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Abstract. This paper is devoted to the study of some nonlinear degenerated elliptic
equations, whose prototype is given by

— div(b(|u)|[VulP 2 Vu) + d(|u)|[VulP = f — div(e(z)|u|*) in Q,
u=0 on 09,

where ( is a bounded open set of RY (N > 2) with 1 < p < N and f € L'(Q), under some
growth conditions on the function b(-) and d(-), where ¢(+) is assumed to be in LN/ (p=1) (Q).
We show the existence of renormalized solutions for this non-coercive elliptic equation, also,
some regularity results will be concluded.
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1. INTRODUCTION

In [7], Boccardo et al. have studied the quasilinear elliptic problem with degenerate
coercivity

(1.1) {—diV(A(fc,u)Vu) =f inQ,

u=20 on 0f),

where the data f is assumed to be in L™(Q) with m > 1. They have proved the
existence and some regularity results; we refer the reader to [2], [9], and also [16] for
the case of measure data.
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Alvino et al. have considered in [1] the nonlinear degenerated elliptic problem of
the form

o IVuPivVe .
— dlv(m = f m Q,
u=20 on 0%);

(1.2)

they have proved the existence of solutions and some regularity results for f a mea-
surable function in L™(Q) with m > 1.

In [19], Murat has proved the existence of renormalized solutions for the quasilinear
elliptic problem

1.3
(1-3) u=0 on 0,

{ A — div(A(x)Vu + ¢(u)) = f in Q,
where f € L(2) and A > 0. The uniqueness of the solution was concluded under
some locally Lipschitz continuous conditions on the vector field ¢(-). We refer also
to [10], where Del Vecchio et al. have proved the existence of weak solutions for the
non-coercive problem by using the symmetrization method.

In [13], Droniou has studied the nonlinear non-coercive elliptic problems

14
(14) u=20 on 0f)

{Au —dive(z,u) = f(x) + ¢ in Q,
with Au = — div a(z, u, Vu) being a Leray-Lions operator on W, *(), and ®(z, s)
being convection term with growth properties, where f € W~ () and y € M(9Q).
He has proved the existence and some regularity results. Also, the author has proved
in [12] the existence and uniqueness of solutions for some elliptic problems.

In [5], Bensoussan, Boccardo and Murat have studied the nonlinear elliptic prob-
lem

Au+g(z,u,Vu) = f in Q,

where A is a Leray-Lions operator acted from W, "*(2) into W17 (Q), where g is a
Carathéodory function satisfying the sign and growth conditions, the data f belongs
to W12 (Q2). They proved the existence of the solution in the sense of distributions
u € WyP(Q) such that g(z,u, Vu) € L'(Q) and g(z,u, Vu)u € L1 (Q).

In the case of f € L!(Q), Boccardo and Gallouet (see [8]) have proved the existence
of solutions u € Wy *(Q) with g(z,u, Vu) € L*(R2) under the additional assumption:

There exist o > 0, v > 0 such that |g(z, s,£)| = v[¢|F for |s| > o.
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In [3], Ben Cheikh Ali and Guibé have studied some quasilinear elliptic equations

of the type
Mz, u) —div(a(z, Vu) + ®(x,u)) = f in Q,
(1.5) (a(z,Vu) + ®(z,u)) -n=0 onT,,
u=20 on Fd7
where Au = —diva(z,Vu) is a Leray-Lions type operator and the Carathéodory

functions A\(z, s): QxR +— Rand ®(z,s): QxR — R satisfy only some growth con-
ditions. They have proved the existence of renormalized solutions for this equation.
Moreover, the uniqueness of solution is obtained under some additional conditions
on the function ®(x, s); we refer the reader to [11], [18], [22], [23].

In [15], Guibé et al. have studied a class of nonlinear elliptic problems whose
prototype is

(1.6)

—Apu — div(e(z)|ul?) + b(z)|Vul* = in Q,
u=0 on 0,

where A, is the p-Laplace operator 1 < p < N, and p is a Radon measure with
bounded variation on 2. They have proved the existence of renormalized solutions
in the case of 0 <y <p—1and 0 < A < p—1 (see also [14]).

In this paper, we are interested in proving the existence of renormalized solutions
to the following nonlinear elliptic problem having a degenerate coercivity:

w7 { Au+ g(z,u,Vu) = f —divg(z,u) in Q,

u=0 on 0,

where  is a bounded open set of RY (N > 2) with 1 < p < N and Au =
—diva(z,u, Vu) is a non-coercive Leray-Lions operator acting from WO1 P(Q) into
its dual W~1'(Q), the Carathéodory functions g(z,s,&) and ¢(z,s) verify only
some growth conditions, and the data f is assumed to belong to L'(€2). Under such
assumptions, the solution v may not be finite in general. This means that, at least
for solutions obtained through approximation, such solutions may reach the values co
and —oo. For more details we refer the reader to [6].

The novelty of this work is the fact of overcoming several difficulties at the same
time. We prove the existence of renormalized solutions for the strongly nonlinear
and non-coercive elliptic problem (1.7), the existence result is obtained by using an
approximation procedure and some a priori estimate. The functions test used in
this work are essentially inspired from the standard analysis; we refer the reader for
example to [1], [3], [13], [20], [21].

257



This paper is organized as follows: In Section 2, we present some non-standard
assumptions on the Carathéodory functions a(z, s, ), g(z, s,€) and ¢(x, s) for which
our nonlinear elliptic problem (1.7) has a renormalized solution. In Section 3, we
will state the main results. Section 4 is devoted entirely to prove the existence
of renormalized solutions for our nonlinear elliptic equation, also, some regularity
results will be proved. Finally in Section 5, we will prove Proposition 4.1.

2. ESSENTIAL ASSUMPTIONS

Let © be a bounded open set of RY (N > 2)and let 1 < p < N. We consider a
Leray-Lions operator A from W, () into its dual W =% (Q), defined by the formula

(2.1) Au = —diva(z,u, Vu),

where a(z,s,£): Q x R x RY +— RY is a Carathéodory function (i.e., measurable
with respect to z in €2 for every (s,¢) in R x RY and continuous with respect to (s, ¢)
in R x RN for almost every z in Q) and verifies the following conditions:

(2.2) la(z, s, )] < Blao(w) + [s|"~! +[€P7)

for a positive function ag(z) € L¥' (Q), and 8 > 0;

(2'3) (a(xa Saf) - a(ﬂ%sm)) ' (E - 77) >0 for any E 7& UB

There exists a positive decreasing function b: [0,00[ — ]0,00[, and two constants
bo, so > 0 such that

(2.4) a(x,s,&) - & =b(|s])|€|P  with b(]s]) = (1_:)% for all |s] > so,

for a.e. x € Q and all (s,€) € Rx RY, where 0 < A < p— 1. As a consequence of (2.4)
and the continuity of the function a(x, s,-) with respect to &, we have

a(z,s,0) = 0.

