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Abstract. Let A = {A;}ieq and B = {Bi}iee be C*-algebraic bundles over a finite

group G. Let C = @ Ay and D = @@ By. Also, let A = A and B = Be, where e is the
teG tea
unit element in G. We suppose that C' and D are unital and A and B have the unit elements

in C' and D, respectively. In this paper, we show that if there is an equivalence .A— B-bundle
over G with some properties, then the unital inclusions of unital C*-algebras A C C and
B C D induced by A and B are strongly Morita equivalent. Also, we suppose that A and B
are saturated and that A’NC = C1. We show that if A C C and B C D are strongly Morita
equivalent, then there are an automorphism f of G and an equivalence bundle A — Bf-
bundle over G with the above properties, where Bf is the C*-algebraic bundle induced
by B and f, which is defined by B/ = {B #(t) }teg- Furthermore, we give an application.

Keywords: C*-algebraic bundle; equivalence bundle; inclusions of C*-algebra; strong
Morita equivalence

MSC 2020: 46L05, 46L08

1. INTRODUCTION

Let A = {Ai}+ec be a C*-algebraic bundle over a finite group G. Let C = @ A;
teG
and A, = A, where e is the unit element in G. We suppose that C' is unital and

that A has the unit element in C. Then we obtain a unital inclusion of unital C*-
algebras, A C C. We call it the unital inclusion of unital C*-algebras induced by
a C*-algebraic bundle A = { A }ieq. Let E4 be the canonical conditional expectation
from C onto A defined by

EAz) =z, forallz= in eC.
teG
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Definition 1.1. Let A = {A;}+e¢ be a C*-algebraic bundle over a finite group G.
We say that A is saturated if A,Af = A forallt € G.

Since A is unital, in our case we do not need to take the closure in Definition 1.1.
If A is saturated, by [9], Corollary 3.2, E4 is of index-finite type and its Watatani
index Indy (E4) = |G|, where |G| is the order of G.

Let B = {Bi}tec be another C*-algebraic bundle over G. Let D = € B; and

B = B.. Also, we suppose that B has the same conditions as A. Let B ée]% be the
unital inclusion of unital C*-algebras induced by B.

Let X = {X;}1e¢ be an A — B-equivalence bundle defined by Abadie and Ferraro
(see [1], Definition 2.2). Moreover, we suppose that

C<XtaX8> = Ags-1, <Xt7XS>D = By-14
for any t,s € G, where ¢ (X}, Xs) means the linear span of the set
{C<x7y> S Atsfl B S Xt7 Y S XS}

and (X, Xs)p means the linear span of the similar set to the above. The above two
properties are stronger than properties (7R) and (7L) in [1], Definition 2.1.

In the present paper, we show that if there is an A — B-equivalence bundle X' =
{X:}teq such that (X, X)) = Ay—1 and (X, X5)p = By-1, for any ¢, s € G, then
the unital inclusions of unital C*-algebras A C C' and B C D induced by A and B are
strongly Morita equivalent. Also, we suppose that A and B are saturated and that
A'NC = C1. We show that if A C C and B C D are strongly Morita equivalent, then
there are an automorphism f of G and an A — B7-equivalence bundle X = {X;};cq
such that ¢(X¢, Xs) = Ays—1 and (X, Xo)p = By, for any t,s € G, where Bf
is the C*-algebraic bundle induced by B = {B;}icc and f, which is defined by
B/ = {Bf(t)}teG-

Let A and B be unital C*-algebras and X an A — B-equivalence bimodule. Then
we denote its left A-action and right B-action on X by a-z and z - b for any a € A,
b€ B and z € X, respectively. Also, we mean by the words “Hilbert C*-bimodules”
Hilbert C*-bimodules in the sense of Brown, Mingo and Shen, see [3].
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2. EQUIVALENCE BUNDLES OVER A FINITE GROUP

Let A = {A:}1eq and B = {B:}+cq be C*-algebraic bundles over a finite group G.

Let e be the unit element in G. Let C = @ A;, D = @ By and A= A,., B=B..
teG
We suppose that C' and D are unital and that A and B have the unit elements

in C and D, respectively. Let X = {X;}:cc be an A — B-equivalence bundle over G
such that

<Xta > Ats_lv <Xt7XS>D :Bt_ls
for any t,s € G. Let Y = @@ X; and X = X.. Then Y is a C — D-equivalence

teG
bimodule by Abadie and Ferraro (see [1], Definitions 2.1 and 2.2). Also, X is an

A — B-equivalence bimodule since ¢ (X, X) = 4 and (X, X)p = B.

Proposition 2.1. Let A = {A;}1eq and B = {B.}iec be C*-algebraic bundles

over a finite group G. Let C = @ A and D = @ B;. Also, let A = A, and
teG teG
B = B., where e is the unit element in G. We suppose that C' and D are unital and

that A and B have the unit elements in C' and D, respectively. Also, we suppose
that there is an A — B-equivalence bundle X = {X;}+c¢ over G such that

<Xta > Ats_lv <Xt7XS>D :Bt_ls

for any t,s € G. Then the unital inclusions of unital C*-algebras A C C' and B C D
are strongly Morita equivalent.

Proof. LetY = @ X; and X = X.. By the above discussions and [10],
teG
Definition 2.1, we only have to show that

cV, X)=C, (Y, X)p=D.

Let € X andy = > y: € Y, where y; € X; for any t € G. Then
teG

cly,x) = Zc<yt7$>v (y,x)p = Z<yt7$>D

teG teG

We note that ¢ (y:,x) € Ay and {y:, z)p € By for any t € G. Since p(Xy, Xs5) = Ao
and (X, Xs)p = B;-1, for any ¢, s € G, by the above computations, we can see that

c(V,X)=C, (Y,X)p=D.
Therefore we obtain the conclusion. O
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Next, we give an example of an equivalence bundle X = {X;};cq over G satisfying
the above properties. In order to do this, we prepare a lemma. Let A = {A;}1c¢ and
B = {Bt}tcc be as above. Let X = {X,;}+cc be a complex Banach bundle over G
with the maps defined by

(y,d) €Y xDr—y-deY, (y,z)eY xYw— (y,z)p €D,
(c,y) ECxY sc-yeY, (y2)€Y XY cly,2)eC,

where Y = @ X;.
teG

Lemma 2.2. With the above notation, we suppose that by the above maps, Y is
a C — D-equivalence bimodule satisfying that

C<XtaX8> = Ats—lv <Xt7XS>D = B;-1,

for any t,s € G. If X satisfies Conditions (1R)—(3R) and (1L)—(3L) in [1], Defini-
tion 2.1, then X is an A — B-equivalence bundle.

