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ROBUST OPTIMALITY ANALYSIS FOR
LINEAR PROGRAMMING PROBLEMS WITH
UNCERTAIN OBJECTIVE FUNCTION COEFFICIENTS:
AN OUTER APPROXIMATION APPROACH

Zhenzhong Gao and Masahiro Inuiguchi

Linear programming (LP) problems with uncertain objective function coefficients (OFCs)
are treated in this paper. In such problems, the decision-maker would be interested in an
optimal solution that has robustness against uncertainty. A solution optimal for all conceivable
OFCs can be considered a robust optimal solution. Then we investigate an efficient method
for checking whether a given non-degenerate basic feasible (NBF) solution is optimal for all
OFC vectors in a specified range. When the specified range of the OFC vectors is a hyper-
box, i. e., the marginal range of each OFC is given by an interval, it has been shown that
the tolerance approach can efficiently solve the robust optimality test problem of an NBF
solution. However, the hyper-box case is a particular case where the marginal ranges of some
OFCs are the same no matter what values the remaining OFCs take. In real life, we come
across cases where some OFCs’ marginal ranges depend on the remaining OFCs’ values. For
example, the prices of products rise together in tandem with raw materials, the gross profit
of exported products increases while that of imported products decreases because they depend
on the currency exchange rates, and so on. Considering those dependencies, we consider a
case where the range of the OFC vector is specified by a convex polytope. In this case, the
tolerance approach to the robust optimality test problem of an NBF solution becomes in vain.
To treat the problem, we propose an algorithm based on the outer approximation approach.
By numerical experiments, we demonstrate how the proposed algorithm efficiently solves the
robust optimality test problems of NBF solutions compared to a conventional vertex-listing
method.

Keywords: linear programming problems, interactive uncertain coefficients, robust opti-
mality analysis, outer approximation approach, convex polytope

Classification: 90C05, 52B12

1. INTRODUCTION

Uncertainty is frequently encountered in real-world applications due to measurement
restrictions, noise, insufficient knowledge, etc. The uncertainty has been studied for
centuries, dating back to Archimedes’ era as a study of measuring perimeters of cir-
cles [8]. The uncertainty was expressed by an interval defined by lower and upper
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bounds including the exact value. Current researchers and practitioners still use this
expression in dealing with uncertainties because of its conciseness and explicitness.

Sensitivity analysis [1], developed in the last century, is a well-known approach to the
influence evaluation of the small fluctuations of coefficients of linear programming (LP)
problems. It usually treats a small and local perturbation in a single coefficient and eval-
uates the sensitivity and stability of an optimal solution against the perturbation. Such
a procedure is called the robust optimality analysis in this paper. By utilising shadow
price, it can analyse the robustness against any coefficient of the problem, including any
left-hand-side coefficient in constraints. However, it has two drawbacks: one is that the
analysis becomes complex when the optimal basic solution is degenerate, and the other
is that simultaneous fluctuations of multiple coefficients cannot be treated easily. Then
the sensitivity analysis can only provide limited information about the robustness of the
optimal solution [20].

To overcome the limitation, Bradley, Hax and Magnanti [1] proposed the 100 Percent
Rule, which can treat multiple uncertain coefficients by obtaining a convex cone from
the optimal condition of a basis. When the coefficient values are in the convex cone,
the corresponding basic solution is feasible and optimal. The convex cone is called the
optimality assurance cone (OAC) in this paper. Utilising the OAC, the robustness of an
optimal basis can be evaluated by testing whether the given range of uncertain coeffi-
cients is included in the OAC. Nevertheless, this test requires enormous computational
effort when the range of uncertain coefficients is complex.

Wendell [23, 24] proposed a method using the 100 Percent Rules, called the tolerance
approach. The tolerance approach enables us to analyse the robust optimality of a given
feasible basic solution to an LP problem with little computational effort. In the tolerance
approach, a maximal hyper-box included in the OAC is calculated to materialise a range
of uncertain coefficients to preserve the optimality. Wondolowski [25] and Filippi [4]
improved this approach by enlarging the hyper-box included in the OAC. Enormous
research related to the robust optimisation is established in different realms, such as the
fuzzy set approach [16, 19] and the probabilistic and stochastic approach [21, 22].

For the situation where the range of uncertain objective function coefficients (OFCs)
are given a priori without knowing a candidate feasible solution, Inuiguchi and Sakawa [17,
14] proposed the concepts of possible and necessary optimalities. A possibly optimal solu-
tion is a feasible solution optimal for at least one coefficient’s values in the given range,
while a necessarily optimal solution is a feasible solution optimal for all coefficient’s
values in the given range. Namely, the necessary optimality corresponds to the robust
optimality. Since a possibly optimal solution is usually too weak and loses the optimality
by a small fluctuation of coefficient values, a necessarily optimal solution is preferable.
However, the necessarily optimal solution does not always exist. Recent studies have
shown that the tolerance approach can easily treat the test problem for checking the
necessary optimality of an obtained basic feasible solution when the range of uncertain
coefficients is expressed as a hyper-box in an oblique coordinate system [15]. This result
is extended when the range of uncertain coefficients is a fuzzy set called an oblique fuzzy
vector [15]. In this case, the test problem becomes a problem for evaluating the degree
of the necessary optimality, i. e., to what extent the given basic feasible solution stays
optimal against the fluctuation of uncertainty OFCs.
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When the range of uncertain coefficients cannot be expressed as a hyper-box in any
coordinate system, the necessary optimality test becomes intractable. If the marginal
ranges of any uncertain coefficients are the same, no matter what values the remaining
uncertain coefficients take, the range of uncertain coefficients is expressed as a hyper-
box. In such a case, it is called that these uncertain coefficients are non-interactive.
The assumption of the non-interactivity of uncertain coefficients is rather restrictive. In
real-world problems, we encounter interactive uncertain coefficients, i. e., the marginal
ranges of some uncertain coefficients depend on the values of the remaining coefficients.

In stochastic programming [2, 21], we come across stochastic dependence, a notion
similar to the mentioned interactiveness. A part of the stochastic dependency can be
expressed by a covariance matrix or a correlation matrix, which shows the correlations
between two uncertain variables. Gao and Inuiguchi [5] proposed a numerical approach
once the probability distributions of all uncertain coefficients are known. However,
obtaining the probability distribution is not an easy task, and the covariance matrix
does not cover all classes of stochastic dependence.

In this paper, we treat the case where the range of uncertain OFCs is expressed by
a convex polytope. It implies that the range of the uncertain OFCs is defined by a
finite number of linear inequalities. When the upper and lower bounds of a sufficient
number of linear fractional function values of uncertain coefficients are known, the range
of uncertain coefficients reduces to a convex polytope. The range is not always a hyper-
box; thus, the uncertain coefficients can be interactive. However, this case is still a
special case of the interactive uncertain coefficients. Nevertheless, the problem of testing
the necessary optimality of a given non-degenerate basic feasible solution in this special
case cannot be solved easily. Then we investigate a solution method for the necessary
optimality test problem. We develop an outer approximation algorithm [13] for the test
problem utilising the convexity and boundedness of the range of the uncertain OFCs.