The lower order term g(z,s,£): Q x R x RY — R is a Carathéodory function which
satisfies only the growth condition

(2.5) l9(z,5,€)| < fole) +d(|s))I[",

where fo(z) is assumed to be a positive measurable function in L'(£2), and d(-):
R — R™ is a continuous decreasing function such that d(|-|)/b(]-|) is decreasing and
belongs to L'(R) N L>=(R).
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The Carathéodory function ¢(-,-): Q x R +— RY satisfies the growth condition
(2.6) |¢(x, 5)| < c(x)(1+]s])?,

where 0 < @ < p—1— X and ¢(x) is a positive function in LN/ P=1(Q).
We consider the strongly nonlinear and non-coercive elliptic Dirichlet problem

27) {Au +g(z,u,Vu) = f —dive(z,u) in Q,

u=20 on 0f),

where the data f is assumed to be in L!(Q).

Definition 2.1. Let k£ > 0, the truncation function Tj(-): R +— R is given by

s if |s| <k,
Tes) =912 i e > 1,

|s]
and we define

ToP(9) == {u: Q — R measurable, such that Ty (u) € Wy*(Q) for any k > 0}.

Proposition 2.1 (cf. [4]). Let u € T;*(Q). There exists a unique measurable
function v: Q + R such that

VTi(u) = vX{ju|<k} a-e. in for any k >0,
where x4 denotes the characteristic function of a measurable set A. The function v
is called the weak gradient of u and is still denoted by Vu. Moreover, if u belongs
to W' (Q), then v coincides with the gradient of u, that is v = V.

3. MAIN RESULT

We begin by introducing the definition of renormalized solutions for the elliptic

equation (2.7):

Definition 3.1. A measurable function w is called a renormalized solution of the
strongly nonlinear elliptic problem (2.7) if u € 761”’((2), g(x,u, Vu) € L*(Q), and

(3.1) lim —/ a(z,u, Vu)Vudzr =0
{lul<h}
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such that u satisfies the equality

(3.2) /Qa(x,u,Vu) (8" (w)pVu + S(u) V) dx—i—/ﬂg(m,u,Vu)S(u)apdx

= [ Seds+ [ owu) (S WpTu+ ST ds
Q Q

for every ¢ € WyP(Q) N L*®(Q) and for any smooth function S(-) € W*°(R) with
a compact support.

The goal of the present paper is to prove the following existence result:

Theorem 3.1. Let f € L'(2), assuming that conditions (2.2)—(2.6) hold true,

and one of the following additional hypothesis holds true:
(i) There exist two positive constants so and dy such that d(|s|) < do/(1 + |s|)?P for
any s = sgp.

(i) 0Sa<p—1—A
(iil) [le(z)|lLv/w-1 () < co, where cq is small enough.

Then there exists at least one renormalized solution for the strongly nonlinear and
non-coercive elliptic problem (2.7).

Remark 3.1. Note that, under the assumption of Theorem 3.1, the renormal-
ized solution of problem (2.7) belongs to u € Ty P(Q) so that d(|u|)'/?u belongs
to LP(Q).

In all remaining parts of this paper, we will denote by C,, the constant of Poincaré’s
inequality, and by Cs the constant of Sobolev’s inequality. The real constants C; for
i=0,1,... are different in each step of the proof of Theorem 3.1.

4. PROOF OF THEOREM 3.1
The proof will be divided into several steps.

Step 1: Approximate problems. We consider a sequence of smooth functions
(fa)nen- in W= (Q) N L*(Q) that converges strongly to f in L'(Q), such that
| ful < [f] (for example f,, = T,(f)).

For any n € N* we consider the approximate problem
{ Apuy, + gn(xvun; vun) = fn —div ¢n(xa un) in €,

4.1
41 Up =0 on 0f),

with ¢ (2, 8) = ¢(z, Th(s)) and gn(z, s,§) = Tn(g(z, s,€)), where the operator A, is
given by
Anv = —diva(z, T, (v), Vv) for any v € W, P(Q).
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Note that the operator A, is coercive and satisfies the classical Leray-Lions condi-
tions.

Indeed, by using condition (2.4) we have

(Apv,v) = /Qa(a:,Tn(v),Vv) -Vode > b(n)/Q [Vo|P dz

for all v € W, P(Q) with b(n) > 0.

In view of the classical results of Leray-Lions (see [17]), there exists at least one
weak solution u,, € W,"(Q) for the approximate problem (4.1); we refer the reader
also to [15] for more details.

Proposition 4.1. Assume that conditions (2.2)—(2.6) hold true, and let u,, be
a weak solution of the approximate problem (4.1). If one of assumptions (i)—(iii)
in Theorem 3.1 is satisfied, then for any n € N*, the weak solution of approximate
problem (4.1) verifies

(4.2) hm lim sup meas{|u,| > k} — 0.

k—oo n—oo

The proof of Proposition 4.1 is in Appendix.

Step 2: Weak convergence of truncations. Let k£ > 1, we set B(s) =
Tio(s)(1 + |T(s))* and H(s) = 2 [y d(|7])/b(|7]) dr.

We have d(|-|)/b(|-|)EL1([R)ﬂL°°( ) and 0 < H(oo) :=2 [~ d(|7])/b(|7|) dr is a
finite real number. Then B(u,)e?(#]) € W *(1).