Proof. SinceY is a C — D-equivalence bimodule, X has Conditions (4R)—(6R)
and (4L)—(6L) in [1], Definition 2.1 except that X; is complete with the norms
1G9 = |le,))|Y? for any t € G. But we know that if Y is complete

with two different norms, then the two norms are equivalent. Hence, X; is com-

1/2

plete with the norms ||(-,-)p||'/2 = ||c(-,-)||*/? for any t € G. Furthermore, since

C<Xt; Xs> = Ay, <Xt7Xs>D = By
for any t, s € G, X has Conditions (7TR) and (7L) in [1], Definition 2.1. Therefore we
obtain the conclusion. O

We give an example of an A — B-equivalence bundle X = {X;},c¢ such that
C<XtaX8> :Ats—lv <Xt7XS>D = By,

for any t,s € G.

Example 2.3. Let G be a finite group. Let a be an action of G on a unital
C*-algebra A. Let u; be implementing unitary elements of «, that is, a; = Ad(uy)
for any t € G. Then the crossed product of A by a, A x, G is

Ax,G= {Zatut: as € A for any t € G}.
teG

Let A; = Au; for any t € G. By routine computations, we see that A, = {A;}teq is
a C*-algebraic bundle over G. We call A, the C*-algebraic bundle over G induced by
an action o. Let 8 be an action of G on a unital C*-algebra B and let Ag = {B;}+ec
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induced by (8, where B, = Buwv; for any t € G and v; are implementing unitary
elements of 8. We suppose that a and (3 are strongly Morita equivalent with respect
to an action A of G on an A — B-equivalence bimodule X. Let X x G be the crossed
product of X by A defined by Kajiwara and Watatani (see [5], Definition 1.4), that
is, the direct sum of n-copies of X as a vector space, where n is the order of G. And

its elements are written as formal sums so that

X x\G = {thwt: r; € X for anyteG},
teG

where w; are indeterminates for all t € G. Let C = A xo G, D = B xg G and
Y = X x G. Then by [5], Proposition 1.7, Y is a C' — D-equivalence bimodule,
where we define the left C-action and the right D-action on Y by

(aur) - (zws) = (a- Ae(x))wes,  (zws) - (bve) = (2 - Bs(b))vse

foranya € A, b€ B,z € X and t, s € G and we define the left C-valued inner prod-
uct and the right D-valued inner product on Y by extending linearly the following:

C<xwta yw8> = A<x7 >‘ts_1 (y)>ut5_17 <xwta yw8>D = ﬂt‘l (<£L', y>B)vt_1s

for any z,y € X, t,s € G. Let X; = Xw; for any ¢t € G and Xy = {X;}tec. Then

Y = @ X;. Also, X, has Conditions (1R)—(3R) and (1L)—(3L) in [1], Definition 2.1.
teG
Furthermore, X is an A — B-equivalence bimodule and X satisfies

C<Xta X8> = Ats*17 <Xt7XS>D = B,

for any t,s € G. Therefore X, is an A, — Ag-equivalence bundle by Lemma 2.2.

3. SATURATED C*-ALGEBRAIC BUNDLES OVER A FINITE GROUP

Let A = {At}+cc be a saturated C*-algebraic bundle over a finite group G. Let e

be the unit element in G. Let C = @ A; and A = A.. We suppose that C is
teG

unital and that A has the unit element in C. Let E be the canonical conditional
expectation from C onto A defined in Section 1, which is of Watatani index-finite
type. Let C; be the C*-basic construction of C' and e4 the Jones’ projection for E4.
By [9], Lemma 3.7, there is an action a* of G on C; induced by A defined as follows:
Since A is saturated and A is unital, there is a finite set {z!}}"; C A; such that
Nt nt

Soatal* =1 for any ¢t € G. Let e, = ) zlegal* for all ¢ € G. Then by [9],
i=1 i

i=1

439



Lemmas 3.3, 3.5 and Remark 3.4, {e;}+c¢ are mutually orthogonal projections in

A’ N Cy, which are independent of the choice of {z!}},, with ) e; = 1 such that C
teG

and e; generate the C*-algebra C; for all t € G. We define a* by a7*(c) = ¢ and
afr(ea) = ;-1 forany t € G, c € C. Let A; = {Yop}ieq be the C*-algebraic bundle
over G induced by the action o of G which is defined in [9], Sections 5, 6, that is, let
Y(y{\ = eAC'lag‘l(eA) = eaC1e;-1 for any t € G. The product e and the involution #
in A; are defined as follows:

(z, y)EYAxYAony—xat()EYA,

a:EYaf\»—)a:u:ozf,l( ") € Ypa
A

Lemma 3.1. With the above notation, A and A; are isomorphic as C*-algebraic
bundles over G.

Proof. Since Chy =CesC, for any t € G
Yaz‘l =eaCepCei1 = egACe1 = eaCes-1.

Let x be any element in C'. Then we can write that x = ) x5, where 25 € A;. Hence
seG

—1
eAa:etq:E eAxa: g EA zt eAa:t *
e
= E Tzl eaxt —eAa:tE ol =eqxy.

