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Abstract. For a complex character χ of a finite group G, it is known that the product
sh(χ) =

∏

l∈L(χ)

(χ(1) − l) is a multiple of |G|, where L(χ) is the image of χ on G − {1}.

The character χ is said to be a sharp character of type L if L = L(χ) and sh(χ) = |G|.
If the principal character of G is not an irreducible constituent of χ, then the character χ
is called normalized. It is proposed as a problem by P. J. Cameron and M.Kiyota, to find
finite groups G with normalized sharp characters of type {−1, 0, 2}. Here we prove that
such a group with nontrivial center is isomorphic to the dihedral group of order 12.
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1. Introduction

Let G be a finite group, χ be a (complex) character of G, and L(χ) be the image

of χ on G − {1}. Put sh(χ) =
∏

l∈L(χ)

(χ(1) − l). It is known that for any complex

character χ of a finite group G, the order of G divides sh(χ), see [3]. The pair (G,χ)

(or briefly, the character χ) is called sharp of type L if L = L(χ) and sh(χ) = |G|.

It is obvious that χ is faithful whenever (G,χ) is sharp. The pair (G,χ) (or briefly,

the character χ) is said to be normalized if (χ, 1G)G = 0, where 1G is the principal

character of G and the product (χ, θ)G of two characters χ and θ of G is defined as:

(χ, θ)G :=
1

|G|

∑

g∈G

χ(g)θ(g−1).
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In [5], Cameron and Kiyota posed the problem of classifying normalized sharp

pairs (G,χ) of type L for a given set L of algebraic integers. The case that L

contains at least an irrational value has been settled by Alvis and Nozawa, see [2].

However, there are few results for the case that L contains only rational integers,

see [4], [5], [9], [10].

By [5], Propositions 1.2 and 1.3, if (G,χ) is sharp of type {l} and normalized,

then l = −1 and χ = ̺G − 1G, where ̺G is the regular character of G and if

(G,χ) is normalized and sharp of type L = {l1, l2}, where l1 and l2 are distinct

rational integers, then (χ, χ)G = 1 − l1l2 and l1 < 0 6 l2. This implies that

(χ, χ)G = 1 if and only if (G,χ) is of type {l, 0}, where l < 0; (χ, χ)G = 2 if

and only if (G,χ) is of type {−1, 1}; and (χ, χ)G = 3 if and only if (G,χ) is of

type {−1, 2} or {−2, 1}. For the first case, some properties of G and χ have been

stated in [5], [11], and the sharp pairs of the second case have been given in [4].

Also the last case was settled for groups with nontrivial centers in [10], which was

generalized to the case (χ, χ)G = p, where p is an odd prime and L(χ) = {l, l + p},

for l = −1 or 1 − p, see [12]. Furthermore, the normalized sharp pairs (G,χ) of

type L = {ε,−3ε}, where ε = ±1 and the center Z(G) of G is nontrivial, have

been studied in [1]. In Problem 7.5 of [5], it is proposed to find finite groups G

having a normalized sharp character χ of type L = {−1, 0, 2}. In this paper, we

study these groups G under the additional hypothesis Z(G) > 1, and we prove the

following theorem:

Main Theorem. Suppose that (G,χ) is normalized and sharp of type L =

{−1, 0, 2} and Z(G) > 1. Then G is isomorphic to the dihedral groupD12 of order 12.

To prove our main theorem, we show that χ is the sum of two distinct real valued

irreducible characters of G, and χ(1) is odd.

For groups with trivial center in Problem 7.5 of [5], we just consider simple groups

having a normalized sharp irreducible character. In Lemma 2.1, simple groups with

normalized sharp irreducible character of type L = {−1, 0, 2} are characterized, using

the fact that there exist exactly three simple groups having a faithful irreducible

character χ with exactly four distinct values χ(1), −1, 0, 2, see [10].

2. Main results

Throughout this paper, G is a finite group having a normalized sharp character χ

of type L = {−1, 0, 2}. Set n := χ(1). Since χ is sharp, |G| = n(n + 1)(n − 2) =

n3 − n2 − 2n and n > 3.
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Lemma 2.1. Suppose that G is a simple group. If χ is irreducible, then n is even

and G is isomorphic to either PSL(2, 7) or A7.