By taking B(u,)ef(I“n]) as a test function for the approximate problem (4.1), we
have

/ a‘(x7 Tn(un), V'U,n) . VTk(un)B/(Un)eH(lunl) dx
Q

+2 /Q a(, T (un), Vi) - Vi E||u:||))'3(“")'e (funl) g

/ 9n (T, Uy Vg ) B(uy )eH 14D dz

+
Q
- / FnB(un ) ) da 4 / d(, T (un)) - V() B' ()10 da
Q Q

d(Jun|)
b(jun|)

Q
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In view of (2.4), (2.5) and (2.6), and since (1 + |Tk(s)[)* < B'(s) < (A + 1) x
(1 + |Tx(s)])* for |s| < k, we conclude that
(4.3)

bl DIV T () P (1 + [ ]) d + 2/ d(Jun )|V P Bun) ™D da
{lun|<k} Q

<RI [ (g4 1) o+ [ Tl Bl o0 dz
Q Q

+ (A + 1)ef (o) / () (1 + | Th(un) )|V Tk (un)| (1 + | Ti(un)])* da

{lunl <Kk}
d(Jun))
b(|unl)
A

Thanks to (2.4), we have b(|un|)(1 + |un|)? = bo for |u,| > so. We set

+2/ () (1 + [un])*|Vun| |B(up) et D) da.

c
Q
— i : A
b1 = min {bo, \;|n<fk b(|s])(1 + |s|) },
then we get

b [ TP e+ [ dunl) Tl B e
{lun|<k} Q

<(1T+ k)/\+leH(°°)(||f||L1(Q) + [l follz1(22))

+ (A + 1)ef(>) ()| VTx (un)| (1 4 [Th(un)])* T dz
{lun|<k}

#2609 [ )1+ )Vt S B

Using Young’s inequality, we obtain

b 1
b VTGP 5 DIV PTG 0+ [T
2 J{un <k} 2 Ja
< Co(l+ kM + ¢4 le(@) [P (1 + | T () ) @V da
{un|<k}
/  d(jun))
+C/ P (1 + |un|)? | B(u,)|dz.

Let R > 1, since 0 < a + A < p — 1, having in mind (2.4), it follows that

by

1
(4.4) —/ [V Tk (un)|P dz + —/ A(Jun |) [ Vun P | Tr (un) (1 + [Th(un)])* d
2 J{junl<k} 2 Ja

< Co(1+k) +Cy le(@) [P (1 + [Tk (un)[) VP da
{|u7z|<k}

o / le(@)P' (1 + | )V d(un])| Bun)| de
Q
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< Co(l+ k)M + ¢y / (@) [Tx(un)|? da
{R<|un|<k}

4+ [ @ Pl 1B ) i+
{R<‘“n‘}

Using Hélder’s inequality, we obtain

(4.5)
b 1
- VT (un)[? d + —/ d(|un )Vt P T (un) (1 + | Tio(un)|) da
2 {|u7z|<k} 2 Q
< Coll + B+ Calle) s ey | T 2

+ C5||C(37)||Z£N/<p—1>({R<\u,,L\}) ||und(|un|)1/p|B(un)|1/p||’£p*(Q) + Cs,

where Cs is a constant depending on R, p and [[c(-)|| 1o’ (-

Recall that if g(s) is positive and decreasing function on the set [0, ], then rg(r) <
Jy 9(s)ds.

We have that d(|s|) is a decreasing function, and B(|s|) is a constant function on
the set {|s| > k}. Therefore, the function d(|s|)B(|s|) is a decreasing function for
{|s| > k}, and we obtain

|un|
|t d(|un )P B (un) /P </ d(|7|)Y?|B(7)|"P dr + Crk@HA /P g e in Q.
0

Thanks to Sobolev inequality and (4.2), we conclude that

(4.6)
by

1
) VTP do+ 5 [ V0P I ) (14 [Ti))
{lun|<k} Q

< Co(1+ B Callel@) v e I T )2
p/
+ CS||C(x)||LN/(P—1)({R<|u,L|})H/O v ()

< Co(L+ KP4 CaCBIe) Y vy ey | VT ) [

+CgC§||c(x)||’£N/(p,1)({R<‘un‘})Hd(|un|)1/p|B(un)|1/qunHip(Q).

fun »

() /¥ B(r)] 7 dr|

Since meas{|u,| > R} — 0 as R tends to oo, we can choose R > 1 large enough such
that

’ bl / ].
CaC 1@ ns -1 (R un ) S 7 and CsCEll @)L v/ -1 (R uny) S 1
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We obtain

b 1
@n 3 [ VI et g [ VP T 0 T ) de
{lunlgk} Q

< Co(1 4 Ryt 4 0 / IV T () ? da
4 J{unl<i}
1
7 [ 1Vl DT ) 1+ [T

It follows that

b 1
@8) F [ VTP et g [ V)T (0 T ) de
{lunlgk} Q

< Clokp-i'/\-i-l.

Then the sequence (T (uy)), is bounded in Wy (), and there exists a measurable
function 7, € W *(€2) such that

Tr(uy) — cakly in Wy (),
(4.9) {k()nkwy 0" ()

Ti(un) = i strongly in LP(Q2) and a.e. in Q.
In view of (4.2) and (4.9), and following the same approach as in [4], we conclude that

the sequence of weak solutions (uy), converges almost everywhere to a measurable
function u, and thanks to (4.9), we obtain

(4.10) {Tk(un) — Ty(u) weakly in W, (Q),

Ti(un) = Tk(u) strongly in LP(2) and a.e. in Q.

Moreover, taking k£ = 1 in inequality (4.8) and since d(|]) is a decreasing function,
(4.11)

‘“n‘
/d(|un|)|un|pdm</ ‘/ d(s)l/pds‘pdxgcg/ d(|tn )| Veun|? de < Ciy,
Q Q 0 Q

where C; is a constant that does not depend on n. Then the sequence (d(|u,|)!/? x
|ttn|)r, is uniformly bounded in LP(€2) and it follows that

(4.12) d(Jtn))YP|un] = d(Ju)/P|u| weakly in LP(Q).

