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Quasicontinuous spaces

Jing Lu, Bin Zhao, Kaiyun Wang, Dongsheng Zhao

Abstract. We lift the notion of quasicontinuous posets to the topology context,
called quasicontinuous spaces, and further study such spaces. The main results
are:

(1) A T0 space (X, τ) is a quasicontinuous space if and only if SI(X) is locally
hypercompact if and only if (τSI ,⊆) is a hypercontinuous lattice;

(2) a T0 space X is an SI-continuous space if and only if X is a meet contin-
uous and quasicontinuous space;

(3) if a C-space X is a well-filtered poset under its specialization order, then
X is a quasicontinuous space if and only if it is a quasicontinuous domain under
the specialization order;

(4) there exists an adjunction between the category of quasicontinuous do-
mains and the category of quasicontinuous spaces which are well-filtered posets
under their specialization orders.

Keywords: quasicontinuous space; hypercontinuous lattice; SI-continuous space;
locally hypercompact space; meet continuous space

Classification: 54D10, 06B35, 06B30

1. Introduction

In their study of the spectral theory of primally generated lattices, G. Gierz,

J. D. Lawson and A. Stralka, see [12], introduced quasicontinuous domains. They

proved that quasicontinuous domains equipped with their Scott topologies are pre-

cisely the spectra of hypercontinuous distributive lattices. Later, P. Venugopalan,

see [20], also uncovered some algebraic properties of quasicontinuous domains.

In [14], R. Heckmann and K. Keimel proved further connections between qua-

sicontinuous domains and the powerdomains of finitely generated compact satu-

rated subsets. It is well known that Rudin’s lemma, see Lemma III–3.3 of [10],

has played a crucial role in the theory of quasicontinuous domains. In [14], the

authors established a topological variant of Rudin’s lemma, where directed sets

are replaced by irreducible sets. Based on the topological Rudin’s lemma, they
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showed that a dcpo is quasicontinuous if and only if the poset of finitely gener-

ated upper sets ordered by reverse inclusion is a continuous poset. In particular,

a well-known result is that a dcpo P is a quasicontinuous domain if and only if

for any x ∈ P and any Scott open set U , x ∈ U implies the existence of a fi-

nite subset F ⊆ P satisfying x ∈ intσ(P )(↑F ) ⊆ ↑F ⊆ U , where intσ(P )(↑F ) is

the interior of ↑F with respect to the Scott topology. X. Mao and L. Xu first

introduced quasicontinuous posets in terms of the Scott topology, and proved the

major properties of such posets similar to that of quasicontinuous domains.

Recently, motivated by the definition of the Scott topology on posets, D. Zhao

and W.K. Ho, see [22], introduced a method for deriving a new topology τSI

from a given one τ , in a similar way as one derives the Scott topology on a poset

from the Alexandroff topology. They called this topology the irreducibly-derived

topology (or simply, SI-topology). In addition, they introduced and studied SI-

continuous spaces, which generalize the notion of continuous posets. The main

objective of this paper is to lift the notion of quasicontinuous posets to the topol-

ogy context. More precisely, we introduce the notion of quasicontinuous space,

using the SI-topology. The main results obtained in this paper include: (1) A T0

space (X, τ) is a quasicontinuous space if and only if SI(X) is locally hyper-

continuous, if and only if (τSI ,⊆) is a hypercontinuous lattice; (2) a T0 space X

is an SI-continuous space if and only if X is a meet continuous and quasicon-

tinuous space; (3) if a C-space X is a well-filtered poset under its specialization

order, then X is a quasicontinuous space if and only if it is a quasicontinuous

domain under the specialization order. Based on these results, we then construct

an adjunction between the category of quasicontinuous domains and the category

of quasicontinuous spaces which are well-filtered posets under their specialization

orders. The work carried out here is another response to the call by J. D. Lawson

to develop domain theory in the context of T0 spaces.

2. Preliminaries

Throughout the paper, we refer the reader to [10] for domain theory, to [6] for

general topology, and to [1] for category theory.

Let P be a poset. A nonempty subset D of P is directed if every finite subset

of D has an upper bound in D. A subset A of P is upper if A = ↑A = {x ∈ P :

x ≥ y for some y ∈ A}. The Alexandroff topology α(P ) on P is the topology

consisting of all its upper subsets. A subset U of P is called Scott open if (i) U =

↑U and (ii) for any directed subset D,
∨

D ∈ U implies D ∩ U 6= ∅ whenever
∨

D exists. The Scott open sets on P form the Scott topology σ(P ). The space

(P, σ(P )) is denoted by ΣP , called the Scott space of P . The topology generated
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by the collection of sets P \ ↓x (as a subbase) is called the upper topology and

denoted by ϑ(P ).

