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Order intervals in C(K).

Compactness, coincidence of topologies, metrizability

Zbigniew Lipecki

Abstract. Let K be a compact space and let C(K) be the Banach lattice of real-
valued continuous functions on K. We establish eleven conditions equivalent
to the strong compactness of the order interval [0, x] in C(K), including the
following ones:

(i) {x > 0} consists of isolated points of K;
(ii) [0, x] is pointwise compact;
(iii) [0, x] is weakly compact;
(iv) the strong topology and that of pointwise convergence coincide on [0, x];
(v) the strong and weak topologies coincide on [0, x].

Moreover, the weak topology and that of pointwise convergence coincide on [0, x]
if and only if {x > 0} is scattered. Finally, the weak topology on [0, x] is
metrizable if and only if the topology of pointwise convergence on [0, x] is such
if and only if {x > 0} is countable.

Keywords: real linear lattice; order interval; locally solid; Banach lattice C(K);
strongly compact; weakly compact; pointwise compact; coincidence of topologies;
metrizable; scattered; Čech–Stone compactification

Classification: 46A40, 46B42, 46E05, 54C35, 54D30

1. Introduction

Not much seems to be known about topological properties of order intervals in

Banach lattices and more general linear lattices equipped with a linear topology. It

is the purpose of this paper as well as of two other papers [6] and [7] by the author

to improve the situation. In contrast to those papers, we are concerned below with

rather concrete linear lattices. They are the linear lattice C(K) of real-valued

continuous functions on a completely regular space K and its linear sublattice

Cb(K) consisting of bounded functions. We consider C(K) equipped with the

topology p of pointwise convergence on K and Cb(K) equipped, in addition, with

the strong topology s given by the uniform norm and the weak topology w.

Let x ∈ C(K) be positive. We establish four conditions equivalent to the

pointwise compactness of [0, x], including the following one: {x > 0} consists of
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isolated points of K (see Proposition 1 in Section 3). We also show that the

topology of pointwise convergence is metrizable when restricted to [0, x] if and

only if {x > 0} is countable (see Proposition 3 in Section 5).

Let x be, moreover, bounded, i.e., x ∈ Cb(K). We then show that [0, x] is

strongly compact if and only if it is weakly compact if and only if {x > ε} is

finite for every ε > 0 (if and only if [0, x] is pointwise compact provided K is

compact). Four more equivalent conditions are also presented, two of which are

in terms of coincidence of pairs of topologies on [0, x] (see Theorem 1 in Section 3

for details).

Let now K be compact. The weak topology and that of pointwise convergence

then coincide on [0, x] if and only if {x > 0} is scattered (see Theorem 2 in

Section 4). Moreover, the weak topology restricted to [0, x] is metrizable if and

only if {x > 0} is countable (see Theorem 5 in Section 5).

The proofs use standard results from general topology, measure theory, and

functional analysis. Among those results are the Tychonoff product theorem,

the existence of the Čech–Stone compactification of a completely regular space,

and the Riesz representation theorem in the compact case. Our notation and

terminology are also mostly standard; see Section 2 for some explanations.

Sections 3 and 5 are essentially independent of each other, as far as the proofs

are concerned.

2. Preliminaries

We start with some terminology and notation concerning general linear lattices

(Riesz spaces in another terminology) with or without a compatible topology.

They will be applied below almost exclusively in the context of linear lattices

of real-valued continuous functions on a topological space, equipped with some

standard topologies.

Let X be a real linear lattice, with the order denoted by “6”. As usual,

X+ stands for the positive cone of X . The order interval [0, x], where x ∈ X+,

is the set

{y ∈ X : 0 6 y 6 x}.

Let {xα} be a net in X . We write xα ↓ 0 if the net is directed downwards and

its order limit infα xα equals 0.

Let τ be a (Hausdorff) linear topology on X and let x ∈ X+. We say that τ

is order continuous (o.c., for short) or has the Lebesgue property on [0, x] if, for

every net {xα} in [0, x] with xα ↓ 0, we have xα → 0 with respect to τ (cf. [1,

Definition 12.7] and [2, Definition 3.1(2)]). In the case where τ is given by a lattice
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norm and this condition holds for every x ∈ X+, the norm is often called order

continuous.