Unlike the conventional vertex-listing approach, the proposed approach does not need
to list all vertices and check whether they fall into the OAC. This reduction decreases
the computational burdens significantly. The proposed approach needs no extra infor-
mation concerning the uncertainty but only a series of linear constraints. New vertices
are obtained by a pivoting process of the simplex method [12]. We demonstrate that
the proposed approach outperforms the conventional approach with computational effi-
ciency.

This paper is organised as follows. Section 2 gives some preliminaries about LP and
the robust optimality analysis, where we will show some results in the case when the
range of uncertain coefficients is expressed as a hyper-box. Then, we carefully explain
the outer approximation used in the proposed algorithm in Section 3. The detailed
algorithm is concretely shown in Section 4 with a numerical example. In Section 5,
we compare our approach with the conventional listing methods through a numerical
experiment. The conclusions and an outline of the future work are given in Section 6.

1.1. Notations

In this paper, we use the following notations:

• Rn denotes an n-dimensional Euclidean space;
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• | · | denotes an entry-wise absolute operator;

• Card(·) denotes the cardinality of a set;

• I denotes an index set with convenient cardinality;

• I denotes an identity matrix with convenient dimension;

• A−T denotes the inverse of a transposed non-singular matrix A, i. e.,
A−T = (AT)−1 = (A−1)T.

• diag(a) denotes a diagonal matrix with the diagonal entries being vector a.

2. LP PROBLEMS AND ROBUST OPTIMALITY ANALYSIS

In this paper, the following standard form of LP problems are treated:

maximize cTx, subject to Ax = b, x ≥ 0, (1)

where x ∈ Rn represents the decision variable vector, while A ∈ Rm×n, b ∈ Rm and
c ∈ Rn are the coefficient matrix and vectors, respectively.

By the simplex method [1], we can separate a basic feasible solution x∗ into the
basic and non-basic sub-vectors x∗B ∈ Rm and x∗N ∈ Rn−m respectively by an index set
IB(x∗) ∈ {1, 2, . . . , n} satisfying Card(IB(x∗)) = m. Orderly by IB(x∗), we can also
separate the matrix A and vector c. Sub-matrices AB ∈ Rm×m and AN ∈ Rm×(n−m),
composed of the columns of A indexed by IB(x∗) and {1, 2, . . . , n}\IB(x∗), denote the
basic and non-basic parts of A respectively. Similarly, sub-vectors cB ∈ Rm and cN ∈
Rn−m denote the basic and non-basic parts of c, respectively. Since AB should always be
non-singular, i. e., A−1B always exists, the value of x∗ can be obtained with x∗B = A−1B b
and x∗N = 0. Therefore, we have the following proposition to confirm the optimality of
a basic feasible solution [1, 3].

Proposition 2.1. A basic feasible solution x∗ ∈ Rn in Problem (1) is optimal if and
only if it meets the following conditions:

cN −AT
NA
−T
B cB ≤ 0 and A−1B b ≥ 0, (2)

where the optimal solution value is obtained with x∗B = A−1B b and x∗N = 0, and the
optimised value is cTBA

−1
B b.

Proposition 2.1 gives a detailed description of the simplex method’s methodology in
identifying whether a basic feasible solution is optimal. However, when considering the
uncertainty in coefficients, i. e., the coefficients in the LP problem cannot be uniquely
determined, there exist several problems.

Firstly, Condition (2) in Proposition 2.1 only guarantees the feasibility and optimality
of x∗ with the corresponding basic index set IB(x∗). However, when the values of the
coefficients in A and b change, the value of x∗ may also change due to x∗B = A−1B b,
while IB(x∗) would keep invariant as long as Condition (2) is satisfied. In this situation,
since x∗B = A−1B b is always satisfied, if b cannot be uniquely determined, an obtained
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optimal solution may not be optimal or even not feasible any more. Secondly, the feasible
solution can only be basic, i. e., Card(IB(x∗)) = m. Thirdly, which is the most puzzling,
is that there should exist no degeneracy in x∗, i. e., x∗B = A−1B b > 0 should always be
satisfied.

Although the problem caused by non-basic or degenerate feasible solution has been
studied by Hlad́ık [10] and Gao, Inuiguchi [6], it is trivial to fall into a tangle by taking
them into consideration. Therefore, in this paper, we only consider a solution to be non-
degenerated basic feasible (NBF). Moreover, since we aim to concentrate on the value
of the solution, we assume there exists no uncertainty in constraints, i. e., A and b are
constant. Hence, the invariance of IB(x∗) is equivalent to the invariance of the value
of x∗.

Consequently, the LP problem with uncertain coefficients is expressed as follows:

maximize γTx, subject to Ax = b, x ≥ 0, (3)

where γ ∈ Φ denotes the OFC vector with uncertainties and Φ j Rn is the set including
these uncertainties. A and b are constant coefficient matrix and vector, respectively.

Since the LP problem with uncertainties is composed of multiple scenarios, each
of which represents a conventional exact one, we have to consider all of them. Since
Problem (3) has a fixed feasible set, it is only necessary to consider the scenarios derived
by γ ∈ Φ. Therefore, we can utilise the concept of possible and necessary optimality by
Inuiguchi and Sakawa [17]:

Definition 2.2. (Possible and Necessary Optimality) Let Φ j Rn be a set includ-
ing all possible uncertain OFC vectors γ in Problem (3). Then, a feasible solution x∗

is

• possibly optimal for Φ if it is optimal for at least one scenario of γ ∈ Φ,

• necessarily optimal for Φ if it is optimal for all scenarios of γ ∈ Φ.

It is noted that the infeasible solution is neither possibly nor necessarily optimal.

Since a possibly optimal solution is too weak to be against the uncertainty, we only
focus on a necessarily optimal one. Generally, for an LP problem with a fixed feasible
set, the check of whether a feasible solution is necessarily optimal is equivalent to the
analysis of the OFC vector. To accomplish such a goal, we use the set defined by
Inuiguchi et al. [15]:

L (x∗) :=
{
c ∈ Rn : cTx∗ = max{cTx : Ax = b,x ≥ 0}

}
. (4)

Namely, L (x∗) is the set composed of OFC vectors such that x∗ is optimal. Hence,
we have the following equivalences:

x∗ is possibly optimal ⇐⇒ Φ ∩L (x∗) 6= ∅, (5)

x∗ is necessarily optimal ⇐⇒ Φ j L (x∗). (6)

In (4), L (x∗) is well-defined, which, nevertheless, is difficult to obtain. Fortunately,
when x∗ is an NBF solution, we can simply utilise Proposition 2.1 to build the equiva-
lence called optimality assurance cone [1, 15]:
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Definition 2.3. (Optimality Assurance Cone) Let x∗ be an NBF solution for Prob-
lem (3). Then the optimality assurance cone (OAC) of x∗ is defined as:

M (x∗) :=
{
c ∈ Rn : cN −AT

NA
−T
B cB ≤ 0

}
, (7)

where AB , AN , cB and cN are defined the same as Proposition 2.1.
For convenience, we use a matrix M(x∗) ∈ R(n−m)×n that maintains the order of the

OFC vector instead of separating them physically by IB(x∗). Hence, we reformulate the
OAC as:

M (x∗) =
{
c ∈ Rn : M(x∗)c ≤ 0

}
, (8)

where we note that if cT is permuted as (cTB , c
T
N ), then M(x∗) = (−AT

NA
−T
B , I).