A map f : P −→ Q between two posets is Scott continuous if it is continuous

with respect to the Scott topologies on P and Q. It is well known that f is Scott

continuous if and only if it preserves all existing directed suprema.

Let P be a poset. For any x, y ∈ P , define x ≪ y if for any directed set D,

y ≤
∨

D implies x ∈ ↓D whenever
∨

D exists. We denote the set {x ∈ P : x ≪ y}

by ⇓y, and the set {x ∈ P : y ≪ x} by ⇑y. Then P is called continuous if for each

y ∈ P , the set ⇓y is directed and
∨

⇓y = y. A dcpo which is continuous as a poset

will be called a domain, see [10]. We order the collection P(L) of all nonempty

subsets of a dcpo L by G ≤ H if ↑H ⊆ ↑G. Then (P(L),≤) is a quasi-ordered

set. Define G ≪ H if for any directed set D ⊆ L,
∨

D ∈ ↑H implies d ∈ ↑G

for some d ∈ D. One uses G ≪ x for G ≪ {x} and lets ⇑F = {x ∈ L : F ≪ x}.

Let FL denote the set of all nonempty finite subsets of L. A dcpo L is called

a quasicontinuous domain if for any x ∈ L the family fin(x) = {F ∈ FL : F ≪ x}

is a directed subset of P(L), and whenever x � y, then there exists F ∈ fin(x)

such that y /∈ ↑F . Let QDOM denote the category of quasicontinuous domains

and Scott continuous maps.

For any T0 space (X, τ), the specialization order “≤” on X is defined by x ≤ y

if and only if x ∈ cl({y}). Unless otherwise stated, throughout the paper, when-

ever an order-theoretic concept is mentioned in the context of a T0 space X , it

will be interpreted with respect to the specialization order on X .

A subset A of a topological space X is saturated if A equals the intersection of

all open sets containing A. A topological space is well-filtered, see [10], [13], if for

every filtered family F of compact saturated sets with intersection
⋂

F contained

in some open set U , it follows that F ⊆ U for some F ∈ F . A poset P is called

a well-filtered poset if the space ΣP is well-filtered. A T0 space (X, τ) is called

a C-space, see [7], also see [13], if for all U ∈ τ and a ∈ U , there is b ∈ U such

that a ∈ intτ (↑b). Given a topological space (X, τ), a nonempty subset F of X is

called a τ -irreducible set (or simply, irreducible) if for any closed subsets A and

B ⊆ X , F ⊆ A ∪ B implies F ⊆ A or F ⊆ B. The set of all τ -irreducible sets

of X is denoted by Irrτ (X). A space (X, τ) is sober, see [10], if for any irreducible

closed set F , there is a unique point x ∈ X such that F = cl({x}). A space (X, τ)

is said to be k-bounded sober, see [22], if for any irreducible closed set F with
∨

F existing, there is a unique point x ∈ X such that F = cl({x}). Notice that

every sober space is k-bounded sober and every k-bounded sober space is T0.

Proposition 2.1 ([13]). Let (X, τ) be a T0 space. Then the following statements

hold:

(1) For all a ∈ X , ↓a = {x ∈ X : x ≤ a} = cl({a}).
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(2) If U ⊆ X is an open subset, then ↑U = U .

(3) If U ⊆ X is a closed subset, then ↓U = U .

(4) If D ⊆ X is a directed set with respect to the specialization order, then

D is irreducible.

Definition 2.2 ([22]). Let (X, τ) be a T0 space. A subset U of X is called

SI-open if the following conditions are satisfied:

(1) U ∈ τ ;

(2) for any F ∈ Irrτ (X),
∨

F ∈ U implies F ∩ U 6= ∅ whenever
∨

F exists.

The set of all SI-open sets of (X, τ) is denoted by τSI , which is indeed a topol-

ogy on X . We call τSI the irreducibly-derived topology of τ . The space (X, τSI)

will also be simply written as SI(X). Moreover, complements of SI-open sets

are called SI-closed sets. The set of all SI-closed sets of X will be denoted by

ΓSI(X).

Let P be a poset. A nonempty subset F ⊆ P is irreducible with respect to the

Alexandroff topology α(P ) if and only if it is a directed set. So SI(P, α(P )) =

(P, σ(P )) = ΣP . Since a T0 space (X, τ) is k-bounded sober if and only if

τ = τSI , we have that the irreducibly-derived topology of a sober space is the

original topology. This means that the irreducibly-derived topology of the Scott

topology on a quasicontinuous domain is again the Scott topology.