Let τ1 and τ2 be linear topologies on X and let x ∈ X+. We write

τ1 = τ2 on [0, x],

if the restrictions of τ1 and τ2 to [0, x] coincide.

The terminology concerning topological spaces we use is standard and mostly

follows Engelking’s monograph [4]. This is, in particular, the case of the notion

of a completely regular space, but not that of a compact space, where we assume

the Hausdorff axiom, following N. Bourbaki.

Throughout the rest of the paper, K stands for a completely regular space. This

includes, of course, the case where K is compact.

The set of accumulation points of K is denoted by Kd, and its complement

by Kdc. Thus, t ∈ Kdc if and only if t is an isolated point of K.

We denote by C(K) the linear lattice of real-valued continuous functions on K,

equipped with the usual algebraic operations and pointwise order. The linear sub-

lattice of C(K) consisting of bounded functions is denoted by Cb(K). Equipped

with the uniform norm ‖·‖, Cb(K) becomes a Banach lattice. Its strong and weak

topologies are denoted by s and w, respectively. The linear lattice C(K) carries

the topology of pointwise convergence, which we denote by p. We note that, in

the literature, the notation Cp(K) is often used in this connection (see, e.g., [3]

or [8]).

The following lemma will be used repeatedly below. The simple proof is left

to the reader.

Lemma 1. Let x ∈ C(K)+, let t1, . . . , tn be different points of K, and let

s1, . . . , sn ∈ R+ be such that si 6 x(ti) for all i. Then there exists

y ∈ [0, x] with y(ti) = si for all i.

Let K be compact and let M(K) stand for the Banach lattice of real-valued

Radon measures on K. By the Riesz representation theorem, M(K) can be

identified with the dual of C(K) (see, e.g., [9, § 18]). We shall apply this theorem,

sometimes tacitly, many times below. In particular, this is the case when the weak

topology is involved (see the proofs of Theorem 1, (vii) ⇒ (ii), Theorem 2 and

Lemma 2). We set

S(K) = {µ ∈ M(K)+ : µ(K) = 1}.
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3. Compactness. Coincidence of the strong topology with the weak

topology or with the topology of pointwise convergence

Our first concern is compactness with respect to the topology of pointwise

convergence in the general case.

Proposition 1. Let x ∈ C(K)+. The following five conditions are then equiva-

lent:

(i) ([0, x], p) is compact;

(ii) {x > 0} ⊂ Kdc;

(iii) p is o.c. on [0, x];

(iv) [0, x] = {y ∈ R
K : 0 6 y 6 x};

(v) ([0, x], p) is complete.

In connection with condition (v), recall that a subset E of a topological linear

space is called complete if every Cauchy net of elements of E converges to an

element of E (see [2, page 52]).

Proof: By Lemma 1, (i) implies (iv). The converse implication is a consequence

of the Tychonoff product theorem. Clearly, (iv) implies (iii).

To derive (iv) from (ii), consider y ∈ R
K with 0 6 y 6 x and t ∈ K. If

x(t) = 0, then t is, clearly, a continuity point of y. Otherwise, t is an isolated

point of K, by (ii). Thus, y is continuous.

Suppose (ii) fails. We shall show that (iii) then fails, too. Let t0 ∈ Kd be such

that x(t0) > 0. The set

{y ∈ [0, x] : y(t0) = x(t0)}

is then directed downwards by “6” and the corresponding net converges pointwise

to 0 for t ∈ K with t 6= t0, and so its order limit in C(K) equals the con-

stant 0 function. Thus, (iii) fails.