By Proposition 2.1 and Definition 2.3, we understand that M (x∗) = L (x∗) if x∗ is
an NBF solution, which derives the following proposition:

Proposition 2.4. Let x∗ denote an NBF solution for Problem (3) with γ ∈ Φ. Then
x∗ is necessarily optimal if and only if the following condition is valid:

Φ jM (x∗), (9)

where M (x∗) denotes the OAC of x∗.

Since Φ usually is an infinite set, it is impossible to check (9) for every entry in Φ.
Fortunately, if Φ is a convex polytope, we can simplify the procedure with the proposition
below:

Proposition 2.5. Let x∗ denote an NBF solution for Problem (3) with γ ∈ Φ, where
Φ is a convex polytope, and let V(Φ) be the vertex set of Φ. Then x∗ is necessarily
optimal if and only if V(Φ) jM (x∗). Furthermore, x∗ is possibly optimal if and only
if V(Φ) ∩M (x∗) 6= ∅ and x∗ is not optimal if and only if V(Φ) ∩M (x∗) = ∅.

P r o o f . We first focus on the necessary optimality. Let V(Φ) = {ci ∈ Rn : i =
1, 2, . . . , k}, where k = Card(V(Φ)). Since Φ is a convex polytope, for any vector c ∈ Φ,
it can be expressed with

c =

k∑
i=1

λic
i, where

k∑
i=1

λi = 1 and λi ≥ 0 for i = 1, 2, . . . , k. (10)

Since V(Φ) j M (x∗) implies ci ∈ M (x∗) for any i = 1, 2, . . . , k, it is not hard to
know that c ∈ M (x∗) for any c ∈ Φ, which means Φ j M (x∗). Hence, if V(Φ) j
M (x∗), x∗ is necessarily optimal. On the other hand, if x∗ is necessarily optimal,
we have Φ j M (x∗) by Proposition 2.4. Since V(Φ) j Φ, it is obviously to have
V(Φ) jM (x∗).

For the possible optimality part, we know that if V(Φ)∩M (x∗) 6= ∅, Φ∩M (x∗) 6= ∅
due to V(Φ) j Φ. Hence, x∗ is possibly optimal. On the other hand, if x∗ is possibly
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optimal, Φ ∩M (x∗) 6= ∅ indicates that there exists at least one vector ĉ ∈ Φ such that

ĉ ∈M (x∗). Let ĉ be expressed by λ̂1, λ̂2, . . . , λ̂k by (10). Assume that in this condition,
there exists no vertex ci in M (x∗) for any i = 1, 2, . . . , k, i. e., @i ∈ {1, 2, . . . , k} such
that ci ∈ M (x∗), then ĉ cannot be in M (x∗) due to (10), which contradicts the
assumption that ĉ ∈M (x∗). Therefore, there exist at least one ci ∈M (x∗), indicating
that V(Φ) ∩M (x∗) 6= ∅. The none optimality part is obvious so we do not give the
proof. �

Proposition 2.5 indicates that when Φ is a convex polytope, we can check the necessary
optimality of an NBF solution x∗ by listing all vertices of Φ and check whether they are
in M (x∗). If they are, then x∗ is necessarily optimal. If there only exist some vertices
in M (x∗), then x∗ is possibly optimal. Moreover, x∗ is not optimal if there exists no
vertex in M (x∗). In this paper, we call this process the robust optimality analysis to a
specific LP problem.

Although Proposition 2.5 sets the foundation for the robust optimality analysis that
checks the necessary optimality of an NBF solution, there still exists a barrier to the
calculation. For example, if Φ is an n-dimensional hyper-box, then the cardinality of
V(Φ) is 2n, which means we need to check 2n times to determine whether the solution
is necessarily optimal. However, executing such amount of computations is excessively
demanding when n is large enough. Hence, we still need some other techniques to address
the problem.

2.1. Robust optimality analysis in interval LP problems

As we have mentioned that it is essential to use some techniques to deal with the diffi-
culty in computational complexity, we firstly introduce the one to treat non-interactive
uncertain coefficients, i. e., each entry ci in γ j Φ is included by an interval [cLi , c

R
i ],

i = 1, 2, . . . , n. For convenience, we denote the lower and upper bounds of Φ as
cL := (cL1 , c

L
2 , . . . , c

L
n)T and cR := (cR1 , c

R
2 , . . . , c

R
n )T, respectively. Furthermore, the cen-

tre and width of Φ are denoted as cC := (cR +cL)/2 and cS := (cR−cL)/2, respectively.
Since Φ is a compact hyper-box in Rn, the problem is also called an interval linear

programming problem [7, 11, 18], where literature has shown that it can be solved by
the tolerance approach straightforwardly. Hence, we only give a brief review [15, 23],
where the main theorem is given by

Theorem 2.6. Let an interval LP problem be defined in (3), where γ ∈ Φ and Φ
be an interval hyper-box in Rn with cC and cS denoting the centre and width of Φ,
respectively. Let x∗ be an NBF solution and M(x∗) be the matrix for M (x∗) by (8).
For k = 1, 2, . . . , n−m, we define

τk =


∑n

j=1Mkj(x
∗)cCj∑n

j=1 |Mkj(x∗)||cSj |
, if

∑n
j=1 |Mkj(x

∗)||cSj | > 0,

0, otherwise,

(11)

τmin = min
k=1,2,...,n−m∑n

j=1 |Mkj(x∗)||cSj |>0

τk. (12)
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Then x∗ is necessarily optimal if and only if τmin ≥ 1. Otherwise, x∗ is only possibly
optimal.

To illustrate Theorem 2.6, we use the numerical example proposed in [15]:

Example 2.7. Let us consider a production problem. A factory manufactures two
items, denoted by A and B. Both items need two resources, denoted by P and Q. It
is known that the production of A costs 3 pounds of P and 4 pounds of Q per unit,
while the production of B costs 3 pounds of P and 1 pound of Q per unit. However,
there are only 42 pounds of P and 24 pounds of Q, and B is scheduled to be produced
at most 9 units. Since the profits of A and B are also influenced by the market, the
factory does not know them exactly. However, from past experience, the profit of A is
always between 15 and 31 thousand JPY and the profit of B is always between 9 and
19 thousand JPY. Since the factory always wants to make the biggest profit, it needs a
production schedule for A and B. However, the profits of A and B cannot be uniquely
determined. Therefore, the most interesting problem is that, does there exist a schedule
that is not affected by the profits of A and B and can always make the biggest profit?

