lemma, we have
∫

Ω

|v(x)|p(x) dx =

∫

Ω

lim inf
k→∞

|uk(x)|
p(x) dx 6 lim inf

k→∞

∫

Ω

|uk(x)|
p(x) dx 6 M < ∞.
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So v ∈ Lp(·)(Ω) and v is finite almost everywhere in Ω. Put

Ωl :=
{

x ∈ Ω: sup
k>l

|uk(x)| > l
}

, l = 1, 2, . . .

Obviously, then Ωl is a measurable set and

∞
⋂

l=1

Ωl =
{

x ∈ Ω: lim sup
k→∞

|uk(x)| = ∞
}

.

It follows that lim
l→∞

|Ωl| = 0 since
∣

∣

∣

∞
⋂

l=1

Ωl

∣

∣

∣
= 0 and Ωl ⊃ Ωl+1. Let w ∈ Lp′(·)(Ω).

Then

|uk(x)w(x)| 6 l|w(x)| ∀ k > l

for a.e. x ∈ Ω \ Ωl. Therefore, by the dominated convergence theorem we get

(4.1) lim
k→∞

∫

Ω\Ωl

uk(x)w(x) dx =

∫

Ω\Ωl

v(x)w(x) dx.

On the other hand, by the weak convergence of {uk} to u in Lp(·)(Ω), we have

lim
k→∞

∫

Ω\Ωl

uk(x)w(x) dx = lim
k→∞

∫

Ω

uk(x)(χΩ\Ωl
w)(x) dx =

∫

Ω

u(x)(χΩ\Ωl
w)(x) dx.

It follows from this result and (4.1) that

∫

Ω

uχΩ\Ωl
w dx =

∫

Ω

vχΩ\Ωl
w dx ∀w ∈ Lp′(·)(Ω)

and so u(x) = v(x) for a.e. x ∈ Ω \ Ωl. Therefore, u(x) = v(x) for a.e. x ∈ Ω since

|Ωl| → 0 as l → ∞. Lemma is proved. �

Lemma 4.2. Let (H1), (H5) and (H6) be satisfied. Then the operator A defined

by (3.1) is pseudomonotone.

P r o o f. Assume that uk ⇀ u in X and

(4.2) lim sup
k→∞

〈A(uk), uk − u〉 6 0.

We have to prove that

(4.3) 〈A(u), u − v〉 6 lim inf
k→∞

〈A(uk), uk − v〉 for any v ∈ X.

Let u, w ∈ X . Putting

〈B(w, u), v〉 :=

∫

Ω

(a(x,w,∇u)∇v + b(x,w,∇w)v) dx, v ∈ X,
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it follows from (H1) that B(w, u) ∈ X∗. Obviously, A(u) = B(u, u). Let us put

uε := (1− ε)u+ εv, ε ∈ (0, 1]. Since

〈B(uk, uk)−B(uk, uε), uk − uε〉 > 0

by (1.9), it is easy to see that

(4.4) ε〈A(uk), u− v〉 > −〈A(uk), uk − u〉+ 〈B(uk, uε), uk − u〉+ ε〈B(uk, uε), u− v〉.

It follows from Proposition 2.2 that uk → u in Lq(·)(Ω) and by (1.3) the sequence

{b(x, uk,∇uk)} is bounded in Lq′(·)(Ω). Therefore

(4.5)

∫

Ω

b(x, uk,∇uk)(uk − u) dx → 0 as k → ∞.

Moreover, it follows from (1.2) and Proposition 2.1 that

(4.6) ai(x, uk,∇uε) → ai(x, u,∇uε) as k → ∞ in Lp′(·)(Ω).

Since ∇uk ⇀ ∇u in (Lp(·)(Ω))n, from (4.5) and (4.6) we have

(4.7) lim
k→∞

〈B(uk, uε), uk − u〉

= lim
k→∞

∫

Ω

(a(x, uk,∇uε)(∇uk −∇u) + b(x, uk,∇uk)(uk − u)) dx = 0.

Now we prove that

(4.8) lim
k→∞

〈B(uk, uε), u − v〉 = 〈B(u, uε), u− v〉.