Step 3: Some regularity results. In this step, we denote by &;(n), for i =

1,2,..., some real-valued functions that converge to 0 as n tends to infinity. Similarly,
we define €;(h) and €;(n, h).
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In this step, we will show the following estimate:

1
(4.13) lim limsup — / a(x, Ty (un), V) - Vuy, dz = 0.
{lun‘<h}

h—co noo

Indeed, by taking h=T}, (u, e (I ¢ Wol’p(Q) as a test function in the approximate
problem (4.1), we have

1
h / a(x7 Ty (’Ltn), Vun) : V’U,neH(lu”l) dz
{lun|<h}

1
+ E / gn(x, Un,, vun)Th(’u,n)eH(l“nD dx
Q

2
+ /Q o, Tntn), Vitn) - Vuun| T (un) [ e

= l/ fnTh(un)eH(‘u"LD dz + l/ o, T (un)) - Va, et (unl) dg
hJa I Jjun i<y

2 / d
4+ — | oz, Th(uyn)) - Vup|Th(uny e
In view of (2.5) and (2.6), we conclude that

1
5 / a(xv Tn(un)7 Vun) . V'u,neH”“nD dz
{lun|<h}

2
42 [ IV T )
Q

S /Q(Ifn|+|fo|)wemunndx

1

+ﬁ/d““”|)|V“n|”|Th(un)|eH<lunl>dx
Q

1
b1 [ )1+ Tl [Tl da
b funi<ny

2/ n
+ o | @)+ |To(un) D Vun|[Th(un e

7 )04 1T ) Tl T )

Using Young’s inequality, we deduce that
1 1
/ a(x, Tn(un), Vuy,) - Ve 1D dz 4 — /d(|un|)|Vun|p|Th( o) |efunD dg
{lunl<h} h

h

1
<el /(Ifn|+|fo|) nn)l g 4 L b([tn])| Vit [PH (0 dz
2h Jjun i<y
Co (1 + Jug)o’ 1 .
T D) S dr | d(|un )| VP | T (un) e ) da
h {|un\<h}|( " a7 2h o, W DIVual?[Taun)

@ p’ ap’ (| n|) H(|unl|)
+ G2 [ 1) (L ) ) 2500
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In view of (4.2), we have that meas{|u,| > h} — 0 as h tends to infinity, thus

|Th(un)|/h — 0 weak-* in L°°(Q2). Thanks to the Lebesgue dominated convergence
theorem, we obtain

[T (un)|

de%O as h — oo.

(419) &) = lim &H /Q (Iful + fo)

h—o0

Let R > 1 and since 0 < (o + A)p’ < p, thanks to (2.4) and (4.2) and Holder’s
inequality, we conclude that

1
2h {lunlgh}

<aah) + / Je(@)l”" (1 Jun )@V b(fun ) dz
{lun|<h}

1
(4.15) a(z, T, (un), Vuy) - Vu, doe + o7 / d(|un|)|Vun|P|Th(uy)| de
Q

C / a+0)p’
+ 5 /Q le(@)” (1 + Jun) VT, (un) (] da

C ’
<al)+ P [ bl do
{lun|<h}

C ’
+ 52 [ 1@l fual? i) da

C /
<ca®+ P [ el ol W)
{lun|<R}

C /
+ f ()" [un|?|Th (un)|d(|un ) dz
{lunlgR}

G
b J{R<|un<n}

C: ,
+ f (@) [un|P[Th(un)|d(|un]) dz
{R<|un|}

le(@) ' [un|Pb(|un]) da

Cy /
< ea(h) +e3(h) + T||C(x)||Z[)/N/(P*1)({R<‘un‘})

X (||Unb(|un|)1/p”ip*({‘un‘gh}) + ||un|Th(un)|1/pd(|un|)1/p||ip*(Q))a

o) = 1) + 2 ([ @l b [ o) Tl

2;0—1 ’
L (BT e(@)|? dx
h
{‘un‘gh}

+11d() | o (w) /Q |c(x)|p’|Th(un)| dm) —0 as h — oo,

N—

= El(h) +
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63(h)

_ G

b J{jun< Ry
L&
b J{jun <R}

(@) [ |Pb(unl) dee

@) [P o [P T ()| ]) e

C ,
= _h2 (RPI[6C) Loe (m) + Rp+1||b(')||L°°(R))/ le(z)[P dz — 0 as h — oo,
Q

We have that b(|s|) and d(|s|) are two decreasing functions, and having in mind
that d(|-])/b(]-]) is a decreasing function and belongs to L!(R), then there exist two
positive constants p and sp such that d(|s|)/b(|s|) < u/|s| for any |s| > so. Then
Ty, (s)[*/Pd(|s])Y/P < u'/Pb(|s])}/P € L*(R) and we obtain

I Th ()P d(|s1) P - Xjs1>s0}

< 1MPs[b(1s) P xqisi<ny + SITH(8)[MPA(s) P - Xjs/5n)

T (s)] sl
<u1/”/ b(T)l/PdTJr/ (T ()P d(s) P X1 5ny AT
0 0

This follows that there exists a positive constant Cs such that

(4.16)

[T (s)] Is]
ST Pas) 7 < Cs e [ ar s [T i) ar
0 0

Thanks to (4.15), we conclude that

(4.17)

1 1
— a(z, T, (un), Vuy) - Vu, doe + %/ d(|un])|Vun|P|Th(uy)| dz
Q

20 J{jun|<hy
|u7l|
/ b(T)l/p dr
0

p

Cy /
<eq(h) + 7||C(q’.)||Z£N/(P*1)({R<‘u”‘}) (‘

Lr* ({lun|<h})

[wn | P
0 Lr™(Q)
crcy
<es(h) + gT||C(x)||I,;1v/(rrl)({R<|un|})
o | p |un| p
y (HV/ b(7)1/p dr + HV/ |Th(7)|1/p d(T)l/p dr
0 Lr({|un|<h}) 0 )

C§C4 !
h ||C(x)||I[)/N/(p71)({R<|un|})

= 65(h) +

([ DIVl ot [ VPTG 0 ).

)
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By taking R large enough such that C’g’C’4Hc(x)||’£lN/(p_1>({R<‘un‘}) < %, we conclude
that
(4.18)
1 1
— a(x, Tp(un), Vuy) - Vu, dz + —/ d(|un]) | Vun|P|Th(up)| dz < e5(h)
A Jjuni<ny h Ja

for any n € N*. Thus, by letting h tend to infinity in (4.18), we conclude that

h—o00 nosoco h

1
(4.19) lim limsup — / a(x, Ty (un), V) - Vu, dz = 0.
{lun|<h}

Moreover, we have

1
(4.20) lim 1imsup—/ ([t ])| Vet P Th () dz = O,
h—00 noo h (9]
then
(4.21) lim limsup/ d(|ttn])| Veun|? d = 0.
h=00 n—oo J{|un|>h}

Step 4: Convergence of the gradients. Let h > k > 1, we set

B T Yy o)
(422)  Sp(s)=1 - d H(s) 2/0 b)) ¢

Let ¢(s) = sexp(372s?), where v = Z||d(|-)/b(||) || ®)- It is obvious that

©'(s) —lp(s)] = = for all s € R.