To solve the problem, let us convert it to an LP problem as follows:

maximize c1x1 + c2x2,

subject to 3x1 + 4x2 ≤ 42,

3x1 + x2 ≤ 24,

x2 ≤ 9, x1, x2 ≥ 0,

where x1 and x2 represent the amounts of production for A and B, respectively. The
ranges of OFCs c1 and c2, i. e., prices of A and B, are given by [15, 31] and [9, 19],
respectively. We assume that no matter what value c2 takes, the range of c1 would not
change, and vice versa. Namely, c1 and c2 are non-interactive.

First, an NBF solution should be obtained. We obtain it by solving an LP problem
with OFCs defined by the centre values, i. e., cC1 and cC2 , of the conceivable ranges of c1
and c2. We add slack variables x3, x4, x5 ≥ 0 and set c3, c4, c5 = 0 with cC1 = 23 and
cC2 = 14, we solve the LP problem and obtain x̌∗ = (6, 6, 0, 0, 3)T. Since the basic index
set IB(x̌∗) is {1, 2, 5}, we obtain a temporary OAC M̌ (x̌∗) j R5 as

M̌ (x̌∗) =

{
(c1, c2, c3, c4, c5)T

1
9c1 −

1
3c2 + c3 + 1

3c5 ≤ 0

− 4
9c1 + 1

3c2 + c4 − 1
3c5 ≤ 0

}
.

By removing the slack variables x3, x4, x5 with c3, c4, c5, we have the solution x∗ =
(6, 6)T with M (x∗) expressed as:

M (x∗) =

{
(c1, c2)T

1
9c1 −

1
3c2 ≤ 0

− 4
9c1 + 1

3c2 ≤ 0

}
.

Since cC = (23, 14)T and cS = (8, 5)T, we apply Theorem 2.6 and obtain τ1 = 19/23
and τ2 = 50/47, which indicates that τmin = 19/23 < 1. Therefore, x∗ is not necessarily
optimal. The result can also be confirmed in Figure 1, where the vertex (31, 9)T is out
of M (x∗). Therefore, there does not exist a plan that is not affected by the prices of A
and B and can always make the biggest profit.
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Fig. 1: Illustration of Example 2.7.

3. ROBUST OPTIMALITY ANALYSIS WITH A CONVEX POLYTOPE

Unlike the robust optimality analysis for LP problems with non-interactive uncertain
coefficients, the interactive ones are more complicated.

Proposition 2.5 indicates that if all vertices of a convex polytope representing the
ranges of uncertain coefficients are included by the OAC of an NBF solution, then the
solution is necessarily optimal. However, vertex listing requires enormous computational
effort. For example, let a convex polytope be defined as

Φ =
{
c ∈ Rn : Gc ≤ g

}
, (13)

where G ∈ Rp×n and g ∈ Rp are constant matrix and vector, respectively. Since Φ is
bounded, p must be excessively greater than n.

Intuitively, the process of listing all vertices of the convex polytope defined in (13)
is equivalent to the combination of choosing n constraints from the total p constraints,
of which the complexity order is extremely large with O(pCn). Although it is known
that the maximum vertex number of the convex polytope defined in (13) is O(pn/2) [9],
much less than O(pCn), it still requires enormous computational effort.

Fortunately, if a convex polytope including Φ already makes a feasible solution nec-
essarily optimal, the solution must be necessarily optimal for Φ. Namely,
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Lemma 3.1. If a feasible solution x∗ ∈ Rn is necessarily optimal for a convex polytope
Λ that includes Φ, i. e., Φ j Λ, then it is also necessarily optimal for Φ.

P r o o f . The proof is trivial, so we leave it to readers. �

The advantage of Lemma 3.1 is that it is not necessary to find all vertices at the
beginning. Instead, we build a convex polytope in a much simpler structure and cut it
iteratively to approximate the exact polytope. If the convex polytope at a certain step
already makes a feasible solution necessarily optimal, we can terminate the procedure
and state the solution to be necessarily optimal. Moreover, if a vertex of the current
polytope belongs to the exact polytope but is out of the OAC, we can also terminate
the procedure and state that there does not exist a necessarily optimal solution.

Hence, if we want to use Lemma 3.1 to reduce the calculation, we need to develop an
algorithm satisfying the following conditions:

(i) Let Φ be the exact convex polytope, and Λk be the polytope including Φ at kth
step. Since we need to utilise Proposition 2.5 to check whether all vertices of Λk are
in the OAC, we prefer a convex polytope Λ0 in a simple structure for vertex-listing
at the initial step.

(ii) Since the process is iterative, we need to update the convex polytope such that
Φ j Λk+1 $ Λk. Moreover, we need the vertex set of Λk to obtain the vertex set
of Λk+1.

Therefore, we found that the outer approximation approach can treat the problem,
where we concentrated on the following two aspects:

(i) the construction of the initial convex polytope Λ0,

(ii) the cutting approach to obtain Λk+1 from Λk.

3.1. Construction of the initial convex polytope

Horst, Thoai and Tuy [13] showed that there exist several methods to construct the
initial convex polytope. However, since Φ and Λk for any k are convex, we prefer the
one with the least computation in obtaining all its vertices.

Moreover, since the convex polytope Φ is described by (13), which already ensures
it is convex and closed, we need the initial process to check whether Φ is bounded.
To accomplish both purposes, we use the following proposition [13] to build the initial
convex polytope Λ0:

Proposition 3.2. Given a convex polytope defined as Φ = {c ∈ Rn : Gc ≤ g}, it is
bounded if the following results are finite:

α0 = max
{
eTc : Gc ≤ g

}
, (14)

αi = min
{
ci : Gc ≤ g

}
, i = 1, 2, ..., n, (15)

where e := (1, 1, . . . , 1)T.
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Moreover, if Φ is bounded, then the initial triangular polytope Λ0 is built as:

Φ j Λ0 :=
{
c ∈ Rn : eTc ≤ α0, ci ≥ αi, i = 1, 2, ..., n

}
, (16)

where the (n+ 1) vertices are obtained as (α1, α2, . . . , αn)T and(
α1, α2, . . . , α0 −

n∑
j=1
j 6=k

αj , . . . , αn

)T
, k = 1, 2, . . . , n.

Although there exist other methods to build the initial convex polytope, such as the
hyper-box, we confirm that the triangular polytope has its advantages:

• Since all initialisation methods can check the boundedness of Φ, the fewer polyhe-
dral boundaries Λ0 has, the less computational effort is required. As the triangular
polytope has the fewest polyhedral boundaries with (n + 1), the number of con-
ventional LP problems to be solved is (n+ 1), fewer than other methods.