Thus, Yoa = eaCei—1 = egA; for any t € G. Let my be the map from A; to Y,
defined by 7 (z) = eqx for any x € A; and t € G. By the above discussions 7 is a
linear map from A; onto Y 4. Then

Ime(@)|1* = lleaza®eall = | B4 (@a*)eall = [|E* (z2*)| = |lzz*[| = ||z

Hence, 7; is injective for any t € G. Thus, A; = eAClaf(eA) as Banach spaces for
any t € G. Also, for any x € Ay, y € A, t,s € G,

-1,

-1
T (x) @ s (y) = eazai(eay) = eaze, 1y = ea mei eart *y

)

t—1 otk
€A E rx; x; Y= eaxy = ms(zy),
i

mo(@)f = ot (m(2)") = afts ((ean)”) = s (een) = e,

E r*ale ! —eAE rrrlat* = et = T ().
i

Therefore A = {A;}+cq and Ay = {Y 4 }iec are isomorphic as C*-algebraic bundles
over G. O
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4. STRONG MORITA EQUIVALENCE FOR UNITAL INCLUSIONS OF UNITAL
C*-ALGEBRAS

Let A = {At}ieq and B = { Bt }teq be saturated C*-algebraic bundles over a finite

group G. Let e be the unit element in G. Let C = @ Ay, D = @ B; and A = A,
teq@ teG
B = B.. We suppose that C and D are unital and that A and B have the unit

elements in C' and D, respectively. Let E4 and EP be the canonical conditional
expectations from C and D onto A and B defined in Section 1, respectively. They
are of Watatani index-finite type. Let A C C and B C D be the unital inclusions
of unital C*-algebras induced by A and B, respectively. We suppose that A C C
and B C D are strongly Morita equivalent with respect to a C — D-equivalence
bimodule Y and its closed subspace X. Also, we suppose that A’ N C = C1. Then
by [10], Lemma 10.3, BN D = C1 and by [7], Lemma 4.1 and its proof, there is
a unique conditional expectation EX from Y onto X with respect to E4 and EB.

Let C; and D; be the C*-basic constructions of C' and D and e4 and ep the
Jones’ projections for E4 and EB, respectively. Let o* and o be actions of G
on Cy and D; induced by A and B, respectively. Furthermore, let Cy and Dy be the
C*-basic constructions of C; and D, for the dual conditional expectations E€ of E4
and EP of EB, which are isomorphic to C; x,4 G and Dy x5 G, respectively. We
identify Cy and Dy with Cy X ,4 G and D1 x5 G, respectively. By [10], Corollary 6.3,
the unital inclusions C; C Cs and Dy C Ds are strongly Morita equivalent with
respect to a Cy — Day-equivalence bimodule Y5 and its closed subspace Y7, where Y]
and Y5 are the Cy — Di-equivalence bimodule and the C; — Ds-equivalence bimodule
defined in [10], Section 6, respectively, and Y7 is regarded as a closed subspace of Y,
in the same way as in [10], Section 6. Also, Cj N Cy = C1 by the proof of Watatani
(see [13], Proposition 2.7.3) since A’ N C = C1. Hence, by [11], Corollary 6.5, there
are an automorphism f of G, a C; — Dj-equivalence bimodule Z and an action A
of G on Z such that a* and 3, the action of G on D; defined by §,(d) = a?(t)(d)
for any t € G, d € D, are strongly Morita equivalent with respect to A.

Let Ay = {Ya;‘t tee and By = {Yafe}teg be the C*-algebraic bundles over G
induced by the actions a4 and aB, which are defined in Section 3. Furthermore, let
B = {B})}tec be the C*-algebraic bundle over G induced by B and f and let Bl =
{Y3, }+1ec be the C*-algebraic bundle over G induced by the action 3, which is defined
in Section 3. We construct an A; — B{ -equivalence bundle Z = {Z; };c¢ over G.

Let Z; = ea-Z - Bi(ep) for any t € G and let W = @ Z;. Also, by Lemma 3.1
teG
and its proof, @ Y 4 = C and P Yz, = D as C*-algebras. We identify € Y, 4
teG teG teqc
and € Y3, with C and D, respectively. We define the left C-action ¢ and the left
teG

441



C-valued inner product ¢(-,-) on W by

eazait(eq) olea-z- Bs(en)] def eazai(ea) - Mlea-z- Bs(en))
= ea - [zai'(ea) - M(2)] - Bus(en),
clea-w- Bulen), ea- 2 Bulen)) = o, lea - w- Biler), As-i(ea 2 Buler)))
= eac,(w-Bilen), Ais-1(2) - Bilen))ags- (ea),
where eAmaf‘(eA) € eAC'lozf‘(eA), ea-z-Psles) € Zs, ea-w- Pi(eg) € Zy. Also,

we define the right D-action, which is also denoted by the same symbol ¢ and the
D-valued inner product (-,-)p on W by

lea -z Bilen)] o epafylen) € ea- 2 Bilen)Bi(x)Bus(en)
=ea-[z- Biler)Bi(x)] - Bis(en),
(a2 Bilen) ea w-Bulen))p = B ((ea~ 2 Bilen),ea w- Bulen))p,)
=epfi-1({ea-z,ea-w)p,)B-15(en),
where epxfs(ep) € epD1fBs(er), ea -z Bi(ep) € Zy, ea - w - Bs(ep) € Zs. By the
above definitions, Z has Conditions (1R)-(3R) and (1L)—(3L) in [1], Definition 2.1.

We show that Z has Conditions (4R) and (4L) in [1], Definition 2.1 and that Z is
an A; — B{ -bundle in the same way as in Example 2.3.

Lemma 4.1. With the above notation, Z has Conditions (4R) and (4L) in [1],
Definition 2.1.

Proof. Letea-z-fi(ep) € Zi, eaw-Bs(ep) € Zs and epxf,-(ep) € egD15-(eB),
where ¢, s,7 € G. Then by routine computations, we can see that
(ea-z-Bilep),lea-w- Bs(ep) oeprBr(en))p
=(ea-z-Bilep),ea-w- Bs(ep))p o eprpfr(en)
and that

(ea-z-Bilen),ea-w- Bs(en))sy = (ea-w- Bs(en),ea-z- Bi(es))p.

Hence, Z has Condition (4R) in [1], Definition 2.1. Next, let e4 - z - Bi(ep) € Zt,
ea-w- Bs(ep) € Zs and eAxaA(eA) € eACla;f‘(eA), where t,s,7 € G. Then by

T

routine computations, we can see that
cleazaii(ea)olea-z- Bilen)],ea - w- Bu(en))
=eaza;i(ea) o clea- 2 Bile),ea-w- Bs(en)),
clea-z-Bilep),ea-w- Bs(er)) = clea-w- Bs(ep),ea- 2 Bi(ep)).

