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On Szymański theorem on hereditary normality of βω

Sergei Logunov

Abstract. We discuss the following result of A. Szymański in “Retracts and non-
normality points” (2012), Corollary 3.5.: If F is a closed subspace of ω∗ and the

π-weight of F is countable, then every nonisolated point of F is a non-normality
point of ω∗.

We obtain stronger results for all types of points, excluding the limits of count-
able discrete sets considered in “Some non-normal subspaces of the Čech–Stone
compactification of a discrete space” (1980) by A. B laszczyk and A. Szymański.
Perhaps our proofs look “more natural in this area”.

Keywords: Čech–Stone compactification; non-normality point; butterfly-point;
countable π-weight

Classification: 54D15, 54D35, 54D40, 54D80, 54E35, 54G20

1. Introduction

We investigate hereditary normality of Čech–Stone compactification βX of

a completely regular space X .

Is X∗ \ {p} non-normal for any point p of the remainder X∗ = βX \X?

If so, then p is called a non-normality point of X∗. Usually, in order to answer

this question positively, we have to show that p is a butterfly-point or a b-point

of βX , see [4], i.e. to construct sets F,G ⊂ X∗\{p}, which are closed in βX\{p},

so that {p} = [F ]∩ [G], see also [6]. A. Szymański in [7] gave a different approach.

Particularly this question is intriguing for countable discrete space ω = {0, 1,

2, . . . }.

A. B laszczyk and A. Szymański in [2] proved in 1980 that p is a non-normality

point of ω∗, if p is a limit point of some countable discrete set P ⊂ ω∗.

A point p is called a Kunen point, if there exists a discrete set P ⊂ ω∗ of cardi-

nality ω1, that is, no more than countable outside any neighbourhood of p. Every

Kunen point is a non-normality point of ω∗ (E. K. van Douwen, unpublished).

Some other more technical results were obtained in [3].
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The answer is known and positive under CH (continuum hypothesis), see

N. Warren [8] and M. Rajagopalan, [5] 1972, or even MA (Martin’s axiom), see

A. Bešlagić and E. van Douwen, [1] 1990.

In 2012 A. Szymański in [7] obtained the following result:

Corollary 3.5. If F is a closed subspace of ω∗ and the π-weight of F is countable,

then every nonisolated point of F is a non-normality point of ω∗.

Let D be all isolated points of F . If p ∈ [D], then Corollary 3.5. reduces to

the well known result of A. B laszczyk and A. Szymański in [2]. Otherwise, we

can assume F to be crowded.

Theorem 1. If F is a closed crowded subspace of ω∗ and the π-weight of F is

countable, then every point of F is a non-normality point of F .

We show that F has a π-base B with the following property:

(*) If D, C ⊂ B and
(

⋃

D
)

∩
(

⋃

C
)

= ∅, then
[

⋃

D
]

∩
[

⋃

C
]

= ∅.

Then we obtain Theorem 1 as a corollary of the next

Theorem 2. Let a normal realcompact crowded space X have a weakly em-

bedded σ-cellular π-base B with the property (*). Then every point p ∈ X∗ is

a b-point of βX . Hence βX \ {p} is not normal.

2. Preliminaries

A space X is crowded, if X has no isolated points, 3 = {0, 1, 2}. By [ ] we

always denote the closure operator in βX . Let B be a family of nonempty open

sets. Then B is weakly embedded, if any two sets of B are either disjoint or

one of them contains the other and σ-cellular, if B =
⋃

n<ω Bn and every Bn is

cellular. A set U ∈ B is a maximal set of B, if U is a proper subset of V for no

V ∈ B. Moreover, B is a π-base of X , if any nonempty open set O contains some

U ∈ B, B(O) = {U ∈ B : U ∩O 6= ∅}.

Let π and σ be any maximal cellular families of open sets. We write π ≺ σ if

U ∩ V 6= ∅ implies U ) V for any U ∈ π and V ∈ σ. Set P(π) = {F : F ⊆ π}.