• Due to our specific cutting approach, we show that the number of cutting, which
is always less than or equal to the number of constraints in Φ, is not much affected
by the shape of the initial convex polytope. Hence, it is trivial to concentrate too
much on the shape of Λ0.

• The vertex set of Λ0 can be simultaneously obtained when solving the series of
LP problems. Moreover, since the triangular polytope has the least number of
vertices, it requires the least computational effort.

After obtaining the initial convex polytope Λ0 with the vertex set V(Λ0), we go to
the iteration procedure.

3.2. Cutting and updating strategy on polytopes

Assume that we have obtained the polytope Λk with its vertex set V(Λk) at a specific
step k, and we want to cut and update Λk to obtain Λk+1 and V(Λk+1). Since Φ is a
convex polytope, we can use one of its constraints to cut Λk at each iteration. Moreover,
since the maximum number of cutting is less than or equal to p, i. e., the number of
constraints in Φ, we have Λp = Φ, which guarantees the termination of the algorithm.
However, to accomplish the task, we still need to solve several problems:

(i) The OAC of an NBF solution is necessary when checking its necessary optimality.
However, a convex polytope, which is a set, does not enable us to do that. Hence,
we need to choose a point in the polytope as the OFC vector to obtain an NBF
solution.

(ii) When cutting a convex polytope, some boundaries may become useless since the
polytope becomes smaller. The useless boundaries called redundant constraints,
increase the calculation in obtaining new vertices in every iteration. However,
searching for redundant constraints requires extra computational effort. Hence, it
is essential to remove them efficiently.
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(a) Valid. (b) Redundant but not
strictly redundant.

(c) redundant and strictly
redundant.

Fig. 2: A constraint L to a convex polytope Φ.

(iii) After cutting a convex polytope and removing redundant constraints, some vertices
disappear and some emerge. Hence, we need to add the new vertices and efficiently
remove the useless ones.

For the first problem, we cannot randomly choose the vertex of Λ0 because they are
not in Φ. However, let c0 and ci, i = 1, 2, . . . , n denote the optimal solutions to (14)
and (15), respectively. Then we define

c̄ =
1

1 + n

n∑
i=0

ci. (17)

We have c̄ ∈ Φ because ci ∈ Φ, i = 0, 1, 2, . . . , n and Φ is convex. Then we can use c̄
to obtain an optimal solution to the LP problem:

maximize c̄Tx, subject to Ax = b, x ≥ 0 (18)

where the necessary optimality is tested if it is an NBF solution.

3.2.1. Removal of redundant constraints

Nevertheless, it is not easy to remove redundant constraints efficiently. To develop an
algorithm that can efficiently identify them, let us review some essential knowledge first:

Definition 3.3. (Redundant Constraint) A constraint L in defining a convex poly-
tope Φ is redundant if Φ remains the same after the removal of L. Moreover, if all
vertices of Φ strictly belong to the interior of L, then L is strictly redundant.

An illustration is in Figure 2. Before we go ahead to analyse the redundant constraint,
it is vital to differentiate it from the degeneracy, of which the definition is given as:

Definition 3.4. (Degeneracy) A vertex v ∈ Φ is degenerate if the number of hyper-
planes of Φ passing v is strictly more than n.
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Fig. 3: Degenerate vertex with no redundant constraint.

Namely, since a vertex in Rn can be exactly determined by n independent hyper-
planes, if there exist extra hyperplanes passing the vertex, then it is possible to remove
some of them without losing the vertex.

However, it is noted that the existence of a degenerate vertex is not equivalent to the
existence of redundant constraints. The main reason is that a constraint that can be
removed for one vertex may not be removable for another vertex. A typical example
is shown in Figure 3, where vertex (3, 3, 2)T constrained by (i), (ii), (iii) and (iv) is
degenerate but we cannot remove any of them.

Since the degeneracy rarely happens but can cause great trouble, we assume that
there exists no degenerate vertex in the convex polytope. As it is mentioned that the
redundant constraint should be removed for acceleration, we need an algorithm to iden-
tify it efficiently. Moreover, if this process is too complicated to execute, the whole time
would be even longer than no redundant constraint removal.

Horst and Tuy [13] proposed a proposition to identify whether a constraint is redun-
dant:

Proposition 3.5. A constraint Lj = {c ∈ Rn : lj(c) ≤ 0}, j ∈ IK in a convex polytope
P = {c ∈ Rn : li(c) ≤ 0, i ∈ IK} is redundant if there exists an i0 ∈ IK\{j} such that{

c ∈ Rn : lj(c) = 0,
(
∀i ∈ IK\{i0}, li(c) ≤ 0

)}
j
{
c ∈ Rn : li0(c) ≥ 0

}
. (19)

Therefore, we say that the constraint Lj is redundant for P relative to Li0 .

Proposition 3.5 gives a method to identify a redundant constraint. However, since it
utilises the inclusion relation of subsets, the realisation is extremely difficult. Moreover,
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since the vertex set of a convex polytope has a deep relationship with the change of
constraints, we prefer updating the vertex set simultaneously. Therefore, it is necessary
to develop an algorithm for identifying redundant constraints based on the vertex set of
the polytope. Hence, we have the following theorem [13]:

Theorem 3.6. Given a polytope P = {c ∈ Rn : li(c) ≤ 0, i ∈ IK} and a valid cut
Lk = {c ∈ Rn : lk(c) ≤ 0}, let V−k (P) := {c ∈ V(P) : lk(c) < 0} 6= ∅ denote the vertex
set of P in the interior of Lk. Then a constraint Lj = {c ∈ Rn : lj(c) ≤ 0}, j ∈K of P
is redundant for P ∩ Lk relative to Lk if and only if the following condition is valid:

∀c ∈ V−k (P), lj(c) < 0. (20)

Furthermore, since the polytope is assumed to be convex, we can use a more simplified
one:

Theorem 3.7. Let P = {c ∈ Rn : Gc ≤ g}, G ∈ Rm×n and g ∈ Rm, denote a
convex polytope, and let V(P) be its vertex set. Then for the i-th constraint in P with
Li = {c ∈ Rn : Gi·c ≤ gi}, let V=

i (P) := {v ∈ V(P) : Gi·v = gi}. If Card(V=
i (P)) < n,

it is redundant for Φ. Moreover, if Card(V =
i (P)) = 0, i. e., ∀v ∈ V, Gi·v < gi, it is

strictly redundant.

P r o o f . Here we only prove the redundant case. Since Definition 3.3 indicates that a
constraint is redundant if the vertex set remains the same after removing it, we only
need to concentrate on the vertex set.

As is known that a vertex in Rn can only be determined by at least n hyperplanes.
Therefore, by Definition 3.4, if a vertex in Rn is determined exactly by n hyperplane,
there exists no degeneracy. Otherwise, if there exist strictly more than n hyperplanes
that pass the vertex, there exists degeneracy and the constraints over n can be removed
without losing the vertex.