3. Quasicontinuous spaces

A T0 space (X, τ) is called a quasicontinuous space if for any U ∈ τSI and

x ∈ U , there exists a nonempty finite subset F ⊆ X such that

x ∈ intτSI
(↑F ) ⊆ ↑F ⊆ U.

Remark 3.1. Recall that a poset P is called a quasicontinuous poset, see [18],

if for any U ∈ σ(P ) and x ∈ U , there exists a nonempty finite subset F ⊆ X such

that x ∈ intσ(P )(↑F ) ⊆ ↑F ⊆ U . Thus P is a quasicontinuous poset if and only

if (P, α(P )) is a quasicontinuous space.

Example 3.2. (1) Let X = {ai : i ∈ N} ∪ {⊤}, where N denotes the set of all

positive integers. The partial order “≤” on X is defined by

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ ⊤.

Then (X,≤) is a quasicontinuous domain, and thus the irreducibly-derived topol-

ogy of the Scott topology on X is again the Scott topology. Hence, (X, σ(X)) is

a quasicontinuous space.
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(2) Let X = {ai : i ∈ N} ∪ {bi : i ∈ N} ∪ {⊤}, where N denotes the set of all

positive integers. The order “≤” on X is defined by

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ≤ ⊤; b1 ≤ b2 ≤ · · · ≤ bn ≤ · · · ≤ ⊤.

Then (X,≤) is a quasicontinuous domain. We consider the Scott space (X, σ(X)).

Then the irreducibly-derived topology of σ(X) on X is again the Scott topolo-

gy σ(X). Let U be an SI-open set and x ∈ U . Then U is a Scott open set and

x ∈ U , there exists a nonempty finite subset F of X such that x ∈ intσ(X)(↑F ) ⊆

↑F ⊆ U . Then (X, σ(X)) is a quasicontinuous space.

(3) The Sorgenfrey line Rl is the set R equipped with the topology induced by

the quasi-metric dl : R× R −→ [0,∞] defined as:

dl(x, y) =

{

y − x, x ≤ y,

∞, x > y.

The set B(R, dl) of formal balls is equipped with a hemi-metric d+l , defined

d+l ((x, r), (y, s)) = max(dl(x, y)− r + s, 0),

and is also a quasi-metric space. The specialization order “≤d
+

l ” on B(R, dl) is

defined by (x, r) ≤d
+

l (y, s) if and only if dl(x, y) ≤ r − s. By Exercise 7.3.12

of [13], B(R, dl) is a domain under the specialization order “≤d
+

l ”, but (R, dl)
is not Smyth-complete. Thus the open ball topology τ on B(R, dl) is different

from the Scott topology. Next, we shall prove that B(R, dl) with the open ball

topology τ is a quasicontinuous space. Let U ∈ τSI , and (x, r) ∈ U . Since ⇓(x, r)

is a directed set and (x, r) =
∨

⇓(x, r), we have that ⇓(x, r)∩U 6= ∅. Then there

exists (y, s) ∈ U such that (y, s) ≪ (x, r), implying (x, r) ∈⇑(y, s). Since B(R, dl)
with the open ball topology τ is a C-space, ⇑ (y, s) =

⋃

(z,t)∈⇑(y,s) intτ (↑(z, t)) is

an SI-open set. Then (x, r) ∈⇑ (y, s) ⊆ intτSI
(↑(y, s)) ⊆ ↑(y, s) ⊆ U . Therefore,

B(R, dl) with the open ball topology of τ is a quasicontinuous space.

Let (X, τ) be a T0 space. For all x, y ∈ X , define x ≪SI y if for any irreducible

set F , y ≤
∨

F implies x ∈ ↓F whenever
∨

F exists. We denote the set {x ∈ X:

x ≪SI a} by ⇓SIa, and the set {x ∈ X : a ≪SI x} by ⇑SIa.

Definition 3.3 ([22]). A T0 space X is called SI-continuous if for any a ∈ X ,

the following conditions are satified:

(SI1) ⇑SIa is open in X ;

(SI2) ⇓SIa is a directed set and
∨

⇓SIa = a.

Remark 3.4. (1) In [22], D. Zhao and W.K. Ho defined the SI-topology on T0

spaces using irreducible sets as the topological counterparts of directed sets. Since

condition (SI2) in Definition 3.3 asks ⇓SIa to be a directed set, one may see that
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the definition of SI-continuity is somewhat not satisfying. Recently, H. J. Andradi

et al., see [3], defined the notion of SI∗-continuity by changing the condition (SI2)

in Definition 3.3 to the following condition (SI2∗).

(SI2∗) ⇓SIa is an irreducible subset and
∨

⇓SIa = a.