Hence, Z has Condition (4L) in [1], Definition 2.1. O
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By Lemma 4.1, W is a C— D-bimodule having Properties (1)—(6) in [5], Lemma 1.3.
In order to prove that Z has Conditions (5R), (6R) and (5L), (6L) in [1], Defi-
nition 2.1 using [5], Lemma 1.3, we show that W has Properties (7)—(10) in [5],
Lemma 1.3.

Lemma 4.2. With the above notation, W has the following:
(1) (eazai'(ea) o lea - z - Bs(ep)]) © epybr(en) = eazai*(ea) o ([ea - z - Bs(en)] o
eByﬁT(eB));
(2) (eazai*(ea)olea 2z Bs(en)]ea - w-Br(en))p = (ea-z- Bs(en). (earai(ea))to
lea-w-Br(es)])p,
(3) clea-z-Bs(en),[ea-w-B,(en)loepybi(en)) = cllea-z- Bs(en)| o (enyBi(en))?,
ea-w- Br(en)),
where x € Cy,y € D1, z,w € Z, t,s,7 € G.
Proof. We can show the lemma by routine computations. O

By Lemma 4.2, W has Properties (7), (8) in [5], Lemma 1.3.

Lemma 4.3. With the above notation, there are finite subsets {u;}; and {v;};
of W such that

Zui<><ui,x>p :xzzc<x,vj><>vj for any x € W.
{ J

Proof. Since Z is a C; — Dy-equivalence bimodule, there are finite subsets {z; };
and {w;}; of Z such that

Y gz ap, =2= o zw) w
( J
for any z € Z. Then for any z € Z, s € G,

> lea-zi-Bilen)] o (ea- zi- Bilen) ea- 2 Bulen))p

| = eaai-bilen)ofirllea s flen)ea- = Bulen)n.)
S e Ben) o enfis ((ea - 7ea- ) pu)Brors(en)
=S ez ulen)lea- ziea-2)p,Bulen)
=Y ea [z (i Bilen).ea-2)p.] - Balen)
= ea [z (sivea2)p)) - alen) = ea- - Bales)
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since Y Bi(ep) =1 by [9], Remark 3.4. Also, by the same way and the same reason,
teG

for any z € Z, s € G,
> clea-z-Bulen) ea- M(wy) - Bilen)) o lea M(w;) - Bi(en)] = ea -z - Balen).
gt

Therefore we obtain the conclusion. O

Remark 44. By Lemma 4.2, {es - z - Bi(ep)}it is a right D-basis and
{ea - M(wj) - Be(er)}je is a left C-basis of W in the sense of Kajiwara and
Watatani (see [6]).

By Lemma 4.2, W has Properties (9), (10) in [5], Lemma 1.3. Hence, by [5],
Lemma 1.3, W is a Hilbert C' — D- bimodule in the sense of [5], Definition 1.1. Thus,
Z has Conditions (5R), (6R) and (5L), (6L) in [1], Definition 2.1.

Proposition 4.5. With the above notation, Z is an A; — B{—equjvalence bundle
over G such that

Aq <Zt7ZS> :Ya:‘l.717 <Zt)ZS> _Y/Btfls

Bf —
for any t,s € G.

Proof. First, we show that the left C-valued inner product and the right D-
valued inner product on W are compatible. Let y,z,w € Z and ¢, s,r € G. Since Z
is a C1 — Dj-equivalence bimodule, by routine computations, we can see that

clea-z-Biler),ea-y-Bs(ep)) olea-w- Br(ep)]

=lea-z-Bilep)]o(ea-y - Bs(en),ea-w- Br(eB))p-

Hence, the left C-valued inner product and the right D-valued inner product are
compatible. Thus, by Lemmas 4.1-4.3, Z is an A; — B{ -equivalence bundle over G.
Next, we show that

Aq <Zt7 ZS> = Ya;“_lv <Zta ZS>B{ = Yﬁ,—ls

for any t,s € G. Let t,s € G. Since EP is of Watatani index-finite type, there is a
quasi-basis {(d;,d¥)} € D x D for EP. Thus Y djepd; = 1. Since Z is a C; — Ds-

J
equivalence bimodule, there is a finite subset {z;} of Z such that > ¢, (z:,2;) = 1.
i
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Let ¢ € C. Then
Z cleac- M(2i) - B(djep),ea - As(2i) - Bs(djen))

J = Z crfeac Ae(2) - Bi(djen), Aes—1(ea - As(z:) - Bs(djen)))
= icl (eac- M(2) - Be(djen), aiioi(ea) - M(zi) - Bi(djen))
= ieAcl (e Me(zi) - Bi(djepd;), M(zi))ars—1 (ea)
= ieACCl<At(Zi)v Ae(2i)as—1 (ea)

(2

= Z 6,4004;4(01 (2, zi>)af;_1 (ea) = eAcaé_l (ea).
i
Hence, we obtain that ¢(Z;, Z;) = Y, 4 ) for any t,s € G. Also, since E4 is of
ts—
Watatani index-finite type, there is a quasi-basis {(c;,c})} C C x C for EA. Thus
¢ eac; = 1. Since Z is a C1 — D1-equivalence bimodule, there is a finite subset {w; }

J
of Z such that Y (w;,w;)p, = 1. In the same way as above, for any d € Dy,
5

Z<€AC; ~w; - B(ep),eaci - wi - dBs(ep))p = epBi-1(d)Bi-15(eB).

i!j
Hence, we obtain that (Z:, Zs)p = Y, , for any t,s € G. Therefore we obtain the
conclusion. ([

Theorem 4.6. Let A = {A;}1cq and B = {B:}iec be saturated C*-algebraic

bundles over a finite group G. Let e be the unit element in G. Let C = @ A,
teG
D= B; and A= A., B= B.. We suppose that C' and D are unital and that A
teG
and B have the unit elements in C and D, respectively. Let A C C' and B C D be the

unital inclusions of unital C*-algebras induced by A and B, respectively. Also, we
suppose that A’NC = C1. If A € C and B C D are strongly Morita equivalent, then
there are an automorphism f of G and an A — B7-equivalence bundle Z = {Z;}icc
satisfying that

C<Zt7Zs> = Ags-1, <Ztazs>D = Bf(tfls)
for any t,s € G, where Bf is the C*-algebraic bundle over G induced by B and f
defined by Bf = {Bju }ec-

Proof. This is immediate by Lemma 3.1 and Proposition 4.5. 0
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5. APPLICATION

Let A and B be unital C*-algebras and X a Hilbert A — B-bimodule. Let X be its
dual Hilbert B — A-bimodule. For any = € X, & denotes the element in X induced
by z € X.