Assume that there exists a hyperplane with less than n constraints. For instance, the
i-th constraint such that Li = {c ∈ Rn : Gi·c ≤ gi} with the corresponding hyperplane
{c ∈ Rn : Gi·c = gi} and the vertex set V=

i (P) := {c ∈ V : Gi·c = gi} on it.
Let v1,v2, . . . ,vk denote all vertices in V=

i (P). If k < n, we can always pick (n− k)
vertices from V(P)\V=

i (P) to form new hyperplanes such that:

(i) The vertex set V∗ such that V=
i (P) $ V∗ and Card(V∗) ≥ n is on the hyperplane.

(ii) The hyperplane is one of the boundaries of the feasible set formed by P because
P is bounded.

Therefore, it is obvious that Li is redundant and can be removed. �

By Theorem 3.6, it is not hard to derive the following two lemmas:

Lemma 3.8. Let P and V(P) be given the same as Theorem 3.6. If there exists no
constraint such that ∀c ∈ V(P), Gi·c < gi, or no hyperplane with only degenerate
vertices, then there exists no redundant constraint in P.
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P r o o f . If ∀c ∈ V(P), Gi·c < gi, there exists no vertex on the hyperplane, hence
can be removed. If there exists a hyperplane with only degenerate vertices on it, then
by Definition 3.4, for any vertex on it, the hyperplane is removable. Therefore, we can
remove it. �

Lemma 3.9. Λ0 defined by Proposition 3.2 has no redundant constraint or degenerate
vertex.

P r o o f . The polytope constructed by Proposition 3.2 has at most (n+ 1) constraints
with (n+1) vertices. Moreover, the polytope should always be closed and bounded. Since
it is obvious that in Rn, a closed and bounded polytope has at least (n+1) hyperplanes,
there should at least exist (n + 1) constraints. Hence, no redundant constraint exists
in Λ0. On the other hand, the definition of Λ0 already prevents generating degenerate
vertex because it guarantees that there are strictly n hyperplanes passing each vertex of
Λ0. Therefore, there exists neither redundant constraint nor degenerate vertex in Λ0.

�

Lemma 3.9 is obvious and its proof is trivial. However, we still present it since it
asserts that at the initial step, we do not need to identify whether there exist redundant
constraints or degenerate vertices.

3.2.2. Update of the vertex set

After developing the algorithm for identifying redundant constraints by the vertex set,
we come to the process of updating the vertex set after applying a valid cut on a polytope.
Since we have assumed that there exists no degenerate vertex in the polytope, let us
consider the valid cut expressed as L = {c ∈ Rn : αTc ≤ β}, where α ∈ Rn, β ∈ R on
the polytope Λk.

Similar to the procedure in removing redundant constraints, we separate V(Λk) by L
to V−(Λk) and V+(Λk), where V−(Λk) := {v ∈ V(Λk) : v ∈ L} and V+(Λk) := {v ∈
V(Λk) : v /∈ L}. Since the generated vertices on the hyper-plane {c ∈ Rn : αTc = β}
are the same for both V−(Λk) and V+(Λk), it is convenient to choose the one with fewer

vertices, denoted as V̂.
Since every vertex in V̂ is strictly constrained by n constraints, a vertex v ∈ V̂

is picked out and let Iv with Card(Iv) = n denote the index of active constraints.
Therefore, a polyhedral convex cone on v formed with Λk is given by:{

c ∈ Rn :

n∑
j=1

Gijc ≤ gi, i ∈ Iv

}
. (21)

By adding the constraint L, we can form the following tableau:

c1 c2 . . . cn y1 y2 . . . yn yn+1 RHS
Gi11 Gi12 . . . Gi1n 1 0 . . . 0 0 gi1
Gi21 Gi22 . . . Gi2n 0 1 . . . 0 0 gi2

...
...

. . .
...

...
...

. . .
...

...
...

Gin1 Gin2 . . . Ginn 0 0 . . . 1 0 gin
α1 α2 . . . αn 0 0 . . . 0 1 β

(22)
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According to the previous setting and the tableau, we have the following conditions:

1. c1, c2, . . . , cn, yn+1 must be the basic variables of v.

2. yn+1 must not be a basic variable of the generated vertex.

3. y1, y2, . . . , yn, yn+1 ≥ 0.

4. The generated vertices must be the neighbours of v, which means the basis of any
generated vertex from v should only be derived by one-step pivoting.

Hence the updated tableau can be written as the one below:

c1 c2 . . . cn y1 y2 . . . yn yn+1 RHS

1 0 . . . 0 Ǧi11 Ǧi12 . . . Ǧi1n 0 ǧi1
0 1 . . . 0 Ǧi21 Ǧi22 . . . Ǧi2n 0 ǧi2
...

...
. . .

...
...

...
. . .

...
...

...
0 0 . . . 1 Ǧin1 Ǧin2 . . . Ǧinn 0 ǧin
0 0 . . . 0 Ǧin+11 Ǧin+12 . . . Ǧin+1n 1 β̂

(23)

As a result, a generated vertex should satisfy the following conditions.

1. c1, c2, . . . , cn must be in the basis and exactly one state in y1, y2, . . . , yn is in
the basis.

2. The solution of the basic state derived from y1, y2, . . . , yn should be strictly
positive.

Therefore, we can generate all new vertices on the extra constraint by repeating the
procedure for all v ∈ V̂ iteratively. However, we note that not all of these generated
vertices are the vertices of Λk+1, because only a part of constraints of Λk are considered.
Therefore, the confirmation of the satisfaction of all constraints of Λk is essential. Only
the generated vertices satisfying all constraints of Λk are added to the vertex set of Λk+1.

4. ALGORITHM FOR ROBUST OPTIMALITY ANALYSIS

After proposing the theorem and method concerned with the initialisation and iterations,
we propose the following algorithm:

Algorithm 4.1. Robust Optimality Analysis

• Initialisation:

1. Check whether Φ = {c ∈ Rn : Gc ≤ g} is bounded by Proposition 3.2. If
it is not, terminate the procedure with unboundedness. Otherwise, build the
initial polytope with Λ0 := {c ∈ Rn : eTc ≤ α0, ci ≥ αi, i = 1, 2, ..., n} =
{c ∈ Rn : G0c ≤ g0} with its vertex set V(Λ0) containing (n+ 1) entries.

2. Choose the median point of all vertices in V(Λ0) as the OFC vector and
obtain an NBF solution x∗, which gives the OAC as M(x∗) := {c ∈ Rn :
cN −AT

NA
−T
B cB ≤ 0} = {c ∈ Rn : Mc ≤ 0}.
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• Iteration k = 0, 1, 2, 3, ...