It was proved in [3] that SI-continuity and SI∗-continuity are just the same

notions.

(2) In Definition 3.3, condition (SI1) is crucial. If we drop it and change (SI2)

to (SI2∗), then SI-continuous spaces will coincide with Irr-continuous spaces de-

fined in [2]. It should be pointed out that this idea is similar to a special case of

subset systems on the category of posets developed in [4], [5], [8], [21]. It looks

being investigated in the context of T0 spaces, and the essential results, however,

are almost the same as those in the context of posets. In fact, the main results

in [2] are established on k-bounded sober Irr-continuous spaces. Note that for

any continuous poset P , the Scott space ΣP is a k-bounded sober space. Thus

the condition (SI1) in SI-continuity plays a similar role as k-bounded sobriety.

Although SI(Y ) = ΣY for each SI-continuous space Y , see [17], it does not affect

the study of SI-continuity. This is because there exists an SI-continuous space

(X, τ) such that τ 6= σ(X). In Example 3.2 (3), B(R, dl) with the open ball

topology of d+l is a C-space. Since a C-space is an SI-continuous space if and

only if it is a continuous poset under the specialization order, see [17], B(R, dl)
with the open ball topology of d+l is an SI-continuous space, but the open ball

topology on B(R, dl) is different from the Scott topology.

Let (X, τ) and (Y, δ) be T0 spaces. A continuous mapping f : X −→ Y is

called an SI-continuous mapping, see [22], if f is a continuous mapping between

(X, τSI) and (Y, δSI). Let SIC denote the category of SI-continuous spaces and

SI-continuous maps. Let QSA denote the category of quasicontinuous spaces and

SI-continuous maps. Let QSW denote the category of quasicontinuous spaces

which also are well-filtered posets under their specialization orders and SI-continu-

ous maps.

Proposition 3.5. Every SI-continuous space is quasicontinuous.

Proof: Let (X, τ) be an SI-continuous space. Suppose that U ∈ τSI and x ∈ U .

Since X is an SI-continuous space, we have that ⇓SIx∩U 6= ∅. There exists y ∈ U

such that y ≪SI x, implying x ∈ ⇑SIy = intτSI
(↑y) ⊆ ↑y ⊆ U . Therefore, X is

a quasicontinuous space. �

Remark 3.6. (1) Since a quasicontinuous poset need not be a continuous poset,

a quasicontinuous space need not be an SI-continuous space.

(2) By Proposition 3.5, we have that SIC is a full subcategory of QSA. H. Kou,

Y.M. Liu and M.K. Luo, see Theorem 4.1 of [15], proved that the category of



Quasicontinuous spaces 519

domains is not a full reflective subcategory of QDOM. Similarly, we have that

SIC is not a full reflective subcategory of QSA.

Proposition 3.7. Let (X, τ) be a quasicontinuous space. Then {intτSI
(↑F ) :

F ∈ FX} forms a base for the SI-topology.

Proof: Straightforward. �

A space is locally hypercompact, see [9], [16], if for any x ∈ X and every

open set U containing x, there exists an open set V and a finite set F such that

x ∈ V ⊆ ↑F ⊆ U .

Corollary 3.8. Let (X, τ) be a T0 space. Then X is a quasicontinuous space if

and only if SI(X) is locally hypercompact.

Let P be a poset. Define a binary relation “≺ϑ(P )” on P by x ≺ϑ(P ) y if and

only if y ∈ intϑ(P )(↑x), where the interior is taken in the upper topology ϑ(P ).

A poset P is called a hypercontinuous poset if for all x ∈ P , the set {y ∈ L :

y ≺ϑ(P ) x} is directed and x =
∨

{y ∈ L : y ≺ϑ(P ) x}, see [18]. A complete lat-

tice L is called a hypercontinuous lattice, see [10], [11], if L is a hypercontinuous

poset. A complete lattice L is called a generalized continuous lattice if for any

x, y ∈ L such that x � y, there exists a finite set F such that F ≪ x and

↓y∩F = ∅. If the complete lattice (L,≤) is a hypercontinuous lattice, then (L,≤)

is a continuous lattice and (L,≥) is a generalized continuous lattice, see [11].

Proposition 3.9 ([18]). Let P be a poset. If P is hypercontinuous, then for all

x, y ∈ P , x � y implies that there are u ∈ P and finite set F = {v1, . . . , vk} ⊆ P

such that

(1) u � y, x � vi, i = 1, 2, . . . , k;

(2) for any z ∈ P , u ≤ z, or there is j ∈ {1, 2, . . . , k} such that z ≤ vj .