Since

〈B(uk, uε), u− v〉 =

∫

Ω

(a(x, uk,∇uε)(∇u −∇v) + b(x, uk,∇uk)(u− v)) dx

and (4.6) hold, in order to show (4.8), it suffices to prove that

(4.9) lim
k→∞

∫

Ω

b(x, uk,∇uk)(u − v) dx =

∫

Ω

b(x, u,∇u)(u− v) dx.

Since u− v ∈ Lq(·)(Ω), (4.9) follows if we prove that

(4.10) b(x, uk,∇uk) ⇀ b(x, u,∇u) as k → ∞ in Lq′(·)(Ω).

Since {b(x, uk,∇uk)} is bounded in Lq′(·)(Ω) and Lq′(·)(Ω) is reflexive, there exist

a subsequence {b(x, ukj
,∇ukj

)} and g ∈ Lq′(·)(Ω) such that b(x, ukj
,∇ukj

) ⇀ g in

Lq′(·)(Ω). Putting

αkj
(x) := (a(x, ukj

(x),∇ukj
(x)) − a(x, ukj

(x),∇u(x)))(∇ukj
(x) −∇u(x)),
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by (1.9), (4.2) and (4.7) we have

0 6 lim sup
j→∞

∫

Ω

αkj
(x) dx = lim sup

j→∞
〈B(ukj

, ukj
)−B(ukj

, u), ukj
− u〉

= lim sup
j→∞

〈A(ukj
), ukj

− u〉 − lim
j→∞

〈B(ukj
, u), ukj

− u〉 6 0.

Then there is a subsequence {αk′

j
} which converges to 0 for a.e. x ∈ Ω. Without loss

of generality, we can assume that

(4.11) uk′

j
(x) → u(x), αk′

j
(x) → 0 as k′j → ∞

for a.e. x ∈ Ω. Take a measurable set Ω′ ⊂ Ω satisfying the following conditions:

|Ω \ Ω′| = 0 and (1.2), (1.9) and (4.11) hold and a(x, z, ξ) is continuous in (z, ξ) ∈

R × R
n and |∇uk′

j
(x)| < ∞, |∇u(x)| < ∞, |f1(x)| < ∞, |f2(x)| < ∞, |f4(x)| < ∞,

|f5(x)| < ∞ for any x ∈ Ω′. Let x ∈ Ω′ be fixed. Using (1.3), (1.10) and the Young

inequality, we get

a(x, z, ξ)ξ >
c0
2
|ξ|p(x)−

(

b
q(x)
0

( 2

c0

)q(x)−1

+b1

)

|z|q(x)−f2(x)|z|−f4(x)|z|
r2(x)−f5(x).

If {∇uk′

j
(x)} is unbounded, then there exists a subsequence {∇uk′′

j
(x)} ⊂ {∇uk′

j
(x)}

such that ∇uk′′

j
(x) → ξ0 and |ξ0| = ∞. Hence, by (1.2) and the above inequality it

is easily seen that

αk′′

j
(x) > a(x, uk′′

j
(x),∇uk′′

j
(x))∇uk′′

j
(x)

− C(|∇uk′′

j
(x)|p(x)−1 + |∇uk′′

j
(x)|+ 1) → ∞ as k′′j → ∞,

which contradicts the fact that {αk′′

j
(x)} converges to 0. Hence {∇uk′

j
(x)} is

bounded. Let ξ0 ∈ R
n be an accumulation point of {∇uk′

j
(x)}. Assume that

∇uk′′

j
(x) → ξ0 as k

′′
j → ∞, where {∇uk′′

j
(x)} is a subsequence of {∇uk′

j
(x)}. Then

by (4.11), it follows that

αk′′

j
(x) → (a(x, u(x), ξ0)− a(x, u(x),∇u(x)))(ξ0 −∇u(x)) = 0 as k′′j → ∞

and, thus, from (1.9) we have ξ0 = ∇u(x). This implies that {∇uk′

j
(x)} has the

unique accumulation point ∇u(x). Therefore, it follows that ∇uk′

j
(x) → ∇u(x) as

k′j → ∞. Thus

b(x, uk′

j
(x),∇uk′

j
(x)) → b(x, u(x),∇u(x))

for a.e. x ∈ Ω. Hence, by Lemma 4.1 we have g(x) = b(x, u(x),∇u(x)) and this

implies that (4.10) holds. Using (4.2), (4.7) and (4.8), it follows from (4.4) that

lim inf
k→∞

〈A(uk), u− v〉 > 〈B(u, uε), u− v〉.
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However, since uε → u as ε → 0 in X , it follows from Proposition 2.1 that

〈B(u, uε), u− v〉 → 〈B(u, u), u− v〉 as ε → 0,

so we have

(4.12) lim inf
k→∞

〈A(uk), u− v〉 > 〈A(u), u − v〉.