N~

By taking o(Th(un) — Th(w))Sh (un)eF (D) € W P(Q) as a test function in the
approximate problem (4.1), we obtain

/Qa(x,Tn(un), V) - V(o(Ti(wn) — To(w))Sh () D) dz
+ / 9 (@, i, V) (0(The (wn) — Tie () S (ug ) e 14Dy dz
Q
= /an(SO(Tk(un) — Tk(u))sh(un)qu“"‘)) dz
+/ D, un) - V(p(Th(un) — Ti(w))Sh(uy)e 4Dy da.
Q
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We have Sp,(u,) = 1 on the set {|u,| < h}, and since ¢(T (upn) —Tk(u)) has the same
sign as uy, on the set {|uy| > k}, in view of assumptions (2.4)—(2.6), we conclude that
(4.23)

a(a, T (un), Vtn) - (VT (un) = VTk(w)) @ (Tk (tn) — Tho(w)) S (un)e™ 1) da

d(|un|)
—2/ a(x, Tn(un), Vug) - Vg,
{lunl <k} (Tl ) b(Jun)

X |50(Tk(un) - Tk(u))|sh(un)eH(‘“ﬂ) dz

+ 2/ d(|un )| Vttn Pl o(Ti (un) = Tio(w))[Sn (un )& 1D dz
{lun|>k}

< eH(‘X’)/Q(lfo| + | D)o (Th () — T (1)) Sn () d

+ / 0(11) |Vt [P (T t1) — T (1)) 11 ) 50D
Q
1
+ - / a(x, Tn(un)v vun) : vunl@(Tk(un) - Tk(u))|eH(|un|) dz
{h<|un|<2h}

-5/ £)(1+ [ Vot (T ) = Taw) o001 d
{h<\uﬂ|<2h}

)
(78}

X |0 (T (un) = Ti ()] S (un e 1D da.

For the first term on the right-hand side of (4.23) we have ¢(Tk(u,) — Ti(u)) — 0
weak-* in L°°(Q), and since f,, converges strongly to f in L!(2) as n goes to infinity,

1
h
/ Y1 A+ |un ) ¥V Tk (tn) — V()| (Tr(un) — Tie (1)) Sh (e nD) dz
+ 2

we obtain

(4.24) ei(n) = ‘ /Q(Ifol + 1 faDlo(Te (un) = Ti (u))[Sh(un) dz

</(|f0|+|fn|)|<p(Tk(un)—Tk(u))|dx—>0 a5 11— oo,
Q

Concerning the third and fourth terms on the right-hand side of (4.23), in view
of (4.19), we have
(4.25)

Ez(n) = —
h J th<tunl<2ny
< @(2/6):“’(“)

a(z, Ty (tn), Vi) - Vg |o(Th () — Ti(w)) e unD) dg:
/ a(x, Ty (tun), V) - Vupde — 0 as n — oo,
{h<|un|<2h}
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and thanks to Young’s inequality, since b(s) is a decreasing function, and similarly
as in (4.17), we can show that

1
(4.26) e3(h) = ‘—/ o(@)(1 + [un])* Vet || (To (1) — Tio(w)) [ (40 dee
b J {h<un <2n}
o (L fun )
S (@) e (T (un) — Tio(w))| dz
h {h<\un\<2h}| ( b(|un|)P —1 | ) (u))]

e
+

" / b(|un)[Vun [Plo(Th(un) — Ti(u))| dz
{h<|un|<2h}

2k)eH () , ,
< 22 / @) (1 + Jun]) Y7 b ) da
h {h<|un|<2h}

2k et (00)
+ P(2k)e1 / a(z, Ty (un), Viy,) - Vu, dz
h {h<|un|<2h}

2P~ 1 (2K ) kel (o0) /
< Z PR [ e P i+ 24(0)
{|un|<2h}
2P~ 1p(2k) ketl (o) '
< A ||C(q")||;2N/(P—1)(Q)

< / bt ) [V Ton (un)|? dz + 24(h) — 0 as b — oo,
Q

For the fifth term on the right-hand side of (4.23), since 1 < ¢/ (Tk(un) — Ti(u)) <
¢’ (2k), and we have that (1 + |Top(un)|)* converges strongly to (1 + |Ton(u)])® in
LNP'/(N=p)(Q) and VT (u,) — VTi(u) in LP(2), it follows that

(4.27) ‘ / YA+ Jun )YV Tk (un) — VT (u)]
x @' (Tho(un) — T () Sp (ug ) (D) dz

< eH(OO)SO/(%)/ |e(@)|(L + |Tan(un))*
Q
X |VTi(upn) — VT (u)|de = 0 as h — oo.

Concerning the last term on the right-hand side of (4.23), we have

429) [ @)1+ )"Vl ), )~ )5 )0
STy A DIT AT ) = TS5

/ + d(Junl)
—l—/ c(@)|P (1 + |up])*? -
{‘un‘@h}l @) (A Junl )™ e o

X |o(Th(un) = Ti(w))| S (un e 14D da
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< / d( |t )V P |o(Th (un) = Tio(w))| S (un)e 1D dae
{\uﬂth}

1=

+efl) / Je(@) [P (1 + |Tan (wn) )P d([un )| o(Th () = Tio(w))] der
{lun|<2h}

< /{ ‘Qh}d(lunI)IVunlplw(Tk(un)—Tk(u))ISh(un)eH('“"‘)d$+66(71)

| =

with

eg(n) = (> /{| o Je(@) [P (1 + [ Ton (un) )| )| o(Tie () = Ti(w))| da — 0

as n — 00. By combining (4.23) and (4.24)—(4.28), we conclude that
(4.29)

[ (e, T (00, Votn) - (T otn) = VL)) (Teotn) = Te() 5 (o1

1
3 / d([un|) | Vn P (Th(un) — Tho(w))|Sh (un)e™ ("D da
2 J{jun|>k}

T
2
< 57(”7 h)

/ (2, Vi) - Vet 209173 () = T (1)) [S (1t )e 70D
{lun‘gk} b(| n|)

For the first term on the left-hand side of (4.29), we have a(z, T (un), VIi(urn)) =0
on the set {k < |un|}. Then
(4.30)