Theorem 3.10. A T0 space (X, τ) is quasicontinuous if and only if the lattice

(τSI ,⊆) is a hypercontinuous lattice.

Proof: SinceX is a quasicontinuous space, by Corollary 3.8, we have that SI(X)

is locally hypercompact. By Theorem 7 of [9], the lattice (τSI ,⊆) is a hypercon-

tinuous lattice.

Conversely, let U be an SI-open set and x ∈ U . Trivially U * X \ ↓x. Since

(τSI ,⊆) is a hypercontinuous lattice, it follows from Proposition 3.9 that there

exist SI-open sets U0, V1, . . . , Vk such that

(i) U0 * X\↓x and U * Vi for all i ∈ {1, . . . , k};

(ii) for anyW ∈ τSI , U0 ⊆ W or there exists j ∈ {1, . . . , k} such that W ⊆ Vj .

Since U * Vi for all i ∈ {1, . . . , k}, there exists xi ∈ U \Vi for each i ∈ {1, . . . , k}.

Let F = {x1, . . . , xk}. Then ↑F ⊆ U . Assume that U0 *↑F . Then there exists
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u0 ∈ U0 such that u0 /∈↑ F . Let W0 = X\ ↓ u0. Then F ⊆ W0, and thus

W0 * Vi holds for every i ∈ {1, . . . , k}. By (ii), we have that U0 ⊆ W0. But

this contradicts u0 /∈ W0. Thus U0 ⊆↑ F , and hence x ∈ intτSI
(↑F ) ⊆ ↑F ⊆ U .

Therefore, X is a quasicontinuous space. �

If (X, τ) is a sober space, then X = SI(X). Thus by Corollary 3.8 and

Theorem 3.10 we deduce the following corollary.

Corollary 3.11. For any sober space (X, τ), the following statements are equiv-

alent:

(1) X is a quasicontinuous space;

(2) X is locally hypercompact;

(3) the lattice (τ,⊆) is hypercontinuous.

4. Meet continuous spaces

A poset P is said to be meet continuous, see [19], if for any x ∈ P and any

directed subset D,
∨

D exists and x ≤
∨

D, then x ∈ clσ(↓D ∩ ↓x), where

clσ(↓D ∩ ↓x) is the Scott closure of the set ↓D ∩ ↓x. By Theorem 3.4 of [10],

a poset P is meet continuous if and only if for any Scott open set U and x ∈ P ,

↑(U ∩ ↓x) is a Scott open set.

Definition 4.1. A T0 space (X, τ) is called meet continuous if for any x ∈ X

and U ∈ τSI , one has ↑(U ∩ ↓x) ∈ τSI .

Remark 4.2. (1) A poset P is a meet continuous poset if and only if the space

(P, α(P )) is meet continuous.

(2) There exists a T2 space that is not meet continuous, see Example 4.3 (1).

Example 4.3. (1) Let X be an infinite set, x0 ∈ X , and

τ = {U ⊆ X : the complement of U is finite} ∪ {U ⊆ X : x0 /∈ U}.

Then (X, τ) is a T2 space, and thus τ = τSI . Take x ∈ X and x 6= x0, then

U = X \ {x} is an open set. Since ↑(U ∩ ↓x0) = ↑x0 = {x0} is not an open set,

X is not meet continuous.

(2) Let (X,≤) be the poset defined in Example 3.2 (1). Consider the Scott

space (X, σ(X)). Obviously, X = SI(X). Let U be an SI-open set. Then U is

a Scott open set. For any x ∈ X , if x ∈ U , then ↑(U ∩ ↓x) is a Scott open set;

if x /∈ U , then U ∩ ↓x = ∅. Thus ↑(U ∩ ↓x) = ∅ is a Scott open set. Therefore

(X, σ(X)) is a meet continuous space.
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(3) Let (X, σ(X)) be the Scott space defined in Example 3.2 (2). Obviously,

↑a5 ∪ ↑b5 is an SI-open set. Since ↑(↓a6 ∩ (↑a5 ∪ ↑b5)) = ↑a5 is not an SI-open

set, (X, σ(X)) is not a meet continuous space.

(4) Let B(R, dl) be the quasi-metric space defined in Example 3.2 (3). Next, we

shall prove that B(R, dl) with the open ball topology τ is a meet continuous space.