Since it follows from (1.9) that 〈B(uk, uk) − B(uk, u), uk − u〉 > 0 and we have

lim
k→∞

〈B(uk, u), uk − u〉 = 0 by replacing uε in (4.7) by u, we get

(4.13) lim inf
k→∞

〈A(uk), uk − u〉 > 0.

Combining (4.12) and (4.13), we have

lim inf
k→∞

〈A(uk), uk − v〉 = lim inf
k→∞

(〈A(uk), uk − u〉+ 〈A(uk), u− v〉)

> lim inf
k→∞

〈A(uk), uk − u〉+ lim inf
k→∞

〈A(uk), u− v〉

> 〈A(u), u − v〉.

Therefore (4.3) is proved. �

P r o o f of Theorem 1.2. From (H6) we have

〈Au, u〉 =

∫

Ω

(a(x, u,∇u)∇u+ b(x, u,∇u)u) dx

>

∫

Ω

(c0|∇u|p(x) − |f4(x)||u|
r2(x) − f5(x)) dx

> (c0‖u‖
p−−r+

2 − C‖f4‖q(·)/(q(·)−r2(·)) − ‖f5‖1)‖u‖,

provided ‖u‖ is large enough (see the proof of Lemma 3.3 for detail). Since p− > r+2 ,

thus A is coercive. Therefore, by Proposition 2.7 and Lemma 4.2, the problem (1.1)

has a weak solution. �

As seen in the proof of Lemma 4.2, the condition (H5) was used only to ensure

that the subsequence {∇uk′

j
(x)} converges to ∇u(x) for a.e. x ∈ Ω in order to prove

the weak convergence (4.10). The following lemma shows that if the lower order

term b is independent of ξ or linearly dependent on ξ, then it allows us to replace

the condition (H5) in Lemma 4.2 by the monotonicity condition (H2).

Lemma 4.3. Let (H1) and (H2) be satisfied except (1.3) and let one of the fol-

lowing two cases hold:
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(i) b is independent of ξ, i.e., b(x, z, ξ) ≡ b(x, z) and b : Ω× R → R satisfies

(4.14) |b(x, z)| 6 b1|z|
q(x)−1 + f2(x)

for a.e. x ∈ Ω and all z ∈ R, where the constant b1 and functions q, f2 are the

same as in (H1).

(ii) b is linearly dependent on ξ, i.e., b(x, z, ξ) ≡ b̄(x, z) · ξ and b̄ : Ω×R → R
n is a

Carathéodory function satisfying

(4.15) |b̄(x, z)| 6 b2|z|
((m(x)−1)p(x)−m(x))/p(x) + f(x)

for a.e. x ∈ Ω and all z ∈ R, where b2 is a nonnegative constant and variable

exponent p is the same as in (H1) andm is a function satisfying p′(x) < m(x) <

p∗(x) for any x ∈ Ω and m ∈ C(Ω) and f ∈ Lp(·)m′(·)/(p(·)−m′(·))(Ω). Then the

operator A defined by (3.1) is pseudomonotone.

P r o o f. Case (i): Since the condition (4.14) on b is a special case of (1.3), it

remains only to show that

(4.16) lim
k→∞

∫

Ω

b(x, uk)(u − v) dx =

∫

Ω

b(x, u)(u− v) dx

instead of (4.9), where {uk}, u and v are the same as in the proof of Lemma 4.2.

Since uk → u strongly in Lq(·)(Ω) by Proposition 2.2, it follows from (4.14) and

Proposition 2.1 that b(x, uk) → b(x, u) strongly in Lq′(·)(Ω). Hence, we use that

u− v ∈ Lq(·)(Ω) to get (4.16).