Clearly, (iv) implies (v). Finally, (v) implies (iv), by Lemma 1. �

Remark 1. Clearly, the equivalent conditions (i)–(v) of Proposition 1 imply that

[0, x] is order complete and atomic. (The latter means that x = 0 or x is the

supremum of the set of all atoms c of C(K) with c 6 x; see [6, Section 2].) The

converse does not hold even if K is compact. Indeed, if K = βN and x = 1K ,

then [0, x] is order complete (see [9, Example 24.2.6 (a) and Theorem 24.7.1]).

Moreover, x is the supremum of the set

{1{n} : n ∈ N}

in C(K), but (ii), obviously, fails.

Conditions (i)–(iii) of the following theorem are, clearly, stronger versions of

the corresponding conditions of Proposition 1. Moreover, they are equivalent to
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them when K is compact. In particular, condition (iii) of Proposition 1 then

implies condition (iii) of Theorem 1, by Dini’s theorem.

Theorem 1. Let x ∈ Cb(K)+. The following seven conditions are then equiva-

lent:

(i) ([0, x], s) is compact;

(ii) {x > ε} is finite for every ε > 0;

(iii) s is o.c. on [0, x];

(iv) s = p on [0, x];

(v) ([0, x], w) is compact;

(vi) w is o.c. on [0, x];

(vii) s = w on [0, x].

They imply the next two conditions:

(viii) ([0, x], p) is compact;

(ix) p is o.c. on [0, x].

If K is compact, then conditions (i)–(ix) are all equivalent.

Proof: We start by establishing the equivalence of conditions (i)–(iv). Clearly,

(i) implies (iv). We shall show the implications (iv) ⇒ (ii) ⇒ (i) and the equiva-

lence (ii) ⇔ (iii).

Suppose (ii) fails, i.e., {x > ε0} is infinite for some ε0 > 0. Set

V = {y ∈ [0, x] : ‖y‖ < ε0}.

We claim that there is no neighbourhood W of 0 in ([0, x], p) with W ⊂ V , and

so (iv) fails, too. We may assume that

W = {y ∈ [0, x] : y(t) < η for t ∈ F},

where F is a finite subset of K and η > 0. Choose t0 ∈ F c with x(t0) > ε0. By

Lemma 1, there exists y ∈ [0, x] such that

y|F = 0 and y(t0) = ε0.

Hence y ∈ W \ V , proving our claim.

Suppose (ii) holds, and fix ε > 0. Let M be a finite ε-mesh in the product

∏

t∈{x>ε}

[0, x(t)]

equipped with the uniform metric. For every z ∈ M choose z̃ ∈ [0, x] such that

z̃|{x > ε} = z

(see Lemma 1). Then {z̃ : z ∈ M} is a finite ε-mesh in [0, x], and so (i) follows.
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Suppose (ii) holds. We then have {x > 0} ⊂ Kdc. Let {xα} be a net in [0, x]

with xα ↓ 0. By Proposition 1, (ii) ⇒ (iii), xα → 0 pointwise on K. Fix ε > 0,

and set F = {x > ε}. There exists α0 such that

xα(t) 6 ε for t ∈ F and α > α0,

and so ‖xα‖ 6 ε for α > α0. Therefore, ‖xα‖ → 0, and (iii) follows.

Suppose (iii) holds. By Proposition 1, (iii) ⇒ (ii), we then have {x > 0} ⊂ Kdc.

Assume, to get a contradiction, that {x > ε0} is infinite for some ε0 > 0. For

every finite F ⊂ {x > ε0} set

xF = ε01{x>ε0}\F .

We have xF ∈ [0, x], since {x > ε0} and F are closed-and-open subsets of K.

Consider the net {xF }, where the index set is directed upwards by inclusion. We

then have xF (t) ↓ 0 for every t ∈ K, but ‖xF ‖ = ε0 for all F as above. This

contradicts (iii).

The implications (i) ⇒ (v) ⇒ (viii) and (iii) ⇒ (vi) are clear. So is the

implication (i) ⇒ (vii). The equivalence of (viii) and (ix) holds, by Proposition 1.

If K is compact, then (viii) implies (ii), by Proposition 1, (i) ⇒ (ii). Summing

up, in the compact case, conditions (i)–(vi), (viii) and (ix) are all equivalent.