Let U ∈ τSI and (x, r) ∈ U . For all (y, s) ∈ ↑(U ∩ ↓(x, r)). Then there exists

(z, t) ∈ U ∩ ↓(x, r) such that (z, t) ≤d+

l (y, s). By Remark 3.4 (2), we have that

B(R, dl) with the open ball topology τ is an SI-continuous space. Then ⇓SI(z, t)

is a directed set and (z, t) =
∨

⇓SI(z, t). It follows from (z, t) ∈ U that (a, q) ∈ U

for some (a, q) ≪SI (z, t). Then (a, q) ∈ U ∩ ↓(x, r) ⊆ ↑(U ∩ ↓(x, r)), and thus

(y, s) ∈
⋃

{⇑SI(a, q) : (a, q) ∈ ↑(U ∩ ↓(x, r))}. This shows that ↑(U ∩ ↓(x, r)) =
⋃

{⇑SI(a, q) : (a, q) ∈ ↑(U ∩ ↓(x, r))} is an SI-open set. Therefore, B(R, dl) with
the open ball topology τ is a meet continuous space.

Proposition 4.4. Let X be a meet continuous space. Then (ΓSI(X),⊆) is

a frame.

Proof: Let F ∈ ΓSI(X) and {Fi : i ∈ I} ⊆ ΓSI(X). We shall prove that F ∧
(
∨

i∈I Fi

)

=
∨

i∈I(F ∧ Fi). Obviously,
∨

i∈I(F ∧ Fi) ⊆ F ∧
(
∨

i∈I Fi

)

. Let

x ∈ F ∧
(
∨

i∈I Fi

)

= F ∩
(
∨

i∈I Fi

)

, and U be an SI-open set containing x.

Then x ∈ U ∩ F . Since ↑ (U ∩ F ) =
⋃

x∈F ↑ (U ∩ ↓x) ∈ τSI , it follows from

x ∈ clSI(X)

(
⋃

i∈I Fi

)

that ↑(U ∩ F ) ∩
(
⋃

i∈I Fi

)

6= ∅. Then there exists i0 ∈ I

such that ↑(U ∩F )∩Fi0 6= ∅, and thus (U ∩F )∩ ↓Fi0 = (U ∩F )∩Fi0 6= ∅. Hence

U ∩
(
⋃

i∈I(F ∩ Fi)
)

6= ∅. This shows x ∈ clSI(X)

(
⋃

i∈I(F ∩ Fi)
)

=
∨

i∈I(F ∧ Fi).

Therefore, F ∧
(
∨

i∈I Fi

)

=
∨

i∈I(F ∧ Fi), and so (ΓSI(X),⊆) is a frame. �

Theorem 4.5. For any T0 space (X, τ), the following conditions are equivalent:

(1) X is a meet continuous and quasicontinuous space;

(2) X is an SI-continuous space.

Proof: (1) =⇒ (2) Since X is a quasicontinuous space, it follows from The-

orem 3.10 that (τSI(X),⊆) is a hypercontinuous lattice. Then (τSI(X),⊆) is

a continuous lattice and (τSI(X),⊇) is a generalized continuous lattice, and thus

(τSI(X),⊇) is a quasicontinuous domain. Since X is a meet continuous space,

by Proposition 4.4, we have that (ΓSI(X),⊆) is a frame. Then (ΓSI(X),⊆)

is a meet continuous lattice, and thus (τSI(X),⊇) is a meet continuous lattice.

Hence (τSI(X),⊇) is a continuous lattice. This shows that (τSI(X),⊆) is a com-

plete distributive lattice, so we conclude that SI(X) is a C-space, and hence X

is an SI-continuous space.

(2) =⇒ (1) By Proposition 3.5, we have that X is a quasicontinuous space.

Let U be an SI-open set and x ∈ X . For all y ∈ ↑(U ∩ ↓x), there exists

a ∈ U ∩ ↓x such that a ≤ y. Since X is an SI-continuous space, we have that
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⇓SIa is a directed set and a =
∨

⇓SIa. It follows from a ∈ U that b ∈ U

for some b ≪SI a. Then b ∈ U ∩ ↓x ⊆ ↑(U ∩ ↓x), and thus y ∈
⋃

{⇑SIb :

b ∈ ↑(U ∩ ↓x)}. This shows that ↑(U ∩ ↓x) =
⋃

{⇑SIb : b ∈ ↑(U ∩ ↓x)} is an

SI-open set. Therefore, X is a meet continuous space. �

By Remark 4.2 (1) and Theorem 4.5, we have the following corollary.

Corollary 4.6 ([18]). For any poset P , the following conditions are equivalent:

(1) P is continuous;

(2) P is meet continuous and quasicontinuous;

(3) (P, α(P )) is a meet continuous and quasicontinuous space.

5. An adjunction between QDOM and QSW

We now construct an adjunction between the categories QDOM and QSW.

We first prove some results on the links between quasicontinuous spaces and well-

filtered posets.