Case (ii): Using the Schwarz inequality and Young inequality, it follows from (4.15)

that

|b(x, z, ξ)| = |b̄(x, z) · ξ| 6 (b2 + 1)|ξ|p(x)/m
′(x) + b2|z|

m(x)−1 + |f(x)|p(x)/(p(x)−m′(x)).

Since f ∈Lp(·)m′(·)/(p(·)−m′(·))(Ω), putting f2(x) := |f(x)|p(x)/(p(x)−m′(x))∈Lm′(·)(Ω),

we obtain the inequality

|b(x, z, ξ)| 6 (b2 + 1)|ξ|p(x)/m
′(x) + b2|z|

m(x)−1 + f2(x),

which is similar to (1.3). Hence, like in Case (i), in order to prove Case (ii), it suffices

to show that

(4.17) lim
k→∞

∫

Ω

b̄(x, uk) · ∇ukw dx =

∫

Ω

b̄(x, u) · ∇uw dx for any w ∈ Lm(·)(Ω).

Since uk ⇀ u in X , the sequence {∇uk} converges weakly to ∇u in (Lp(·)(Ω))n.

Therefore, if

(4.18) b̄(x, uk)w → b̄(x, u)w strongly in (Lp′(·)(Ω))n,
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then it follows that (4.17) holds. By the Hölder inequality we have

(4.19)

∫

Ω

|b̄(x, uk)w − b̄(x, u)w|p
′(x) dx

6 2‖|w|p
′(x)‖m(·)/p′(·)‖|b̄(x, uk)− b̄(x, u)|p

′(x)‖m(·)/(m(·)−p′(·))

6 2max{‖w‖
(p′)−

m(·) , ‖w‖
(p′)+

m(·) }

×max{‖|b̄(x, uk)− b̄(x, u)|‖
(p′)−

m(·)p′(·)/(m(·)−p′(·)),

‖|b̄(x, uk)− b̄(x, u)|‖
(p′)+

m(·)p′(·)/(m(·)−p′(·))}.

It is clear that

m(x)p′(x)

m(x)− p′(x)
=

p(x)m′(x)

p(x)−m′(x)
and

(m(x) − 1)p(x)−m(x)

p(x)
= m(x)

p(x) −m′(x)

p(x)m′(x)
.

Thus, from (4.15) and Proposition 2.1, it follows that

b̄(x, uk) → b̄(x, u) strongly in (Lm(·)p′(·)/(m(·)−p′(·))(Ω))n,

where we used the fact that uk → u in Lm(·)(Ω), which follows from Proposition 2.2.

Lemma is proved. �

Theorem 4.4. Let the hypothesis of Lemma 4.3 hold, and let, in addition, the

assumption (H6) be satisfied. Then the problem (1.1) has at least one weak solution.

P r o o f. In last part of the proof of Theorem 1.2, we showed that the operator

A : X → X∗ defined by (3.1) is coercive. Therefore, the proof of Theorem 4.4 is

completed by using Proposition 2.7 and Lemma 4.3. �

R em a r k 4.5. In papers [19] and [28], the authors studied the regularity prop-

erties of weak solutions to elliptic equations with the general nonstandard growth

conditions. According to [28], Theorem 1.1, under slightly stronger conditions on

the data in (H1) and (H6), that is, f1 ∈ Lp′(·)s(·)(Ω), f2 ∈ Lq′(·)s(·)(Ω), f3 ∈

Lp(·)s(·)/(p(·)−r(·)), f4 ∈ Lq(·)s(·)/(q(·)−r(·))(Ω), f5 ∈ Ls(·)(Ω) for some s ∈ C(Ω) satis-

fying s(x) > p∗(x)/(p∗(x) − p(x)) for all x ∈ Ω, the weak solution of (1.1) is bounded

in Ω, where we use the convention∞/∞ = 1. If, in addition, p is log-Hölder contin-

uous in Ω, i.e.,

−|p(x)− p(y)|log|x− y| 6 C ∀x, y ∈ Ω, |x− y| 6
1

2

and Ω is sufficiently smooth, for example, Ω satisfies a uniform exterior cone condition

on ∂Ω, and u is a weak solution of (1.1) then u ∈ C0,α(Ω) for some α ∈ (0, 1); see [28],