We define a projection fπ
σ : P(π) → P(σ) by

fπ
σF =

{

V ∈ σ :
⋃

F ∩ V 6= ∅
}

.

Let p ∈ X∗. Then F ⊂ P(π) is called a p-filter on π, if any finite sub-

collection {F0, . . . , Fn} ⊂ F satisfies p ∈
[
⋃⋂n

k=0
Fk

]

. We denote
⋂

F∗ =
⋂
{[

⋃

F
]

: F ∈ F
}

and π ≻F σ, if there is F ∈ F with F ≻ σ. The image
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fπ
σ (F) = {fπ

σF : F ∈ F} is a p-filter on σ. Obviously, the union of every increasing

family of p-filters is also a p-filter. So by Zorn’s lemma there are maximal p-filters

or p-ultrafilters F on π, that is F = G for any p-filter G with F ⊂ G.

3. Proofs

Lemma 1. Let a closed subspace F of ω∗ have a countable π-base {Vi}i<ω and

let p be a nonisolated point of F . Then there is a countable family {Ui}i<ω of

clopen subsets of ω∗ with the following properties for all i < ω:

1) p /∈ Ui;

2) Ui ∩ F is a nonempty subset of Vi;

3) {Ui}i<ω is weakly embedded.

Proof: Assume {U0, . . . , Un−1} have been constructed for some n < ω so that

1)–3) hold. To get Un we need one more induction on k ≤ n− 1.

Let Uk
n be constructed so that {U0, . . . , Uk−1, U

k
n} satisfies 1)–3). We put either

Uk+1
n = Uk

n ∩ Uk if Uk
n ∩ Uk ∩ F 6= ∅ or Uk+1

n = Uk
n \ Uk otherwise. Then

{U0, . . . , Uk, U
k+1
n } satisfies 1)–3) and, finally, Un = Un

n . The family {Un}n<ω is

as required. �

Lemma 2. Theorem 2 implies Theorem 1.

Proof: In the notation of Lemma 1 we put X =
⋃

i<ω(Ui ∩ F ) and B =

{Ui ∩ X}i<ω. If the conditions of Theorem 1 hold, then X and B satisfy the

conditions of Theorem 2. Indeed, if D, C ⊂ B and
(
⋃

D
)

∩
(
⋃

C
)

= ∅, then

D
′

= {Ui : Ui ∩X ∈ D} and C
′

= {Ui : Ui ∩X ∈ C} satisfy
(
⋃

D
′
)

∩
(
⋃

C
′
)

= ∅

by our construction. Since
⋃

D
′

and
⋃

C
′

are open in ω∗ and σ-compact, then
[
⋃

D
′
]

∩
[
⋃

C
′
]

= ∅. Since X is σ-compact and everywhere dense in F , then

F = βX is a Čech–Stone compactification of X and p ∈ X∗. �

Now we only have to prove Theorem 2. To a certain extent, we follow the

notation and proof scheme of [4].

Lemma 3. Under the conditions of Theorem 2 the π-base B satisfying (*) can

be represented as B =
⋃

n<ω Bn so that:

(1) every Bn is maximal and cellular in X ;

(2) Bn+1 ≻ Bn;

(3) for every U ∈ Bn there is {U(ν) : ν < 3} ⊂ Bn+1 with
⋃

ν<3
U(ν) ⊂ U .

Proof: Let B =
⋃

n<ω Dn be weakly embedded and every Dn be cellular.

We can choose maximal cellular B0 ⊂ B so that D0 ⊂ B0.
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Assume Bn ⊂ B has been constructed for some n < ω. We can choose maximal

cellular family Bn+1 ⊂ B so that Bn+1 ≻ Bn, Bn+1 ≻ Dn+1 and for every U ∈ Bn

there is {U(ν) : ν < 3} ⊂ Bn+1 with
⋃

ν<3
U(ν) ⊂ U .