P r o o f. By [10], proof of Claim B6, there exist exactly three simple groups

having a faithful irreducible character χ which takes exactly four distinct val-

ues χ(1), −1, 0, 2. Those are PSL(2, 7) with χ(1) = 6, alternating group A7 with

χ(1) = 14 and PSL(3, 3) with χ(1) = 26. The character χ is sharp of type {−1, 0, 2},

for groups PSL(2, 7) and A7. �

Lemma 2.2. Let g ∈ G and o(g) = 2.

(1) If n is even, then χ(g) ∈ {0, 2}.

(1) If n is odd, then χ(g) = −1.

P r o o f. By [4], proof of Proposition 3, if θ is a rational valued character of a finite

group G, y ∈ G and s is a prime, then θ(ys) ≡ θ(y) mod s.

(1) Since o(g) = 2, we have χ(g) ≡ χ(1) = n mod 2. Therefore, χ(g) ∈ {0, 2}.

(2) Note that χ(g) ≡ χ(1) = n mod 2. Now since n is odd, it follows that

χ(g) = −1. �

Lemma 2.3. If Z(G) > 1, then χ is a sum of two distinct real valued irreducible

characters of G.

P r o o f. Note that by [5], Proposition 1.3 (ii), (χ, χ)G 6 2. First assume that χ is

an irreducible character of G. Since χ is faithful, it follows from [7], Lemma 2.27 (f)

that Z(G) = Z(χ) := {g ∈ G : |χ(g)| = χ(1)}. Therefore, χ(g) = −n for every

nontrivial element g ∈ Z(G), which implies that n = 1. This is a contradiction

and so (χ, χ)G = 2. Hence, χ = χ1 + χ2, where χ1 and χ2 are distinct irreducible

characters of G.

Since χ is rational valued, it follows that χ1+χ2 = χ1+χ2. As complex conjugate

of an irreducible character is also irreducible and irreducible characters are linearly

independent, it follows that either χ1 = χ2 or both χ1 and χ2 are real valued. First

suppose that χ = χ1+χ1 is the sum of two complex conjugate irreducible characters

of G. We show that χ1 is faithful. Let g ∈ ker(χ1). Therefore, χ(g) = χ1(g)+χ1(g) =

χ1(1) + χ1(1) = χ(1), and so g = 1 since χ is faithful. Hence, χ1 is faithful. Now

by [7], Theorem 2.32 (a), Z(G) is cyclic. Suppose that Z(G) = 〈z〉 and o(z) = r > 1.

As χ = χ1 + χ1, by [7], Lemma 2.27 (c), we have χ(z) = χ1(1)(ξ + ξ), where ξ is

a primitive rth root of unity since χ is faithful. As χ(z) is rational, it follows that

r ∈ {2, 3, 4, 6}. If r = 2, then χ(z) = −2χ1(1) ∈ {−1, 0, 2}, which is impossible. If

r = 3, then ξ+ξ = 2 cos(23π) = −1 and χ(z) = −χ1(1) ∈ {−1, 0, 2}, which contradicts

n > 3. Now suppose r = 6. Then ξ+ξ = 2 cos(13π) = 1 and χ(z) = χ1(1) ∈ {−1, 0, 2}.
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Therefore, χ1(1) = 2, n = 4 and |G| = 40. It is easy to check all groups of order 40

by GAP (see [6]) to see none of them have the requested property. Hence, r = 4 and

Z(G) = 〈z〉 ∼= C4. Then χ(z
2) = χ1(1)(η+η), where η is the primitive square root of

unity. Therefore, by Lemma 2.2, χ(z2) = −2χ1(1) ∈ {0, 2}, which is a contradiction.

Hence, both χ1 and χ2 are real valued and this completes the proof. �

In the sequel of the paper, we assume that χ is the sum of two distinct real valued

irreducible characters χ1 and χ2 of G.

Lemma 2.4.

(1) Z(G) =
2⋂

i=1

Z(χi).

(2) Z(G) is the direct product of at most two cyclic subgroups.

P r o o f. (1) Since χ is faithful, the intersection of kernels of irreducible constitutes

of χ is trivial. Now (1) follows from the proof of [7], Corollary 2.28.

(2) Since
2⋂

i=1

ker(χi) = 1, it follows that G can be embedded into
2∏

i=1

G/ ker(χi) and

so Z(G) is isomorphic to a subgroup of
2∏

i=1

Z(G/ ker(χi)). By Lemma 2.27 (f) of [7],

Z(G) →֒
2∏

i=1

Z(χi)/ ker(χi). Now Lemma 2.27 (d) of [7] completes the proof. �

Lemma 2.5.