Proposition 5.1. Let X be a quasicontinuous space. If (X,≤) is a well-filtered

poset, then τSI = σ(X).

Proof: Obviously, τSI ⊆ σ(X). If x ∈ U ∈ σ(X), then U ≪ x. Put

Fx = {F ⊆ X : F is a nonempty finite set and x ∈ intτSI
(↑F )}.

Since X is a quasicontinuous space, there exists a nonempty finite set F such

that x ∈ intτSI
(↑F ) ⊆ ↑F ⊆ U . Then F ∈ Fx, and thus Fx 6= ∅. Let F1,

F2 ∈ Fx. Then x ∈ intτSI
(↑F1) ∩ intτSI

(↑F2), and thus x ∈ intτSI
(↑G) ⊆ ↑G ⊆

intτSI
(↑F1) ∩ intτSI

(↑F2) for some nonempty finite set G. It follows from that

Fx is a directed set. Obviously, ↑x ⊆
⋂

F∈Fx
↑F . If x � y, then x ∈ X \ ↓y.

Since X \ ↓y is an SI-open set, there exists a nonempty finite set H such that

x ∈ intτSI
(↑H) ⊆ ↑H ⊆ X \ ↓y. Then y /∈ ↑H and H ∈Fx. This shows that

↑x =
⋂

F∈Fx
↑F . It follows from x ∈ U that

⋂

F∈Fx
↑F ⊆ U . Since X is a well-

filtered poset, we have that ↑F0 ⊆ U for some F0 ∈ Fx. Then x ∈ intτSI
(↑F0) ⊆

↑F0 ⊆ U , and thus U ∈ τSI . Therefore τSI = σ(X). �

Corollary 5.2. Let X be a quasicontinuous space. Then (X,≤) is a well-filtered

poset if and only if (X,≤) a quasicontinuous domain.

Proof: Let (X,≤) be a well-filtered poset. Then (X,≤) is a dcpo. Let x ∈

U ∈ σ(X). By Proposition 5.1, we have that τSI = σ(X). Then x ∈ U ∈ τSI .

Since X is a quasicontinuous space, we have that x ∈ intτSI
(↑F ) ⊆ ↑F ⊆ U for

some nonempty finite subset F of X . Obviously, intτSI
(↑F ) is a Scott open set.
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Then x ∈ intσ(X)(↑F ) ⊆ ↑F ⊆ U , and thus (X,≤) is a quasicontinuous poset.

Conversely, if (X,≤) is a quasicontinuous domain, then (X, σ(X)) is a sober

space, and thus (X,≤) is a well-filtered poset. �

Remark 5.3. Let X be an infinite set, and τ = {A ⊆ X : the complement of A

is finite} ∪ {∅} be the co-finite topology. Then (X, τ) is a T1 space, and thus the

specialization order is the discrete order. Hence, X is a well-filtered poset and

a quasi-continuous poset under the specialization order. Next, we shall show that

X is not a quasicontinuous space. Suppose that X is a quasicontinuous space.

Let x ∈ X . Then there exists a nonempty finite set F such that x ∈ intτSI
(↑F ) ⊆

↑F = F ⊆ X . This contradicts the fact that intτSI
(↑F ) = ∅. Therefore, X is not

a quasicontinuous space.

Proposition 5.4. Let (X, τ) be a C-space. If (X,≤) is a well-filtered poset,

then X is a quasicontinuous space if and only if X is a quasicontinuous poset

under the specialization order.

Proof: The necessity follows directly from Corollary 5.2. We now verify the suffi-

ciency. Let x ∈ U ∈ τSI . Then U is a Scott open set, and thus x ∈ intσ(X)(↑F ) ⊆

↑F ⊆ U for some nonempty finite subset F of X . Let y ∈ intσ(X)(↑F ). Since

X is a C-space, we have that Ay = {z ∈ X : y ∈ intτ (↑z)} is a directed set

and y =
∨

Ay. Then there exists z ∈ intσ(X)(↑F ) such that y ∈ intτ (↑z), and

thus y ∈ intτ (↑z) ⊆ ↑z ⊆ intσ(X)(↑F ). So we conclude that intσ(X)(↑F ) =
⋃

{intτ (↑z) : z ∈ intσ(X)(↑F )}, and hence intσ(X)(↑F ) is an open set. Let G be

an irreducible set with
∨

G existing, and
∨

G ∈ intσ(X)(↑F ). Since X is a C-

space, there exists a directed set D ⊆ ↓G such that
∨

D =
∨

G. It follows from
∨

G ∈ intσ(X)(↑F ) that
∨

D ∈ intσ(X)(↑F ). Then D ∩ intσ(X)(↑F ) 6= ∅, and

thus G∩ intσ(X)(↑F ) 6= ∅. Hence, intσ(X)(↑F ) is an SI-open set. So we conclude

that x ∈ intσ(X)(↑F ) = intτSI
(↑F ) ⊆ ↑F ⊆ U . Therefore, X is a quasicontinuous

space. �

Lemma 5.5 ([22]). Let (X, τ) and (Y, δ) be T0 spaces. Then a continuous map-

ping f : X −→ Y is an SI-continuous mapping if and only if f preserves all

existing irreducible suprema.