Suppose K is compact and (ii) fails. We shall show that (vii) then fails, too.

Let ε0 > 0 be such that {x > ε0} is infinite, and set

V = {y ∈ [0, x] : ‖y‖ < ε0}.

We shall show that V does not contain any weak neighbourhood W of 0 in [0, x].

We may assume that

W =

{

y ∈ [0, x] :

∫

y dµi < η, i = 1, . . . , n

}

,

where η > 0 and µ1, . . . , µn ∈ M(K)+. Let κi and λi be the atomic and

nonatomic components of µi, respectively. There exists a finite subset F of K

such that

κi(F
c) <

η

2ε0
, i = 1, . . . , n.

Choose t0 ∈ F c with x(t0) > ε0 and an open subset O of F c such that

t0 ∈ O and λi(O) <
η

2ε0
, i = 1, . . . , n.

It follows that µi(O) < η/ε0 for all i. Finally, let y0 ∈ [0, x] be such that

y0 6 ε0, y0(t0) = ε0 and y0|O
c = 0.

Clearly, y0 ∈ W \ V .
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Finally, we note that Cb(K) and C(βK) can be identified as Banach lattices via

extension by continuity. Therefore, the equivalence of conditions (i) and (v)–(vii)

carries over from the compact case to the general one. �

Condition (vii) of Theorem 1 also appears, in the context of Banach lattices

with o.c. norm, in [6, Theorem 6]. For more conditions equivalent to the compact-

ness of an order interval in an arbitrary linear lattice equipped with a Hausdorff

locally solid (convex-solid, respectively) topology, see [7] ([2, Theorem 6.56], re-

spectively).

Remark 2. (a) In the case where K is compact, the implication (viii) ⇒ (v) of

Theorem 1 holds for arbitrary bounded subsets of C(K), by a result of Grothen-

dieck (see [5, Theorem 4.2]).

(b) The implications (v) ⇒ (iii) and (vi) ⇒ (iii) of Theorem 1 hold in an

arbitrary linear lattice equipped with a Hausdorff locally convex-solid topology

(see [2, Theorem 6.46, (i) ⇒ (iv)] and [1, Theorem 11.8], respectively).

(c) In the setting of Theorem 1, condition (iii) implies (vii), by a general clas-

sical result (see [2, Theorem 4.22]), since we have p ⊂ w ⊂ s.

(d) One of the steps in the proof of Theorem 1 is the derivation of (ii) from

(vii) in the case where K is compact. Instead one can derive (v) from (vii) in that

case, by applying [2, Theorem 6.46, (v) ⇒ (i)], the Riesz representation theorem,

and the Lebesgue convergence theorem.

The compactness assumption in the final part of Theorem 1 is essential. This

follows from assertions (1)–(3) of the next proposition.

Proposition 2. Let K be an infinite discrete space. In the Banach space Cb(K)

the following holds:

(1) ([0, 1K ], s) is not compact;

(2) ([0, 1K ], p) is compact;

(3) p is o.c. on [0, 1K ];

(4) ([0, 1K ], w) is not metrizable;

(5) ([0, 1K ], p) is metrizable provided K is countable.

Proof: Assertions (1), (3) and (5) are plain. Assertion (2) holds, by the Ty-

chonoff product theorem.

Since Cb(K) is not separable, neither is its dual space, by a well-known result.

Therefore, (4) follows from [1, Theorem 10.8]. �

Remark 3. The equivalence of conditions (i) and (vii) of Theorem 1 also holds in

an arbitrary Banach lattice X with o.c. norm, because ([0, x], w) is then compact

for every x ∈ X+ (see [1, Theorem 12.9, (1) ⇒ (5)]). The author does not know

whether the assumption of order continuity is essential.
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4. Coincidence of the weak topology with that of pointwise conver-

gence

Our next result should be compared with Theorem 1 whose conditions (iv) and

(ii) are, clearly, stronger than conditions (i) and (iii) below, respectively.