Finally, B =
⋃

n<ω Bn is as required. �

In what follows the π-base B satisfies the conditions of Lemma 3,

Σ = {σ ⊂ B : σ maximal cellular in X}

and σ(ν) = {U(ν) : U ∈ σ} for every σ ∈ Σ and ν < 3.

Lemma 4. There is σ ∈ Σ with the following property: If F is a p-filter on σ,

then
⋂

F∗ ⊂ X∗.

Proof: We have p ∈
⋂

i<ω Oi ⊂ X∗ for some open Oi ⊂ βX . If O1 = X and

[Oi+1] ⊂ Oi for every i < ω, then
⋃

i<ω(Oi \ [Oi+2]) = X . Denote by σ all

maximal sets of the family

{U ∈ B : U ⊂ Oi \Oi+2 for some i < ω}.

If x ∈ X and x /∈ [Oi], then F = {U ∈ σ : U∩[Oi+2] 6= ∅} satisfies both
⋃

F ⊂ Oi

and F ∈ F for any p-filter F . �

Lemma 5. There are both a well-ordered chain {σα : α < λ} ⊂ Σ and a p-ultra-

filter Fα on every σα with the following properties for all α < β < λ:

(1)
⋂

F∗
0 ⊂ X∗;

(2) σα ≺Fα
σβ ;

(3) fσα
σβ

Fα ⊂ Fβ;

(4) for any σ ∈ Σ \ {σα : α < λ} there is α0 < λ with ¬(σα0
≺Fα0

σ).

Proof: Let F0 be any p-ultrafilter on σ0, constructed in Lemma 4.

For some ordinal β assume σα and Fα have been constructed for all α < β. If

there is σ ∈ Σ with σα ≺Fα
σ for every σα, then we put σβ = σ and embed the

p-filter
⋃

α<β f
σα
σβ

Fα into some p-ultrafilter Fβ on σβ . Otherwise λ = β and the

proof is complete. �

Denote fα
β = fσα

σβ
from now on.

Lemma 6. If α < β < λ, then
⋂

F∗
β ⊂

⋂

F∗
α.

Proof: There is F ∈ Fα with F ≺ σβ by (2). For any G ∈ Fα we have

G ∩ F ∈ Fα and G ∩ F ≺ σβ . But then
⋃

fα
β (G ∩ F ) ∈ Fβ implies

⋂

F∗
β ⊂

[

⋃

fα
β (G ∩ F )

]

⊂
[

⋃

(G ∩ F )
]

⊂
[

⋃

G
]

.

�
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Lemma 7. For any neighbourhood O of p there is α < λ with
⋂

F∗
α ⊂ O.

Proof: Let σ be all maximal members of the family {U ∈ B : U ⊂ O or U ∩

O = ∅}. Then σ ∈ Σ. For any σα with ¬(σα ≺Fα
σ) we get σα(O) ∈ Fα. Denote

π = {U ∈ σα(O) : V ( U for some V ∈ σ} and δ = {U ∈ σα(O) : U ⊂ V for some

V ∈ σ}. Since B is weakly embedded, σα(O) = π ∪ δ. Since Fα is maximal, then

either π ∈ Fα or δ ∈ Fα. But if π ∈ Fα, then π ≺ σ implies σα ≺Fα
σ. Hence

δ ∈ Fα and
⋂

F∗
α ⊂

[

⋃

δ
]

⊂
[

⋃

σ(O)
]

⊂ [O]βX .

�

Lemma 8. The set Bα(ν) =
⋂

F∗
α ∩

(
⋂

β∈λ\α

[
⋃

σβ(ν)
])

is not empty for any

α < λ and ν < 3.

Proof: Let F ∈ Fα and let α < β0 < · · · < βi < · · · < βn < λ be any finite

sequence of indexes. Our goal is to find by induction U ∈ B so that U ⊂
⋃

F

and U ⊂
⋃

σβi
(ν) and every i ≤ n.