(1) Z(G) is an elementary abelian 2-group of order at most 4.

(2) If z is a nontrivial element of Z(G), then

(χ1(z), χ2(z)) ∈ {(χ1(1),−χ2(1)), (−χ1(1), χ2(1))}.

P r o o f. (1) By Lemma 2.4 (1), Z(G) = Z(χ1) ∩ Z(χ2). Since both χ1 and χ2

are real valued, it follows from [7], Lemma 2.27 (c) that χi(z) = ±χi(1) and so

χi(z
2) = χi(1) for all z ∈ Z(G) and i ∈ {1, 2}. Thus, χ(z2) = χ1(z

2)+χ2(z
2) = χ(1)

and so z2 = 1 since χ is faithful. Now Lemma 2.4 (2) completes the proof.

(2) By the proof of part (1) we have χi(z) = ±χi(1) for a nontrivial element

z ∈ Z(G) and i = 1, 2. Since χ(z) = χ1(z) + χ2(z) > −1 and χ(z) 6= χ(1) =

χ1(1) + χ2(1) (χ is faithful), the result follows. �

Lemma 2.6. |Z(G)| 6 2.

P r o o f. We first claim that there exists at most one element z ∈ Z(G) such that

(χ1(z), χ2(z)) = (χ1(1),−χ2(1)). Suppose that there exist elements z1, z2 ∈ Z(G)

such that

(χ1(z1), χ2(z1)) = (χ1(z2), χ2(z2)) = (χ1(1),−χ2(1)).
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Now we have χ(z1z2) = χ1(z1z2) + χ2(z1z2). By [7], Lemma 2.27 (c), there exists

linear character λ1 of Z(χ1) such that

χ1(z1z2) = χ1(1)λ1(z1z2) = χ1(1)λ1(z1)λ1(z2) = χ1(1)λ1(z2) = χ1(z2) = χ1(1).

Similarly, we have χ2(z1z2) = χ2(1). Therefore, χ(z1z2) = χ(1) and so z1z2 = 1.

Hence, z1 = z2 by Lemma 2.5 (1), as we claimed.

By a similar argument one can prove that there exists at most one element

z′ ∈ Z(G) such that (χ1(z
′), χ2(z

′)) = (−χ1(1), χ2(1)).

Now Lemma 2.5 (2) implies that |Z(G)| 6 3 and so by Lemma 2.5 (1) we have

|Z(G)| 6 2. �

Remark 2.7. In view of Lemmas 2.5 (2) and 2.6, whenever Z(G) 6= 1, we shall

assume without loss of generality that there exists a (unique) nontrivial element

z ∈ Z(G) such that χ1(z) = χ1(1), χ2(z) = −χ2(1).

Lemma 2.8. Suppose that n is even and Z(G) > 1. Then

(1) χ1(g) ∈ {0,±1, 2} and χ2(g) ∈ {0,±1} for all g ∈ G \ Z(G).

(2) ker(χ1) = Z(G).

(3) ker(χ2) = 1.

P r o o f. (1) By Remark 2.7 assume that there exists a nontrivial element

z ∈ Z(G) such that χ1(z) = χ1(1), χ2(z) = −χ2(1). Note that if Xi is a rep-

resentation corresponding to χi for i = 1, 2, then X1(z) = Iχ1(1) and X2(z) =

−Iχ2(1) by [7], Lemma 2.27. Therefore, χ(gz) = χ1(g) − χ2(g) for all g ∈ G.

Thus, χ(g) + χ(gz) = 2χ1(g) and χ(g) − χ(gz) = 2χ2(g) for all g ∈ G. Now

L(χ) = {−1, 0, 2} implies that χ1(g) ∈ {0,±1, 2} and χ2(g) ∈ {0,±1} for all

g ∈ G \ Z(G).

(2) By Lemma 2.6, we may assume that z is the unique nontrivial element

of Z(G). Since by Remark 2.7 we have z ∈ ker(χ1), it follows that Z(G) 6

ker(χ1). Suppose, for a contradiction, that there exists an element x ∈ ker(χ1) \

Z(G). As in the proof of part (1), χ(x) + χ(xz) = 2χ1(1) and so regard-

ing L(χ) we have χ1(1) ∈ {1, 2}. On the other hand, by Remark 2.7 and

Lemma 2.2, χ(z) = χ1(1) − χ2(1) and χ(z) ∈ {0, 2}. Hence, χ2(1) ∈ {1, 2}.