Lemma 5.1. Let A, B and C be unital C*-algebras. Let X be a Hilbert A — B-
bimodule and Y a Hilbert B — C-bimodule. Then X ®gY =Y ®p X as Hilbert
C — A-bimodules.

Proof. Let 7 be the map from X ®5 Y to Y ®p X defined by T(zRy) =T
for any x € X, y € Y. Then by routine computations, we can see that m is a Hilbert
C — A-bimodule isomorphism of X ® g Y onto Y ®p X. O

We identify XTESB/Y with Y ®p5 X by the isomorphism 7 defined in the proof of
Lemma 5.1. Next, we give the definition of an involutive Hilbert A — A-bimodule
modifying [8].

Definition 5.2. We say that a Hilbert A — A-bimodule X is involutive if there
exists a conjugate linear map = € X +— 2% € X such that
(1) @M =2,2€ X,
(2) (a-x-b)F=b*-2%-a*, € X,a,be A,
(3) afz,y) = (2%, y)a, z,y € X.

We call the above conjugate linear map b an involution on X. If X is full with
the both inner products, X is an involutive A — A-equivalence bimodule. For each

involutive Hilbert A — A-bimodule, let Lx be the linking C*-algebra induced by X
and Cx the C*-subalgebra of Lx, which is defined in [8], that is,

CX—{H x} s a€ A, xeX}.
4 a

We note that Cx acts on X & A (see Brown, Green and Rieffel [2] and Rieffel [12]).
The norm of C'x is defined as the operator norm on X & A.

Let A be a unital C*-algebra and X an involutive Hilbert A — A-bimodule. Let X
be its dual Hilbert A — A-bimodule. We define the map ? on X by (Z)! = (rxvh) for
any I € X.

Lemma 5.3. With the above notation, the above map ! is an involution on X.

Proof. This is immediate by direct computations. O
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For each involutive Hilbert A — A-bimodule X, we regard X as an involutive
A — A-bimodule in the same manner as in Lemma 5.3.

Let Zy = Z/2Z and we suppose that Zs consists of the unit element 0 and another
element 1. Let X be an involutive Hilbert A — A-bimodule. We construct a C*-
algebraic bundle over Zs induced by X. Let A = A and A; = X. Let Ax =
{At}iez,. We define a product e and an involution f as follows:

(1) aeb=ab, a,be A,

Then A & X is a *-algebra and by routine computations, A & X is isomorphic
to C'x as #-algebras. We identify A @ X with C'x as *x-algebras. We define a norm
of A® X as the operator norm on X @ A. Hence, Ax is a C*-algebraic bundle
over Zo. Thus, we obtain a correspondence from the involutive Hilbert A — A-
bimodules to the C*-algebraic bundles over Zs. Next, let A = {A;}iez, be a C*-
algebraic bundle over Zy. Then A; ia an involutive Hilbert A — A-bimodule. Hence,
we obtain a correspondence from the C*-algebraic bundles over Zs to the involutive
Hilbert A — A-bimodules. Clearly, the above two correspondences are the inverse
correspondences of each other. Furthermore, the inclusion of unital C*-algebras
A C Cx induced by X and the inclusion of unital C*-algebras A C A @ X induced
by the C*-algebraic bundle Ax coincide.

Lemma 5.4. Let X andY be involutive Hilbert A— A-bimodules and Ax and Ay
the C*-algebraic bundles over Zs induced by X and Y, respectively. Then Ax = Ay
as C*-algebraic bundles over Zs if and only if X =Y as involutive Hilbert A — A-
bimodules.

Proof. Wesuppose that Ax = Ay as C*-algebraic bundles over Zs. Then there
is a C*-algebraic bundle isomorphism {7 }cz, of Ax onto Ay. We identify A with
mo(A). Then 7 is an involutive Hilbert A — A-bimodule isomorphism of X onto Y.
Next, we suppose that there is an involutive Hilbert A — A-bimodule isomorphism 7
of X onto Y. Let mp = id4 and m = w. Then {m;}icz, is a C*-algebraic bundle
isomorphism Ax onto Ay . O

Lemma 5.5. Let X be an involutive Hilbert A — A-bimodule and Ax the C*-
algebraic bundle over Zy induced by X. Then X is full with the both inner products
if and only if Ax is saturated.
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Proof. We suppose that X is full with the both inner products. Then
Ay e AY = J(X, X) = A= A.

Also,
Aje A=A X =A.X =X = Ay,
Aje Ay =X -A"=X-A=X=A,
by [3], Proposition 1.7. Clearly Age Ag = AA = A = Ay. Hence Ax is saturated.
Next, we suppose that Ax is saturated. Then
AX X)=Ai e A = A1 = A, (X, X)4 = 4(X" X8 = 4(X,X)=A.

Thus, X is full with the both inner products. O

Remark 5.6. Let X be an involutive Hilbert A — A-bimodule. Then by the
above proof, we see that X is full with the left A-valued inner product if and only
if X is full with the right A-valued inner product.

Lemma 5.7. Let A and B be unital C*-algebras and M an A — B-equivalence
bimodule. Let X be an involutive Hilbert A — A-bimodule. Then M @4 X @4 M is
an involutive Hilbert B — B-bimodule whose involution § is defined by

(meron)f=nes'@m

for any m,n € M, x € X.
Proof. This is immediate by routine computations. (I

Let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert B — B-
bimodule. We suppose that there is an involutive Hilbert B — B-bimodule isomor-
phism & of M@A X ®a4 M onto Y. Let ® be the linear map from M@A X ®a M
onto Y defined by

P(mezen) =2(nozem)”) =[P r®m)]”
for any m,n e M, z € X.