Theorem 2. Let K be compact and let x ∈ C(K)+. The following three condi-

tions are then equivalent:

(i) w = p on [0, x];

(ii) {x > 0} is scattered;

(iii) {x > ε} is scattered for every ε > 0.

Proof: Clearly, (ii) implies (iii). The converse is seen, since if D is a nonempty

dense-in-itself subset of {x > 0}, thenD ∩ {x > ε} is dense-in-itself and nonempty

for ε small enough. We shall show that (i) and (iii) are also equivalent.

Suppose (iii) fails. Then there is an ε0 > 0 such that L = {x > ε0} is

not scattered. Let µ ∈ S(K) be nonatomic and such that µ(Lc) = 0 (see [9,

Theorem 19.7.6]). Set

V =

{

y ∈ [0, x] :

∫

y dµ <
1

2
ε0

}

.

Then V is a neighbourhood of 0 in ([0, x], w). We claim that W \V 6= ∅ for every

neighbourhood W of 0 in ([0, x], p). We may assume that

W = {y ∈ [0, x] : y(t) < η for all t ∈ F},

where F is a finite subset of K and η > 0. To establish the claim, take a closed

subset L0 of L such that

µ(L0) >
1

2
and L0 ∩ F = ∅.

Let, further, y0 ∈ [0, x] be such that

y0|L0 = ε0 and y0|F = 0.

Clearly, y0 ∈ W . On the other hand,

∫

y0 dµ >

∫

L0

y0 dµ >
1

2
ε0,

and so y0 /∈ V . Thus, the claim is established. Therefore, (i) fails, too.

Suppose (iii) holds and x 6= 0. To derive (i), it is enough to show that, given

y0 ∈ [0, x], µ ∈ S(K) and η > 0, the neighbourhood V of y0 in ([0, x], w) defined
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by

V =

{

y ∈ [0, x] :

∣

∣

∣

∣

∫

(y − y0) dµ

∣

∣

∣

∣

< η

}

contains a neighbourhood of y0 in ([0, x], p). We assume, as we may, that η < ‖x‖.

Set L = {x > η/3}. We then have
∣

∣

∣

∣

∫

Lc

(y − y0) dµ

∣

∣

∣

∣

6

∫

Lc

|y − y0| dµ 6
1

3
η for all y ∈ [0, x].

Since L is scattered, we can find a (nonempty) finite subset F of L such that

µ(L \ F ) <
η

3‖x‖
,

see [9, Theorem 19.7.6]. It follows that
∣

∣

∣

∣

∫

L\F

(y − y0) dµ

∣

∣

∣

∣

6

∫

L\F

|y − y0| dµ

6 ‖x‖ µ(L \ F ) <
1

3
η for all y ∈ [0, x].

Set

W =

{

y ∈ [0, x] : |y(t)− y0(t)| <
η

3n
for all t ∈ F

}

,

where n is the cardinality of F . For y ∈ W we then have
∣

∣

∣

∣

∫

F

(y − y0) dµ

∣

∣

∣

∣

6
∑

t∈F

|y(t)− y0(t)| <
1

3
η.

It follows that W ⊂ V . Thus, (i) is established. �

Remark 4. The implication (i) ⇒ (ii) of Theorem 2 extends to an arbitrary

completely regular space K and x ∈ Cb(K)+. This is seen by considering the

continuous extension xβ of x to βK and noting that the condition that w = p on

[0, x] implies w = p on [0, xβ] in C(βK). The converse implication fails, however,

as assertions (4) and (5) of Proposition 2 show.

5. Metrizability

We start with a version of well-known results (see [3, Theorem I.1.1] or [8,

Corollary 6.2.3]).

Proposition 3. For x ∈ C(K)+ the following two conditions are equivalent:

(i) ([0, x], p) is metrizable;

(ii) {x > 0} is countable.

Under these conditions, ([0, x], p) is separable.
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Proof: The implication (ii) ⇒ (i) and the additional assertion are seen, since

the mapping

[0, x] ∋ y 7−→ y|{x > 0} ∈ R
{x>0}

is a homeomorphic embedding of ([0, x], p) into (R{x>0}, p).