Since n > 4 is even, the only possibility is (χ1(1), χ2(1)) = (2, 2). There-

fore, n = 4 and |G| = 40. It is easy to check all groups of order 40 by GAP

(see [6]) to see that none of them has the requested property, a contradiction.

Hence, ker(χ1) = Z(G).
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(3) First we show that ker(χ2) 6 Z(G). Suppose, for a contradiction, that there

exists an element x ∈ ker(χ2)\Z(G). Then as in the proof of part (1) for the unique

nontrivial element z ∈ Z(G) we have χ(x) − χ(xz) = 2χ2(1) and so χ2(1) = 1.

Since χ(z) = χ1(1) − χ2(1) ∈ {0, 2} by Remark 2.7 and Lemma 2.2, it follows that

χ1(1) ∈ {1, 3}. Since n > 4 is even, it follows that (χ1(1), χ2(1)) = (3, 1), n = 4 and

|G| = 40. But χ1(1) = 3 must divide |G|, a contradiction. It follows that ker(χ2) 6

Z(G). If ker(χ2) = Z(G), then by part (2) we have Z(G) = ker(χ1) ∩ ker(χ2) =

ker(χ) = 1, a contradiction. Hence, Lemma 2.6 implies that ker(χ2) = 1. �

Lemma 2.9. If n is even and z is the nontrivial element of Z(G), then χ(z) = 0.

P r o o f. Let n = χ1(1) + χ2(1) = 2k for a positive integer k. Therefore, by

Lemmas 2.2 and 2.6, χ(z) ∈ {0, 2} for the nontrivial element z ∈ Z(G). Suppose

that χ(z) = 2. On the other hand, χ(z) = χ1(1)−χ2(1), by Remark 2.7. Therefore,

χ1(1) = k+1 and χ2(1) = k− 1. Note that χ1(1) | |G : Z(G)|, by [7], Theorem 6.15.

Using Lemma 2.6, it follows that k+1 is a divisor of 4k3− 2k2− 2k and so k+1 | 4.

Therefore, k = 1, 3. Note that n = 2k > 3. Hence, k = 3, n = 6 and |G| = 168. Now

it is easy to check all groups of order 168 by GAP (see [6]) to see that the groups

of order 168 have no sharp character of type L = {−1, 0, 2} with the requested

property, a contradiction. Therefore, χ(z) = 0. �

Lemma 2.10. If n is odd and Z(G) > 1, then G ∼= D12.

P r o o f. Let n = 2k+1 for a positive integer k. Therefore, by Lemmas 2.2 and 2.6,

|Z(G)| = 2 and χ(z) = −1 for the nontrivial element z ∈ Z(G). On the other hand,

χ(z) = χ1(1) − χ2(1), by Remark 2.7. Therefore, χ1(1) = k and χ2(1) = k + 1 are

divisors of |G| = 8k3 + 8k2 − 2k − 2. Hence, k = 1, 2.

If k = 1, then |G| = 12. Now using GAP (see [6]), it is easy to see that G ∼= D12.

If k = 2, then |G| = 90. By using GAP (see [6]), one can see that the groups of order

90 have no sharp character of type L = {−1, 0, 2} with the requested property. �

P r o o f of the Main Theorem. By Lemma 2.3, χ is the sum of two distinct

real valued irreducible characters χ1 and χ2 of G. First suppose n = χ1(1) +

χ2(1) = 2k for a positive integer k. By Remark 2.7 and Lemmas 2.6 and 2.9,

we have χ(z) = χ1(1) − χ2(1) = 0 for the unique nontrivial element z ∈ Z(G).

Therefore, χ2(z) = −χ2(1) = −k. On the other hand, χ2(g) ∈ {0,±1} for all

g ∈ G \ Z(G), by Lemma 2.8. Hence, L(χ2) ⊆ {0,±1,−k} and by [5], Theo-

rem 1.1, |G| |
∏

l∈L(χ2)

(χ2(1) − l). Thus, 2k(2k + 1)(2k − 2) | 2k2(k2 − 1). Therefore,

4k+ 2 | k(k+ 1). It is easy to see that (4k+ 2, k) = 1 or (4k+ 2, k+ 1) = 1. Hence,

4k+2 | k or 4k+2 | k+1, which is a contradiction. Thus, n is odd, and Lemma 2.10

completes the proof. �
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