A a(z, T (un), Vi) - (VT (tn) — VT3(w))@ (Th (un ) — Tie (1)) Sh (e (4nD) dz

= /Qa(x, T (tn), VT (tn)) - (Vi (tn) — V()
x @ (Tr(un) — Tio(uw))e 1enD) dy
- / a(z, T (un), Vi) - VTik(w)@ (Th (un ) — Tr(u))eH 1unD dg
{k<|un|<2h}
= /Q@(a% T (un), VTk(tn)) — a(@, Tr(un), VIk(w))) - (VTk(un) — Vi (w))
% @' (T (un) — Ti(u))e "D dz
+ [ al Tiwn). VI - (VTr(u,) - VTi(0)
< ¢ (T (un) — Ti(u))e D dz

_ / (2, T (1), Vi) - VT () (T () — T ())e D iz
{k<|un|<2h}
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For the second term on the right-hand side of (4.30), we have a(x, Tk (uy), VIi(u)) —
a(z, Ty (u), VT (u)) strongly in (L¥' ()N, and since VTi(up,) — VTi(u) weakly
in (LP(Q))",

(4.31) eg(n) =

/Qa(x, T (un), VIr(w)) - (VIg(un) — VIg(w))
X @ (Th (1) — T (w))eH 1unD) g

< () (21) /Q la(z, Ty (), YTk ()]

X |VTi(un) — VI (u)|de = 0 asn — oc.

Concerning the last term on the right-hand side of (4.30), we have that (|a(z, Top (un),
VTon(un))|)n is bounded in L”' (Q). Then there exists a function o, € LP'(€2) such
that |a(z, Ton (), VTon(un))| = ton weakly in LP (Q), which yields that

(4.32)

eg(n) = ‘ / a(, Tn(un), V) - VT (u)@' (T (un) — Tk(u))eH(lu"l) dz
{k<|un|<2h}

< H09) 7 (2h) / (e, Ton (wn), VTon ()| VT (w)| de
{k<|un|<2h}

- eH(OO)<p'(2]€)/ Yop|VTi(u)|de =0 asn — oco.
{k<|u|<2h}

By combining (4.30)—(4.32), we conclude that
(4.33)

/Q“("”’ T (tn)s Vi) - (VT () = V() S (wn) ' (Th(un) — Tio(w))e 1D da

_ /Q(a(a:,Tk(un),VTk(un)) ~ a(@, T (un), VTk(w)))

X (VT (tn) — V(1)@ (T (un) — Tp(u))e 14D dz 4 eg(n).

Similarly, we can show that

(4.34) )
0, Vetn) - Tt 29D 7 1) — Taw)) S ()P
{lun| <k} b(lun|)
< /Q(a(x Tr(un), VT (up)) — alz, T (un), VI (w))) - (VT (uy) — VTi(w))
X H% HLOC(R)W(TI@ (Un) — Tk(U))|eH(|u”|) dx + glo(n),
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We have ¢'(s) — y|¢(s)] = % for any s € R, thus, by combining (4.29), (4.33)
and (4.34) we conclude that
(4.35)

0< %/Q(a(x,Tk(un% VT (un)) = a(z, Ty (un), VTk())) - (VT (un) = VTi(u)) dz

< / (@, Ti(tn), VT (1) — e, Ty (tn), VTk(w))) - (VT (1) — VT (w))

x (! (Tiun) = Tic(w) - ;H% | (o (Tiun) = Tio(w)])e™ ) da
+ 611(71)
< 67(n,h).

By letting n and h tend to infinity, we obtain

(4.36)
lim / (a(x, Tk (un), VIi(un)) — a(z, Ti(un), VI (1)) - (VT (un) — VI (uw)) dz = 0.

n—oo 0

Under assumptions (2.2)—(2.4), it is well known that this implies
(4.37) Ti(un) = Tr(u) in Wy P(Q) and Vu, — Vu a.e. in Q.

Moreover, since a(z, Ty, (tn), Vuy,) - Vu, tends to a(z, u, Vu) - Vu almost everywhere
in 2, and in view of Fatou’s lemma and (4.19), we conclude that

1
(4.38) lim — / a(z,u, Vu) - Vudz
n=oo b Jijui<ny
1
< lim liminf — a(x, Ty (un), V) - Vuy, de
h—o00 n—o0 {Jun|<h}

1
< lim limsup — / a(x, Ty (un), Vuy,) - Vu, dz =0,
{lunlgh}

h—=0 nosoo N
which proves (3.1).
Step 5: The equi-integrability of g, (x,u,, Vu,). To prove that
Gn (T, Un, Vu,) = g(z,u, Vu) strongly in L'(Q),

using Vitali’s theorem, it is sufficient to show that the sequence (g (z, wn, Vuy,) )y is
uniformly equi-integrable. Indeed, thanks to (4.21), we have

(4.39) Jim Tim sup / d(|un]) [V P dz: = 0.
{funl>h}

h—co p—soo
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Having in mind that fy € L'(2), we conclude that

/ 192ty V)| da < / [fol dz + / (i) [Vt [P dz = 0
{lun|>h} {lun|>h} {lun|>h

as h — oo, thus, for all € > 0, there exists hg(e) > 0 such that

for any h > ho(e).

Do ™

(4.40) / |g(@, un, Vuy)|do <
{‘“n‘>h}
On the other hand, for any measurable subset EF C 2 we have
(4.41) / 19 (@t V)| do < / 190 (@, T (), VT ()] dz
E E
+/ lg(z, upn, Vuy,)| dz.
{lun|>h}

Thanks to (4.37), there exists 5(¢) > 0 small enough such that
(4.42)

/ 192, Th (1), VT (1)) dz < / [fo()| dz + / AT (1) ) [V T 1) P < .
E E E

[\

By combining (4.40), (4.41) and (4.42), we deduce that for any € > 0 there exists
B(e) > 0 such that

(4.43) / |gn (z, U, Vuy,)|de < e with E C Q such that meas(E) < 5(e).
E

We conclude that the sequence (g (x, tn, V), is uniformly equi-integrable, and
thanks to (4.37), we have

(4.44) Gn (T, Un, Vuy) = g(z,u, Vu)  a.e. in Q.
Thus, in view of Vitali’s theorem, we obtain
(4.45) In (2, U, V) — g(x,u, Vu)  strongly in L'(Q).

Step 6: Passage to the limit. Let o € Wy (Q) N L>®(), and let S(-) be a
smooth function in W1:*°(R) such that supp (S(+)) C [~ M, M] for some M > 0.