1. Check whether V(Λk) jM(x∗). If it is, terminate with x∗ being necessarily
optimal. Otherwise, go next.

2. Pick a vertex v ∈ V(Λk) such that v /∈ M(x∗). If v ∈ Φ, terminate with no
necessarily optimal solution exists. Otherwise, go next.

3. (Adding a New Constraint) Choose a constraint in Φ as Li = {c ∈ Rn :
Gk

i·c ≤ gki } such that v /∈ Li. (we can update Φ by removing Li from it.)
Add Li to Λk to obtain Λk+1:

Λk+1 = Λk ∩ Li =
{
c ∈ Rn : Gk+1c ≤ gk+1

}
. (24)

4. (Separate the Vertex Set) Separate V(Λk) by Li and obtain:

V+(Λk) =
{
c ∈ V(Λk) : Gk+1

i· c > gk+1
i

}
, (25)

V−(Λk) =
{
c ∈ V(Λk) : Gk+1

i· c ≤ gk+1
i

}
. (26)

5. (Update the Vertex Set) Choose the vertex set of V−(Λk) and V+(Λk) that

has fewer entries and denote it as V̂k. For every vj ∈ V̂k, generate new
vertices on the hyperplane of Li by pivoting Tableau (22) and denote the
vertex set as V(vj). Then obtain the new vertex set V(Λk+1) with:

V(Λk+1) = V−(Λk)
⋃(

∪j V(vj)
)

(27)

6. (Remove the Redundant Constraint) Apply Theorem 3.7 to Λk+1 with ver-
tex set V−(Λk) and update Λk+1. For each constraint Lj in Λk+1, let
V=

j (Λk+1) = {v ∈ V(Λk+1) : Gk+1
j· c = gj}. If Card(V=

j (Λk+1)) < n, re-

move Lj from Λk+1.

7. Repeat the iteration with k ← k + 1.

To illustrate Algorithm 4.1, let us reuse Example 2.7 but change some situations.

Example 4.2. Let us reconsider the production problem in Example 2.7. This time
we assume that A and B are manufactured in Japan, but A is exported to Australia
and B is exported to the USA. The manufacturing condition, i. e., the constraints, is
the same as Example 2.7. The price of A is specified in AUD, and the price of B is
specified in USD, while we consider the gross profit in JPY. Since A and B are exported
to different foreign countries, their profits are also affected by the exchange rate. From
past experience, the profit of A, i. e., c1, is never beyond 5 thousand JPY and the profit
of B, i. e., c2, is never beyond 3.5 thousand JPY. Moreover, in the past five years, it has
been observed that c1 and c2 satisfied a linear constraint with 3c1 + 4c2 ≥ 23, where 23
denotes 23 thousand JPY. Then, we would like to know the amounts of products A and
B that maximise the gross profit.
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At first, we convert the problem to an LP problem as follows:

maximize c1x1 + c2x2,

subject to 3x1 + 4x2 ≤ 42,

3x1 + x2 ≤ 24,

x2 ≤ 9, x1, x2 ≥ 0,

(28)

with c1, c2 satisfying {(
c1, c2

)T
: 3c1 + 4c2 ≥ 23, c1 ≤ 5, c2 ≤ 3.5

}
(29)

Similar to Example 2.7, we solve the problem in Figure 4 by following the step in
Algorithm 4.1 (It is noted that we ignore the process of adding and removing slack
variables):

Initialisation: Since the convex polytope Φ = {c ∈ R2 : Gc ≤ g}, where

G =

 −3 −4
1 0
0 1

 and g =

 −23
5

3.5

 ,

we can verify its boundedness, which is a polytope formed by Constraint (1), (2)
and (3). As the result, we obtain the initial polytope Λ0 = {c ∈ R2 : G0c ≤ g0},
where

G0 =

 1 1
−1 0
0 −1

 and g0 =

 8.5
−3
−2

 ,

formed by Constraint (4), (5) and (6). The vertex set can also be obtained as
V(Λ0) = {(3, 2)T, (6.5, 2)T, (3, 5.5)T}. Therefore, the median point of V(Λ0) is
( 25

6 ,
19
6 )T, which derives the NBF solution as x∗ = (6, 6)T with the OAC:

M (x∗) =

{
(c1, c2)T

∣∣∣∣∣ 1
9c1 −

1
3c2 ≤ 0

− 4
9c1 + 1

3c2 ≤ 0

}
.

Iteration k = 0:

1. Since (6.5, 2)T /∈M (x∗), V(Λ0) " M (x∗), hence go next;

2. Since (6.5, 2)T /∈ Φ, hence go next;

3. Since (6.5, 2)T is out of Constraint (2), add it to Λ0 and update to Λ1 with
Constraint (4), (5), (6) and (2);

4. Separate V(Λ0) and obtain

V+(Λ0) = {(6.5, 2)T} and V−(Λ0) = {(3, 2)T, (3, 5.5)T};
5. By pivoting, we can generate new vertices (5, 2)T and (5, 3.5)T. Hence update

vertex set V(Λ1) = {(3, 2)T, (3, 5.5)T, (5, 2)T, (5, 3.5)T};
6. Since every constraint in Λ1 strictly contains 2 vertices, there exists no re-

dundant constraint. Hence go to the next iteration.
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Fig. 4: Example 4.2.

Iteration k = 1:

1. Since (3, 5.5)T /∈M (x∗), V(Λ1) " M (x∗), hence go next;

2. Since (3, 5.5)T /∈ Φ, hence go next;

3. Since (3, 5.5)T is out of Constraint (3), add it to Λ1 and update to Λ2 with
Constraint (4), (5), (6), (2) and (3);

4. Separate V(Λ1) and obtain

V+(Λ1) = {(3, 5.5)T} and V−(Λ1) = {(3, 2)T, (5, 2)T, (5, 3.5)T};

5. By pivoting, we can generate new vertices (3, 3.5)T and (5, 3.5)T. Hence
V(Λ2) = {(3, 2)T, (5, 2)T, (5, 3.5)T, (3, 3.5)T};

6. Since Constraint (6) contains only 1 vertex (5, 3.5)T, remove it and update
Λ2 with Constraint (4), (5), (2) and (3). Then go to the next iteration.

Iteration k = 2:

1. Since V(Λ2) jM (x∗), terminate the procedure and state that x∗ = (6, 6)T

to be necessarily optimal.

Therefore, we verify that the solution (6, 6)T is the schedule that is not affected by
the profits of A and B and can always make the biggest profit.
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5. COMPUTATIONAL ANALYSIS AND SIMULATIONS

In this section, we analyse the computational complexity of our approach compared with
the conventional vertex-listing method. Before going ahead, we refer the LP problem
with interactive uncertain OFCs in the form of Problem (3) to the LP problem with
uncertain OFCs within a (p × n)-scale convex polytope, where A ∈ Rm×n, b ∈ Rm and
γ ∈ Φ. Φ j Rn is the convex polytope defined by (13), i. e., Φ = {c ∈ Rn : Gc ≤ g},
where G ∈ Rp×n and g ∈ Rp.