Proposition 5.6. Define F : QDOM −→ QSW as follows:

(f : X −→ Y ) 7−→
(

f : (X,α(X)) −→ (Y, α(Y ))
)

Then F is a full and faithful functor.

Proof: By Remark 3.1, we have that (X,α(X)) is a quasicontinuous space for

every quasicontinuous domain X . Since X is a quasicontinuous domain, we have

that ΣX is a sober space. Then (X,≤) is a well-filtered poset. Let X,Y be two
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quasicontinuous domains and f : X −→ Y be a Scott continuous map. Then F (f)

is an SI-continuous map. It is clear that F preserves composition and identity

morphisms. Then F is a functor. Obviously, F is a full and faithful functor. �

Definition 5.7 ([1]). A functor F : A −→ B is called isomorphism-dense if there

exists some A-object A such that F (A) is isomorphic to B for any B-object B.

Proposition 5.8. Define G : QSW −→ QDOM as follows:

(g : X −→ Y ) 7−→ (g : (X,≤) −→ (Y,≤)).

Then G is a faithful and isomorphism-dense functor.

Proof: Let (X, τ) be a quasicontinuous space which is also a well-filtered poset

under its specialization order. By Corollary 5.2, we have that (X,≤) is a quasi-

continuous domain. Let X,Y be two quasicontinuous spaces and g : X −→ Y be

an SI-continuous map. It follows from Lemma 5.5 that g preserves all existing

irreducible suprema. Then G(g) preserves all existing directed suprema, and thus

G(g) is a Scott continuous map. It is clear that G preserves composition and iden-

tity morphisms. Then G is a functor. Let L be a quasicontinuous domain. Then

(L, α(L)) is a quasicontinuous space and (X,≤) is a well-filtered poset, and thus

G
(

(L, α(L))
)

= L. It follows from that G is an isomorphism-dense functor. �

Definition 5.9 ([1]). Let F : A −→ B and G : B −→ A be functors. The func-

tor F is called a left adjoint of G (or G is a right adjoint of F ) or (F,G) is an

adjunction between A and B, in symbols F ⊣ G : A ⇀ B, if for each A-object A,

there exists a universal pair (εA, F (A)) (or equivalently, for each B-objectB, there

exists a co-universal pair (G(B), ηB)).

In the following, we shall prove that the pair F ⊣ G is an adjunction.

Theorem 5.10. We have F ⊣ G : QDOM ⇀ QSW.

Proof: Let (X, τ) be a quasicontinuous space which is also a well-filtered poset

under its specialization order. Define η : FG(X) −→ X as follows:

∀x ∈ X η(x) = x.

Let U be an open set. Then η−1(U) = U . Obviously, η−1(U) is an upper set. Thus

η is continuous. Let V be an SI-open set. Then η−1(V ) = V is a Scott open

set. So we conclude that η is an SI-continuous map. Let Y be a quasicontinuous

domain, and f : F (Y ) −→ X be an SI-continuous map. Now, define a map

g : Y −→ G(X) as follows:

∀ y ∈ Y g(y) = f(y).
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Now, we shall prove that g is a Scott continuous map. Obviously, g is a monotone

map. Let {yj : j ∈ J} ⊆ Y be a directed set with
∨

j∈J yj existing. Since f is an

SI-continuous map, we have that

g

(

∨

j∈J

yj

)

= f

(

∨

j∈J

yj

)

=
∨

j∈J

f(yj) =
∨

j∈J

g(yj).

Thus g is a Scott continuous map. It is straightforward to verify that η◦F (g) = f .

Suppose that there exists a Scott continuous map h : Y −→ G(X) such that

η ◦F (h) = f . Then η ◦F (g) = η ◦F (h). Since η is an injective map, we have that

g = h. Thus F is a left adjoint of G. �

Remark 5.11. A natural question arises if there is an adjunction between the

category of quasicontinuous spaces and the category of quasicontinuous posets. At

present, we do not know the answer yet. To answer it, more connections between

quasicontinuous spaces and quasicontinuous posets need to be found.
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