By choosing S(uy)p € Wy P(Q) N L=(Q) as a test function in the approximate
problem (4.1), we obtain
(4.46)

/ (2, T (tn), V) - (Vtn S’ (1) + () Vig) iz + / 9o (@t Vi) S ) o
Q Q

- / InS(un)pdz +/ (x, T (un)) - (VunS'(un)w + S(un)Ve) de.
Q Q
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We begin by the first term on the left-hand side of (4.46). We have

/Qa(m, To(un), V) - (VunS (un)p + S(un) V) do

_ /Q (2, Tar (wn), Vo () - (S () oV Tar (1) + S(Tar (1)) Vi) .

In view of (2.3), we have that (a(x, Tas(un), VTas(tn)))n is bounded in (LP' ()N,
and since a(z, Tar(un), VTar(uy)) tends to a(z, Tar(u), VI (u)) almost everywhere
in Q, it follows that

a(@, Tar (un), Vs (wn)) = alw, Tar(w), VTar(w) in (L (@)Y,

and since S (un)oVTa(un) + S(Tar(un))Ve tends strongly to S’ (u)pVTn(u) +
S(Ta(u))Ve in (LP(Q))Y, we deduce that
(4.47)

Jim / (@, T (tn), Vitn) - (VunS' () + S(un) Vo) da

n—oo Q

= lim [ a(z,Tar(un), VI (un)) - (VTar(un)S" (Tar(un))p + S(Tar(un)) V) dz

n—oo 0

- / o, Tar(u), VTar(u)) - (VTar(u)S' (Tar (u))p + S(Tar () Vig) da

= / a(z,u, Vu) - (VuS' (u)e + S(u) V) dz.
Q
Concerning the second term on the right-hand side of (4.46), we have S(Tas(un))p —

S(Th(u))p weak-* in L>°(Q), and thanks to (4.45), we have that g, (z,un, Vu,) —
g(z,u, Vu) strongly in L'(Q), which yields that

(4.48) lim gn(x,un,Vun)S(TM(un))gadfc:/g(x,u,Vu)S(TM(u))apdx

= / g(x,u, Vu)S(u)pde.
Q

Similarly, we have f,, — f strongly in L!(Q), then

n—oo

(4.49) lim fnS(TM(un))apdx:/fS(TM(u))apdfc:/fS(u)apdx.
Q Q Q

For the last term on the right-hand side of (4.46), we have ¢, (z,un)S(u,) =
d(z, Tar(un))S(Tar(uy)) for n large enough (for example n > M), and since
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¢, Tar (un)) — ¢(x, Tar(u)) strongly in (LP (€)Y, we obtain
(4.50)

lim / (@, 10n) - (VS () + S(u1n)Vig) d

n—oo 0

= lim ¢($ T (tn)) - (VTas (un) S (Toa (un))p + S(Tar (un)) Vep) da

/ o, Tar (w)) - (Vs ()" (Tas () + S(Tay (1)) Vep) da
= [ dla)- (TuS'(w + S(wT) do

By combining (4.46)—(4.50), we conclude that

(4.51) /Qa(a:,u,Vu)-(S'(u)(qu—l—S(u)V(p)dm—|—/Qg(x,u,Vu)S(u)<pdx
= [ Sgedst [ o) (S e Vut SV do
Q Q

which completes the proof of Theorem 3.1.

5. APPENDIX: PROOF OF PROPOSITION 4.1

Case 1. Assuming that there exist two positive constants dy and sg such that

do

(5.1) d(]s]) < A+ s)P

for any s > sy,
we have

lim lim sup meas({|u,| > k}) = 0.

k—00 n—oo
Proof of Case 1. Let k > 1 and n large enough. We consider the func-
tion (-) defined by

1 1
5.2 s) = (1 — )si n(s),
(52 Y= U T me ) )
where A < p—1and H(s) =2 [; d(|7])/b(|7]) dr. By taking 1(u, )ef 4D e WyP(Q)
as a test function in the approxnnate problem (4.1), we have

(5.3)

a(z, T, (un), Vuy,) - V(w(un)eH(‘“"‘)) dz + / In (T, Un, Vun)w(un)eH(lu"D dx

Q Q

= /fnw(un)eH““"‘)dx—f—/¢(x,Tn(un))-V(w(un)eH(‘“"D)dx.
Q Q

276



In view of (2.4), (2.5) and (2.6), we conclude that

p
(5.4) / b(|un|)| V| eH(‘""Ll)dx-i—Q/d(|un|)|Vun|p|w(un)|eH(|“"|)dx
{ Q

unl<k (1 T (un))P=2

. / a2, Tn(n), Vtin) - Vun () g0
Qunlcky (L [Te(un)[)P—2

+2/Qa(x,Tn(un),Vun).Vun|w(un)|%|em|un)dx

S /(Ifn(x)l + [ fo(@) D[ (un) e 152D Az
Q

Q
+/ A+ Jun )V Tk 1 g
{lun|<k}

(14 [T (un) [P~

ol " d(lunl) | o V1ot (unl) gy
+2/Q<><1+|n|> [Vetnl gy 1) dz.

Thanks to Young’s inequality, we obtain

o)1+ )" VT ()]s,
(55 /{Wk} (L | Telun))P d

. 1/ b(|unl) VT Un>|” oH(unl) g
{lunl<k}

(

1 [T (un) )P~

le(a 2| (L + Jun)?® (D g
(

/

e /
© Sty O F 1 Te(wn) )P 2b(unl)?