Lemma 5.8. With the above notation, ® is an involutive Hilbert B — B-bimodule
isomorphism of M ® 4 X @4 M onto Y.

Proof. This is immediate by routine computations. (I
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Again, let A, B, X and M be as in Lemma 5.7. Let Y be an involutive Hilbert
B — B-bimodule. We suppose that there is an involutive Hilbert B — B-bimodule
isomorphism & of M@A X ®4 M onto Y. We identify A and X with M ®p M and
A ®4 X by the isomorphisms defined by

m®n€M®BM»—>A<m,n>€A, aRr€EARs X —~a- -z € X,

respectively. Since M is an A — B-equivalence bimodule, there is a finite subset {u;}
of M with > 4(u;, u;) =1. Let © € X, m € M. Then

x®m:1A~x®m:ZA<ui,ui>~x®m:Zui®ﬂi®x®m.
i i

Hence, there is the linear map ¥ from X ® 4 M to M ®p Y defined by

W(m@m)zZuiQ@@(@-@x@m)
i

for any z € X, m € M. By the definition of ¥, we can see that ¥ is a Hilbert
A — B-bimodule isomorphism of X ® 4 M onto M Qg Y.

Lemma 5.9. With the above notation, the Hilbert A — B-bimodule isomor-
phism ¥ of X ® 4 M onto M ®pY is independent of the choice of a finite subset {u;}
of M with > a(u;,u;) = 1.

Proof. Let {v;} be another finite subset of M with > 4(vj,v;) = 1. Then for
anyzx € X, m¢c M, J

Zui@)@(ﬂi@x@m)
= A, v) u @B(T @z @m) = v (v, u)p @ (U; ®z @ m)
i i
= 0, @0([u; - (ui,v;)p]” @z @mM) =Y 1; @ B(T; ® T @ m).
i 3

Therefore, we obtain the conclusion. O

Similarly, let U be the Hilbert A — B-bimodule isomorphism of X ®4 M onto
M ®p Y defined by

VEem)=> uedUeF®m)

(3
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for any z € X, m € M. We construct the inverse map of W, which is a Hilbert
A — B-bimodule isomorphism of M ®p Y onto X ®4 M. Let © be the linear map
from M ®pY to X ®4 M defined by

Omey) =me e '(y)

for any m € M, y € Y, where we identify M ®p M@A X ®4 M with X @4 M as
Hilbert A — B-bimodules by the map

m®ﬁ®m®m1€M®BM®AX®AM»—>A<m,n>-a:®m1€X®AM.

Lemma 5.10. With the above notation, © is the Hilbert A— B-bimodule isomor-
phism of M @p Y onto X ® 4 M such that © o ¥ =idxg,m and ¥ o O =idyg,y-

Proof. Let m,m; € M, y,y1 € Y. Then

Am @ @~ (y),m1 @ @~ (y1))
alm - p(@7 (), @7 (y1)), ma)
A

(m- By, y1),m1) = aA(m @y, m1 @y1).

A(O(m ®y),0(m1 @ y1))

Hence, © preserves the left A-valued inner products. Similarly, we can see that ©
preserves the right B-valued inner products. Furthermore, for any x € X, m € M,

(@o\l’)(x@m):Z@(ui®¢(ﬁi®m®m))=Zui®ﬁi®m®m
:ZA<ui,ui>~x®m:x®m

since we identify M ® M with A as A— A-equivalence bimodules by the map m®n €
Mo M — a{m,n) € A. Hence, @ o ¥ = idxg,n. Hence, VoO oW = ¥
on X ®4 M. Since ¥ is surjective, ¥ 0 © = idyg,y. Therefore, by the remark
after [4], Definition 1.1.18, © is a Hilbert A — B-bimodule isomorphism of M @Y
onto X ®4 M such that O o ¥ =idxg,m and ¥ o O = idyg,v. O

Similarly, we see that the inverse map of (@)_1 is defined by

(T) M (me§) =me (®)(H)

for any m € M, y € Y, where we identify M ®p M@A X ®4 M with X ®4 M as
Hilbert A — B-bimodules by the map

mER@Fom € M@p M ©sX @4 M almn)-T@m € X @4 M.
We prepare some lemmas in order to show Proposition 5.14.
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Lemma 5.11. Let A and B be unital C*-algebras. Let X and Y be an involutive
Hilbert A — A-bimodule and an involutive Hilbert B — B-bimodule, respectively.
Let Ax = {At}tez, and Ay = {Bi}iecz, be C*-algebraic bundles over Zs induced
by X and Y, respectively. We suppose that there is an Ax — Ay -equivalence bundle
M = {M;}iez, over Zs such that

<Mta > At‘? 1, <Mt7MS>D = Btfls

for any t,s € Zy, where C = A® X and D = B® Y. Then there is an A — B-
equivalence bimodule M such that Y = M ® 4 X ® 4 M as involutive Hilbert B — B-
bimodules.

Proof. By the assumptions, My is an A — B-equivalence bimodule. Let
M = My. Then by Lemma 5.7, M@A X ®4 M is an involutive Hilbert B — B-
bimodule whose involution is defined by (m®x®n)? = n®@2%®@m for any m,n € M,
z € X. We show that Y = M ®a X ®4 M as involutive Hilbert B — B-bimodules.
Let ® be the map from M@A X ®4 M toY defined by

d(m@zren)={(m,z -n)p

for any m,n € M, x € X. Since 431 = X and M = My, X - My C M;. And
(Mo, M1)p € By =Y. Hence, ¢ is a map from M ®4 X ®4 M to Y. Clearly, ® is
a linear and B — B-bimodule map. We show that ® is surjective. Indeed,

X -M=A;-My=c(Mi,My) - My = M, - (My,Mo)p = M, -B = M

by [3], Proposition 1.7. Hence, (M, X -M)p = (M, M;)p =Y. Thus, ® is surjective.
Let m,n,my,n1 € M, x,x1 € X. Then

Mz @n,Mm ® 1 Qny)

=p(m- 2z ®@n,x1 ®n1),m1) = p{[a(z1 ®n1,z@n) - m|”,m1)
= (a{z1 ®@n1,r@n) -m,m1)p = (a(z1 - a(ni,n),z) -m,mi)p
(21 0 c(n1,n)) @ 2] - m,m1) g = ([c(x1 - n1,n) @ 2] - m,mi) p
ol[rr-ml,n) - [2*-ml,ma)p = ([e1 - na] - (n,2" - m)p,m1)p
= xh~m,n>D0<x1'n1,m1>D:(m,x~n>D0<m1,x1'n1>uD
=pg{(m,x-n)p,(m1,21-n1)p) = s(P(M R n),P(M ® 1 R n1)).