At first, we consider the conventional vertex-listing method, of which the algorithm
follows as:

(i) List all vertices of Φ and denote the set as V(Φ).

(ii) Obtain an NBF solution x∗ with M (x∗) by the median point of V(Φ).

(iii) Check whether all entries in V(Φ) are in M (x∗).

We can see that the algorithm is not difficult in Step (ii) and (iii). However, Step (i)
listing all vertices of Φ requires enormous computational effort.

As we have mentioned that the maximum vertex number of a convex polytope de-
fined in (13) is O(pn/2), we use it as the worst complexity order for listing all vertices.
Moreover, in each iteration of listing a new vertex, the matrix inversion calculation is
involved, of which the worst complexity order is O(n3). It is noted that the complexity
order of the matrix inversion becomes lower and lower in recent years, which, however,
lacks a milestone to determine the final result. To avoid the relevant trouble, we assume
the matrix inversion is of O(n3) complexity order. Therefore, the complexity order of
the vertex-listing method is

O(pn/2) ·O(n3) = O(pn/2 · n3). (30)

Then, let us analyse the proposed approach. In the initialisation, it is necessary to
solve the LP problem for (n + 1) times to find the initial polytope with the vertex set,
after which an NBF solution with its OAC is obtained.

In the iteration process, we need multiple assumptions to accomplish the analysis.
For example, although it is known that the number of iterations is up to p, the al-
gorithm usually terminates at a much earlier step. Moreover, unlike the vertex-listing
method, the number of vertices and removable redundant constraints at each iteration
are unknown. Therefore, we can only analyse its worst case approximately, where:

(i) The number of iterations equals its maximum, i. e., p.

(ii) Only one vertex is removed at each iteration. However, when separating the vertex
set, we assume all vertices are used, including the removed one.

(iii) No redundant constraint is removed during all iterations.

(iv) All vertices generated by a cut, of which the number should be n, are assumed to
be valid.
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m n p T1/(s) T2/(s) Nec.
3 5 10 0.0698 0.0539 True
3 5 12 0.1118 0.0526 True
3 5 12 0.1157 0.0638 True
3 5 12 0.1825 0.0992 True
3 5 12 0.1828 0.0738 True
3 6 15 0.5978 0.1632 True
3 6 15 0.491 0.1519 True
3 6 15 0.4212 0.0968 True
3 6 15 0.4165 0.0919 True
3 6 16 0.6579 0.136 True

m n p T1/(s) T2/(s) Nec.
4 7 18 2.3431 0.1839 True
4 7 18 2.1856 0.1408 True
4 7 20 5.4029 0.1502 True
4 7 20 5.3161 0.1621 True
4 7 20 5.2396 0.1856 True
4 8 21 11.5032 0.2000 True
4 8 24 40.4563 0.2802 True
4 8 25 82.0311 0.2356 True
4 8 25 71.5362 0.2114 True
4 8 25 59.9396 0.2183 True

Tab. 1: Some simulation results.

Since the time spent on checking whether a vertex belongs to a set is too short
compared with the update process of vertex sets, we ignore it.

By Tableau (22) and (23), it is not hard to understand that the process of pivoting
an (l × k) tableau has the same computational complexity as solving an (l × k)-scale
LP problem. Moreover, by algebraic analysis, it is known that the complexity order
of solving an (l × k)-scale LP problem equals the one of a non-singular (l × l) matrix
inversion when l ≤ k. Therefore, the complexity order of the proposed algorithm is

O

(
p∑

j=1

[
(n+ 2) + (j − 1) · (n− 1)

])
·O(n3) = O(p2 · n4). (31)

Since in a large-scale problem p is much greater than n and n is much greater than
4, the results of (30) and (31) show that, even in the worst case, our approach can still
treat the robust optimality analysis better than the vertex-listing method.

Furthermore, to validate our approach by comparisons generally, we ran a series of
computer simulations, which are carried out by Python3.8.9 with numpy1.22.1 and
scipy1.7.3 in MacOS with Intel(R) Core(TM) i7-4770 HQ CPU@2.20GHz and 16GB

1600MHz DDR3 RAM.
Since the existence of a necessarily optimal solution usually requires more compu-

tational effort than a non-existence case, we only show the former case. The result is
shown in Table 1, where m and n denote the scale of LP problems defined in (3), p
denotes the number of the constraints of the convex polytope in (13).

The result shows that our approach has a better performance even when the scale of
the LP problem is not large. Moreover, when the scale becomes too large to be solved
by the vertex-listing method, our approach can still deal with it in a reasonable time.

On the other hand, if we focus on the complexity of the proposed approach, we have
Figure 5 by another series of simulations. We can find that its expected computational
amount is almost linear to the scale of the LP problem. However, the simulation also
indicates that our approach is not always better than the conventional one. When there
exists degeneracy in the convex polytope, our approach can only terminate without
giving any result. For example, in Figure 5 at about 1500-scale, the computational time
becomes very small because the program encounters a degenerate case and has to give
up the computation.
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Fig. 5: The simulation result of the outer approximation approach.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a robust optimality analysis in LP problems with uncertain
OFCs. We investigated a method for testing whether an NBF solution is optimal for all
conceivable OFCs when a convex polytope represents the set of conceivable uncertain
OFC vectors. Such a test problem is called a robust optimality test problem.

We reviewed the tolerance approach to LP problems and described that the robust
optimality test problem can be solved easily by utilising the tolerance approach when
the set of conceivable uncertain OFC vectors is represented by a hyper-box, i. e., when
the marginal ranges of some OFCs stay unchanged no matter what values the remaining
OFCs take. However, in other cases, we showed that the computational complexity of
the robust optimality test problem would grow enormously as it may require a vertex-
listing process. Therefore, we proposed an algorithm based on the outer approximation
to the robust optimality test problem when a convex polytope represents the set of
conceivable uncertain OFC vectors.

In the proposed approach, we built a simplex (cover) including the range of uncertain
OFCs and initialised the vertex set with the vertices of the simplex. Then we approx-
imate the cover to the given polytope by cutting it with a linear constraint composing
the polytope, which is not satisfied with a member of the vertex set. Using the added
linear constraint, we update the vertex set and continue this procedure until all members
of the vertex set are in the OAC or we find a point of a polytope not in the OAC. We
demonstrated the computational advantage of the proposed approach over a conven-
tional vertex-listing method through a numerical experiment. The result showed that



86 Z. GAO AND M. INUIGUCHI

the proposed approach is more advantageous in large-scale problems.
In the proposed approach, we assumed the non-degeneracy of the basic feasible so-

lution. It is possible to extend the proposed approach to the robust optimality test
problem at a degenerate basic feasible solution. Moreover, we also assumed that the
degeneracy never occurs at any vertex of the convex polytope showing the range of
uncertain OFCs. To overcome these limitations would be our future work.
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