Suppose (ii) fails. We shall show that (i) then fails, too. To this end, fix a se-

quence (Vn) of neighbourhoods of 0 in ([0, x], p). We shall find a neighbourhood V

of 0 in ([0, x], p) with Vn \ V 6= ∅ for each n. We may assume that

Vn = {y ∈ [0, x] : y(t) < ηn for all t ∈ Fn},

where ηn > 0 and Fn is a finite subset of K for each n. Choose

t0 ∈ K \
∞
⋃

n=1

Fn with x(t0) > 0,

and set

V =
{

y ∈ [0, x] : y(t0) <
1

2
x(t0)

}

.

By Lemma 1, we can find yn ∈ Vn with yn(t0) = x(t0)/2. Thus, V is as desired.

�

The equivalent conditions (i) and (ii) of Proposition 3 are not implied by its

additional assertion even if K is compact. A counterexample is, e.g., K = [0, 1]

and x = 1K .

In the proof of Theorem 3 below we shall apply the following lemma.

Lemma 2. Let K be compact, let x ∈ C(K)+, and let {x > 0} be uncountable.

If (Vn) is a sequence of neighbourhoods of 0 in ([0, x], w), then there exists a neigh-

bourhood V of 0 in ([0, x], p) with Vn \ V 6= ∅ for each n.

Proof: By assumption, {x > ε0} is uncountable for some ε0 > 0. We may

assume that

Vn =

{

y ∈ [0, x] :

∫

y dµi
n < ηn; i = 1, . . . ,mn

}

,

where

µi
n ∈ S(K) and ηn > 0, i = 1, . . . ,mn and n = 1, 2, . . .

Let κ i
n and λi

n be the atomic and nonatomic components of µi
n, respectively.

Let Fn be a finite subset of K such that

κ
i
n(F

c
n) <

ηn
2‖x‖

, i = 1, . . . ,mn and n = 1, 2, . . .

Fix t0 ∈ {x > ε0} \
⋃∞

n=1
Fn, and set

V = {y ∈ [0, x] : y(t0) < ε0}.
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Fix n, and choose a neighbourhood O of t0 with

O ∩ Fn = ∅ and λi
n(O) <

ηn
2‖x‖

, i = 1, . . . ,mn.

Finally, let y0 ∈ [0, x] be such that

y0(t0) = ε0 and y0|O
c = 0.

Clearly, y0 /∈ V . On the other hand, we have

∫

y0 dκ
i
n =

∫

F c

n

y0 dκ
i
n <

1

2
ηn,

∫

y0 dλ
i
n =

∫

O

y0 dλ
i
n <

1

2
ηn

for i = 1, . . . ,mn. It follows that y0 ∈ Vn. �

Theorem 3. LetK be compact and let x ∈ C(K)+. The following two conditions

are then equivalent:

(i) ([0, x], w) is metrizable;

(ii) {x > 0} is countable.

Under these conditions, w = p on [0, x].

Proof: The implication (i) ⇒ (ii) is a consequence of Lemma 2. Suppose (ii)

holds. Then {x > ε} is countable, and so scattered (see [9, Proposition 8.5.7]) for

every ε > 0. By an application of Theorem 2, (iii) ⇒ (i), and Proposition 3, we

get (i) and the additional assertion. �

The equivalent conditions (i) and (ii) of Theorem 3 are not implied by its

additional assertion. This is seen, by taking for K an arbitrary uncountable

compact scattered space and x = 1K , and applying Theorem 2.

Remark 5. The implication (i) ⇒ (ii) of Theorem 3 extends to an arbitrary

completely regular space X and x ∈ Cb(K)+. This is seen, by using βK as in Re-

mark 4. However, the converse implication fails, as assertion (4) of Proposition 2

shows.

In the special case where x = 1K , the equivalence of conditions (i) and (ii)

of Theorem 3 also follows from [1, Theorem 10.8] and the Riesz representation

theorem.
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