We may assume F ≺ σβ0
, choose Gi ∈ Fβi

so that Gi ≺ σβi+1
for each i < n

and put Gn = σβn
. Then the sets F0 = fα

β0
F ∩ G0 and Fi+1 = fβi

βi+1
Fi ∩ Gi+1

satisfy the following conditions: Fi ∈ Fβi
, Fi ≺ Fi+1 and

⋃

Fi+1 ⊂
⋃

Fi. For any

Un ∈ Fn we find Ui ∈ Fi so that Un ⊂ Ui to get the sequence

Un ( · · · ( Ui ( · · · ( U1 ( U0 ⊂
⋃

F

and put ∆0 = {σβ0
, . . . , σβn

}, Θ0 = ∅ and W0 = U0.

Let us construct for some m ∈ ω a sequence

Un ⊆ · · · ⊆ Ui+1 = Wm ( Ui(ν) ( Ui ( · · · ( U0(ν) ( U0 ⊂
⋃

F

of sets Ui ∈ σβi
. Then ∆m = {σβi+1

, . . . , σβn
} and Θm = {σβ0

, . . . , σβi
} satisfy

the following conditions:

(1) ∆m ∩ Θm = ∅;

(2) ∆m ∪ Θm = ∆0;

(3) Wm ⊂
⋃

F ;

(4) Wm ⊆
⋃

σ(ν) for any σ ∈ Θm;

(5) for any σ ∈ ∆m there is Uσ ∈ σ with Uσ ⊆ Wm.

Let Ω = {σ ∈ ∆m : Uσ = Wm}.

If ∆m 6= Ω, then we put ∆m+1 = ∆m \Ω and Θm+1 = Θm ∪Ω. As σ ∈ ∆m+1

are nice, we can choose U
′

σ ∈ σ so that
⋂

{U
′

σ : σ ∈ ∆m+1} ∩Wm(ν) 6= ∅. Then

Uσ ( Wm implies U
′

σ ⊆ Wm(ν) by our construction. We define Wm+1 to be the

maximal member of embedded sequence {U
′

σ : σ ∈ ∆m+1}.

If, finally, ∆m = Ω, then Wm is as required. �
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Lemma 9. The point p is a b-point in βX .

Proof: Define Fν = {pα(ν) : α < λ} for all ν < 3, where pα(ν) ∈ Bα(ν). By our

construction, Fν ⊂
⋂

F∗
0 ⊂ X∗ and for any neighbourhood O of p there is α < λ

with

{pβ(ν) : β ∈ λ \ α} ⊂
⋂

F∗
α ⊂ O.

Then the condition {pβ(ν) : β < α} ⊂
[
⋃

σα(ν)
]

implies that the sets [Fν ] \ {p}

are pairwise disjoint and p ∈ Fν for no more then one unique Fν . The other two

ensure that p is a b-point in βX . Our proof is complete. �
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fication of a discrete space, Abstracta, 8th Winter School on Abstract Analysis, Praha,
Czechoslovak Academy of Sciences, 1980, 35–38.

[3] Gryzlov A. A., On the question of hereditary normality of the space βω \ ω, Topology and
Set Theory Udmurt. Gos. Univ. Izhevsk (1982), 61–64 (Russian).

[4] Logunov S., On non-normality points and metrizable crowded spaces, Comment. Math.
Univ. Carolin. 48 (2007), no. 3, 523–527.

[5] Rajagopalan M., βN − N − {p} is not normal, J. Indian Math. Soc. (N.S.) 36 (1972),
173–176.

[6] Shapirovkij B., On embedding extremely disconnected spaces in compact Hausdorff spaces,

b-points and weight of point-wise normal spaces, Dokl. Akad. Nauk SSSR 223 (1975),
1083–1086 (Russian).
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[8] Warren N. M., Properties of Stone–Čech compactifications of discrete spaces, Proc. Amer.

Math. Soc. 33 (1972), 599–606.

S. Logunov:

Department for Algebra and Topology, Udmurt State University,

Universitetskaya 1, Izhevsk 426034, Russia

E-mail: olla209@yandex.ru

(Received December 2021, revised February 16, 2022)