Theorem 1.2.
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[17] P.Harjulehto, P. Hästö, Ú.V. Lê, M.Nuortio: Overview of differential equations with
non-standard growth. Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010),
4551–4574. zbl MR doi

[18] C. Ji: Remarks on the existence of three solutions for the p(x)-Laplacian equations.
Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 2908–2915. zbl MR doi

[19] S.Kim, D.Ri: Global boundedness and Hölder continuity of quasiminimizers with the
general nonstandard growth conditions. Nonlinear Anal., Theory Methods Appl., Ser. A
185 (2019), 170–192. zbl MR doi

[20] O.Kováčik, J. Rákosník: On spaces Lp(x) and W k,p(x). Czech. Math. J. 41 (1991),
592–618. zbl MR doi

[21] J. L. Lions: Quelques méthodes de résolution des problémes aux limites nonlinéaires.
Etudes mathematiques. Dunod, Paris, 1969. (In French.) zbl MR

301

https://zbmath.org/?q=an:0562.47041
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0759239
http://dx.doi.org/10.1080/03605308408820358
https://zbmath.org/?q=an:1120.28001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2267655
http://dx.doi.org/10.1007/978-3-540-34514-5
https://zbmath.org/?q=an:1312.35111
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3206681
http://dx.doi.org/10.1016/j.jmaa.2014.04.016
https://zbmath.org/?q=an:1102.49010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2246061
http://dx.doi.org/10.1137/050624522
https://zbmath.org/?q=an:1268.46002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3026953
http://dx.doi.org/10.1007/978-3-0348-0548-3
https://zbmath.org/?q=an:1222.46002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2790542
http://dx.doi.org/10.1007/978-3-642-18363-8
https://zbmath.org/?q=an:1206.35103
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2302951
http://dx.doi.org/10.1016/j.jmaa.2006.07.093
https://zbmath.org/?q=an:1163.35026
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2499888
http://dx.doi.org/10.1016/j.jmaa.2008.05.086
https://zbmath.org/?q=an:1234.35111
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2832655
http://dx.doi.org/10.1002/mana.200810203
https://zbmath.org/?q=an:0995.46023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1859337
http://dx.doi.org/10.1006/jmaa.2001.7618
https://zbmath.org/?q=an:1146.35353
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1954585
http://dx.doi.org/10.1016/S0362-546X(02)00150-5
https://zbmath.org/?q=an:1072.35138
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2107835
http://dx.doi.org/10.1016/j.jmaa.2003.11.020
https://zbmath.org/?q=an:1310.35112
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3213021
http://dx.doi.org/10.1186/1029-242X-2014-23
https://zbmath.org/?q=an:1182.35115
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2564887
http://dx.doi.org/10.1016/j.jmaa.2009.10.003
https://zbmath.org/?q=an:1159.35365
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2277787
http://dx.doi.org/10.1016/j.jmaa.2006.03.006
https://zbmath.org/?q=an:0786.35055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1190164
https://zbmath.org/?q=an:1188.35072
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2639204
http://dx.doi.org/10.1016/j.na.2010.02.033
https://zbmath.org/?q=an:1210.35132
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2785386
http://dx.doi.org/10.1016/j.na.2010.12.013
https://zbmath.org/?q=an:1419.49045
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3926581
http://dx.doi.org/10.1016/j.na.2019.02.016
https://zbmath.org/?q=an:0784.46029
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1134951
http://dx.doi.org/10.21136/CMJ.1991.102493
https://zbmath.org/?q=an:0189.40603
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0259693


[22] R.A.Mashiyev, B.Cekic, O.M.Buhrii: Existence of solutions for p(x)-Laplacian equa-
tions. Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 65, 13 pages. zbl MR doi

[23] M.Mihăilescu, D.Repovš: On a PDE involving the Ap(·)-Laplace operator. Nonlinear
Anal., Theory Methods Appl., Ser. A 75 (2012), 975–981. zbl MR doi

[24] P.Pucci, Q. Zhang: Existence of entire solutions for a class of variable exponent elliptic
equations. J. Differ. Equations 257 (2014), 1529–1566. zbl MR doi
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