Hence, ® preserves the left B-valued inner products. Also, similarly we can see
that ® preserves the right B-valued inner products. Furthermore,

d(m @z en)! = <m,x'n>§/: <m,x-n>uD ={(z-n,m)p ={x-n,m)y.
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On the other hand,
d(mzen)?) =@ @z @m) = (n,2° m)y = (& -n,m)y = ®(mzn).

Hence, ® preserves the involutions f. Therefore Y = M® A X ®4 M as involutive
Hilbert B — B-bimodules. O

Let A and B be unital C*-algebras. Let X and Y be an involutive Hilbert A — A-
bimodule and an involutive Hilbert B — B-bimodule and let Ax and Ay be the
C*-algebraic bundles over Zy induced by X and Y, respectively. We suppose that
there is an A — B-equivalence bimodule M such that

Y2M@sX®4 M

as involutive Hilbert B— B-bimodules. We construct an Ax — Ay -equivalence bundle
M = {M;}iez, over Zs such that

C<MtaM8> = Ats—lv <Mt7MS>D = B;-1,

for any t,s € Zy, where C =A@ X and D=B®Y.

Let ® be an involutive Hilbert B — B-bimodule isomorphism of M Ra X Qa4 M
onto Y. Then by the above discussions, there are the Hilbert A — B-bimodule
isomorphisms ¥ of X® 4 M onto M ®pY and U of )?@AM onto M®B§~/, respectively.
We construct a C'xy — Cy-equivalence bimodule Cj; from M. Let C); be the linear
span of the set

XCM:{|:~hm1 x®m2}:m1,m2€M,x€X}.
T R mo mi

We define the left C'x-action on Cy; by

[a z] { my x®m2}_{a®m1+z®fh®m2 a®x®m2+z®m1]

2 a T @ mo mi M +a®RFQ@my QT @me+a®m

for any a € A, mi,ms € M, x,z € X, where we regard the tensor product as a left
Cx-action on C); in the formal manner. But we identify A ® 4 M and X ®4 )~(,
X ®4 X with M and closed two-sided ideals of A by the isomorphism and the
monomorphisms defined by

a@meA@sM—a-meM, 107 X®4X — Az, z2) € A,
i®zeX®4X s (2,2)4 € A
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Hence, we obtain that

a z mq T ® ma
o R mo mi
a-my+ a(z, 2% -my a-T@moe+2zQm

Cum.

?”@ml—l—(a-x) ® ma (?”,m),q “ma +a-my
We define the right Cy-action on Cj; by

mi z@me] [b oy] _[me@btremey mieytrema®b
FQme M 7t TROme@b+m Q7 T'Ome@y+mi @b

forany b € B,z € X,y € Y, mi,my € M, where we regard the tensor product
as a right Cy-action on C); in the formal manner. But we identify X ® 4 M and
X®aM with M@pY and M ®pY by ¥ and ¥, respectively. Hence, we obtain that

mi T ® mo b vy
Eh®m2 mi g b
B [m1®b+x®(\1')‘1(m2®ifﬂ) T m@y)+r@me®b

Fomy@b+ (V) (m @) FRU I me@y)+m @b]

Furthermore, we identify M ® g B and Y ®p }7, Y® B Y with M and closed two-sided
ideals of B by the isomorphism and the monomorphisms defined by

mbe Mg Br—m-be M,
y®ZeY @pY - ply,z) € B,
JozeY@pY = (y,2)p € B,
respectively. Then z ® () (mg ® y¥) = 7% ® U~ (my ® y) and we see that

o Tl le

- € Cuy.
Z ® mo mi g“ﬁ b M

Indeed, for any € > 0, there are finite sets {ny}, {lx} C M and {z;} C X such that

<eE.

H@l(y) - Zﬁk ® 2k @l
k

Also,
(@)@ - sz: Tk ® 21, ® lk)TH = H[dfl(y)”]N - sz: Tk ® 21 ® lk)h]NH

= H‘I’_l(y) - Zﬁk ® 21 @l
%

<E.
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Thus

2@ () Mm@ F) —rome® [(Zﬁk o ®l’“>h]~H
k

r@my® () NP —r@me® Y [(r @2 ® zk)hrH < |zl lm2le
k

and

E“@\Iﬁl(rr@@y)—ih®m2®zﬁk®2k®lk
k

Femed (Y T omee Yy k®
k

< [l lmezlle.

Furthermore, we can see that

h,\,
S
k

=Y rem e @At = - alms,n),2f) -l
k k

:Z%’“®m2®ﬁk®zk®lk=5h®m2®zﬁk®zk®lk7
% %

where we identify A® 4 M and X ® 4 X , X® 4 X with M and closed two-sided ideals
of A by the isomorphism and the monomorphisms defined by

a®@meEARLMv+—a-me M,
I®26X®AX'—>A<I,Z>€A,
i®zeX®aX s (2,2)4 €A

Hence

T Q@ mao X |:<Zﬁk®z~k®lk>:| :Eh®m2®2ﬁk®zk®lk.
k k

It follows that
|z ® ()" (ma ® y*) — 3% @ U (ma @ y)|| < 2]z [mae.