1/ b([un DIV (un) P prjun)
<= e Uunl) dg
(unl<ky (L4 [Tk (un))P=2

le(@)[P' (1 + |ug ) @+PP' =2
{Jun| <k} (1 + Jun )P~

and thanks to (2.4), we have

+C eflunl) qg,

Al ot
60 [ @)1+l Tulgd: |)|< et o

)P d(|unl) oHunl) 4
02/| (1 )7 0 o) d

+2/ Al ) [Vttn | [ () 700D

< C3/ d(Jun ) e(@) [P (1 + lun )V () [P 1D da
Q

5 [ DIV PR D
Q
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By combining (5.4), (5.5) and (5.6), we conclude that

1 b(|un|)|Vun |P 1/
5.7 — de + = d(|un)) [ Vun|? Dld
o0 2/{%@} 0+ (a5 J DIVl ()l da
< Ca([lfller) + 1 follr )

+ O / |c(x)|P/(1 + |un|)(a+>\)p’f>\
{lun|<k} (1 + |un|)P—2

+ Cyell) / d((tun ) (@) P (1 + fen) @D 45| d
Q

dx

< Calllf i) + ol (o)) + Cre™ > /{l | }IC(!E)I”/ dz
un | <k

40 [ dlunl)e@) (1 + fual) N )]
Q
< Cs + Cgel () / d(Jun ) e(@) P (1 + |un]) OV 1 (uy,)| da.
Q

b(|un )| Vu,|? 1/
dz + = [ d(|un|)|Vus|P|Y(uy)|dx
tentery @+ TG 02+ g f, AunDIVun Pl Cn)l

< Cs + Cyde! (™) / le(x)|P dz < Ce.
Q

In view of (5.1) we have d(|s|)(1 + |s|)? < dp for any s > sg, which yields that
1
2

(5.8)

In view of (2.4), we conclude that

IV, 7 [ ()| V7
5.9 b / ——dz < dx < C5.
B9 o f o T T ™S ey Gt (a2 S

Using the Poincaré inequality, we get

N

[log(1 + k)[Pmeas({un| > k}) = / [log (1 + [Th(un) )" dz
{lun|>k}

< [ Nog(1 + [Tu(un)) P dz
Q

<Cp [ (V1081 + [Tu(un) P do
Q

VT (wa)?
e / VT (un)l”

P Jo O+ Telun))p
< Cyg

with Cg being a positive constant that does not depend on n and k. Thus,

Cs
1 li n SN PR A
(5.10) lgl_igp meas({|un| > k}) |log(1 + k)P

which concludes the proof of Case 1.

—0 ask — oo,
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Case 2. We assume that 0 < a <p—1—\. Then

lim lim sup meas({|u,| > k}) = 0.

k—00 n—oo

Proof of Case 2. By taking ¢ (u,)e([“"]) € W P(Q) as a test function in
the approximate problem (4.1) and similarly as in (5.7) we can prove that

1 bl )| Vi 1 /
5.11 — d — d(|un |V, |P »)|d
(41 2/{|uﬂ|<k} (Wt [Tl 4T 3 Jy oDV nl e ln ) d

< Ca+ Cae ™ [ )@ (1-+ Junl) 7 )
Q
We have that d(]-|) is a decreasing function, then there exists a positive constant

ro > 0 such that 1/ro < |(u,)| < 1/(p— A —1) on the set {|u,| > 1}, which yields
that

NG L
() 7 g () VP < LnlllenD) / d(s)*/?d
)7, ) 7 < S < e [ s

1 1
< ooy, A s

1
T/p

|u7l|
AR, et

|un‘
— Gy + Cuo / ()17 1) ()| /7 ds.
0

Having in mind that 0 < o < p —1— X let € > 0 and by using Young’s and Sobolev
inequalities, we conclude that
(5.12)

1 b(Jun )| Vet 1 /
— dx + = d(|un |V, |P »)|d
2/{|uﬂ|<k} (0t [Tty M T 3 Jy oDV el n) d

< Cy+ Oy /Q d(fun (@)l dz + e /Q At ) (@) [t P[4 (1))

, [un| p
< Cio+ 21’—1Cfoe||c(x)||’£N/(p71)(m / d(s)l/p|1/)(s)|1/p ds
0 Lr* (@)
. , ol P
< Cra 4 2 O el@) s oy | [ ) P )] ds
0 Lr(9)

= Cra +2 o= CE 1) 1y [ llal) Tl 00

By taking € > 0 small enough such that 2P—1Cfong’||c(a:)||’;:N/(p_1)(ﬂ) < 1, we obtain

i Mo”1 |
5.13 —/ dz+ = [ d(Jun])|Vun|P|¥(un)| dz < Cha.
G135 [ rey W Canry 1 7 fy, WenDVenlo () do < Cro
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In view of (2.4), we conclude that

V7 [ b(jun) Vi ?
5.14 bo/ ——  dz <
B b [ TP S Sy Tt Ta(an)

dx < Clg.

Following the same steps as in the previous case, we conclude that

C(14

<7 —0 k ;
) Toa(L 1+ 1P — as k — oo

(5.15) lim sup meas({|u,| > k}
n
which concludes the proof of Case 2. O

Case 3. We assume that |c(z)||L~/-1)(q) is small enough. Then

lim limsup meas({|u,| > k}) = 0.

k—oo noo

Proof of Case 3. By taking ¢ (u,)e(“"]) € W P(Q) as a test function in
the approximate problem (4.1) and similarly as in (5.7) we can prove that

| () Vet ]? '
5.16 — d — d(lu, )| Vuy P )l d
) 2/{%@} T+ (a0 T 7 f, WDVl dz

< o4 05 [ D) (14 ) )| 2
Q

with C3 = 27'~1/(p'p? ~1). For the last term on the right-hand side of (5.16), we
have

(5.17)
/Qd(lunl)IC(w)l”/(l + [ )T 1 ()| dae

<2”‘1Ad(Iunl)IC(x)Ip/lw(un)Idx+2”‘1/Qd(lunI)IC(m)I”'|un|”|w(un)|dar

, [wn | P
< Ci5 + 2271 Ch @) o1y / d(s)/7 ()17 ds
0 L7 (@)
’ [wn | P
< Ci5+ 2P—1CfOC§’||c(x)||’£N/(p,1)(ﬂ) V/O d(s)l/p|¢(s)|1/1) ds
LP(Q)

= Cis+ 2 @) w1 | Alin DIVt Pl
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with Ct, = ro/(p— A —1) and Cs being the constant of the Sobolev inequality.
Choosing the measurable function c(z) such that |[c(z)||,~/@-1)(q) is small enough,

for example
1

pl
[[e(z) ||LN/<p—1>(Q) < 20H1CP CPCyeH ()’

it follows that

Vg |? b(lun|)[Vun|?

(5.18) bo/ S D] xg/ dz < Che.
Qunl<ky (L + [ Tk(un) )P {uni<ky (14 |Tk(un) )P~ !

Using similar process as in the first case, we deduce that

. C17
5.19 limsupmeas({|u,| > k}) < —————— = 0 as k — oo,
which proves Case 3. Thus, the proof of Proposition 4.1 is complete. O
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