Since ¢ is arbitrary, we can see that  ® (¥)~!(ms ® 37) = 7 ® U~ (my ® y) and

that
mi x®m2] [b y

~ € Cyy.
74 @ mo mq 7" b} M
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Before we define a left C'x-valued inner product and a right Cy-valued inner product
on C)s, we define a conjugate linear map on Cyy,

mq T ® mo mi T@ma |
~ ECM'—> ~ ECM
T ® ma mi T @ mao mi
by ~
{ m x®m2] _ [ m (5h®m2)~]
7@ mo m (x @ ma2)~ m1

for any mq, mo € M, x € X. Since we identify XTG?A/M and X ®4 M with M@A X
and M ®4 X by Lemma 5.1, respectively, we obtain that
my rR@ma| mi My ® 2
7 @ ma my | me®T m .

We define the left C'x-valued inner product on Cy; by

my T ® mo ny Z QN
Cx Tt X Mo mi T X no n

mq T ® mo ni z2@mnae |
0 ® my mq 78 @ ny ni

B [A<m1;n1> + a(x - a(ma,n2),z)  a(mi,na), AR a{ma, n1)

7 alma,n1) + a(mi,ng) -2 alz- alma,na), z) + a(my, ny)
for any my,ma,n1,n0 € M, z,z € X, where we regard the tensor product as a prod-
uct in Cj; in the formal manner and identify in the same way as above. Similarly,

we define the right C'y-valued inner product on Cj; by

mi T Q@ mo ni z®no
<[fh®m2 my }’[5”@9”2 n Dcy

my T@my | ny z Q@ ngy
_{ﬁ@mg mi ] [?@ng n1 ]

B { (my,n1)B + (Mo, (x,2)4 - n2)p my @ ¥(z @ ng) +me @ U(z @ny)
T?LQ X \Il@@nl) —+ T7L1 X \If(%ﬁ ®n2) <m2, <(E,Z>A 'n2>B —+ <m1,n1>B

for any my, ma,n1,n0 € M, z,z € X, where we regard the tensor product as a prod-
uct in C)s in the formal manner, identifying in the same way as above and by the
isomorphisms ¥ and 0. Here, we have to show that the value of the above inner
product on C) exists in Cs. Indeed, by routine computations,

M @ W(z@ng) =Y i ®u; @ B(U; @z @ng) = (i ® 2@ na) €Y,

(2

Mo @ U(2f @ny) = B(Me @2 @ny) €Y.
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Also,

M2 @UEF@M) =Y My@u @B TON) =M @r@m) €Y,

(2

M @UE@n) =Y meued(UeF o)=Y d(A@ " @m) €Y.
i i

Thus

[ @ U(F@m1) + 71 @ U(ZF@ny))" = B ® x @ma)? + (A2 ® 27 @ my )
= O(M2 ® 2% @ n1) + (M1 ® 2 @ n2)
=71 ®@ U(z @) + e @ V(2" @ny).

my T ® mo ny Z ® no
" &Q mo mi Z7 X no n1 Cy

By the above definitions, Cj; has the left C'x- and the right Cy-actions and the left
Cx-valued and the right Cy-valued inner products.

Hence

Let C}, be the linear span of the set

mq ma QY
cYy = s mi,me € M,yeY .
M {Lm@?ﬁ my ] e Y }

In the similar way to the above, we define a left C'x- and a right Cy-actions on 011\4
and a left C'x-valued and a right C'y-valued inner products. But identifying X ® 4 M
and X ®a M with M ®pY and M ®p Y by ¥ and \T/, respectively, we can see that
each of them coincides with the other by routine computations. Hence, we obtain
the following lemma:

Lemma 5.12. With the above notation, C); is a C'x — Cy-equivalence bimodule.

Proof. By the definitions of the left Cx-action and the left Cx-valued inner
product on Cj, we can see that Conditions (a)-(d) in [6], Proposition 1.12 hold.
By the definitions of the right Cy-action and the right Cy-valued inner product
on C)s, we can also see that the similar conditions to Conditions (a)—(d) in [6],
Proposition 1.12 hold. Furthermore, we can easily see that the associativity of the
left C'x-valued inner product and the right C'y-valued inner product hold. Since M
is an A — B-equivalence bimodule, there are finite subsets {u;};; and {v;}JL, of M
such that

n

> alunu) =1, > (vj,v;)p =1

i=1 j=1
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i 0 . 0 )
Let U; = [% for any i and let V; = [lg } for any j. Then {U;} and {V;}
Uu; v
are finite subsetszof Chy and !

- - i 0 ~i - i) 1, 0
;cx<Ui7Ui>=Zﬁ) uz] {16 ] Z[ ot | = lox-

i=1 i=1 A<u“uz>

m
Similarly, > (V},Vj)cy = loy. Thus, since the associativity of the left C'x-valued
j=1
inner product and the right Cy-valued inner product on Cj; holds, we can see
that {U;} and {V;} are a right Cy-basis and a left Cx-basis of Cys, respectively.

Hence by [6], Proposition 1.12, Cy is a Cx — Cy-equivalence bimodule. O

Lemma 5.13. Let A and B be unital C*-algebras. Let X and Y be an involutive
Hilbert A — A-bimodule and an involutive Hilbert B — B-bimodule, respectively. Let
Ax = {Ai}iez, and Ay = {B;}iez, be C*-algebraic bundles over Zs induced by X
and Y, respectively. We suppose that there is an A — B-equivalence bimodule M
such that

Y =M QA X ®@aM

as involutive Hilbert B— B-bimodules. Then there is an Ax — Ay -equivalence bundle
M = {M;}1ez, over Zs such that

<Mta > Ats_lv <Mt7MS>D = Bt_ls

for any t,s € Zo, where C = A® X and D=B®Y.

Proof. Let Cy be the Cx — Cy-equivalence bimodule induced by M, which is
defined in the above. We identify M @& (X ® 4 M) with Cjs as vector spaces over C
by the isomorphism defined by

mq T & meo

mdx@ma) e MB(XQ@aM)— € Cuy.

Tt X mo mi

Since we identify C' = A ® X and D = B ® Y with Cx and Cy, respectively, M &
(X ®4 M) is a C — D-equivalence bimodule by above identifications and Lemma 5.12.
Let My = M and M; = X®4 M. We note that X ® 4 M is identified with M ®pY by
the Hilbert A — B-bimodule isomorphism ¥. Let M = {M;}+cz,. Then by routine
computations, M is an Ax — Ay-equivalence bundle over Zs such that

<Mta > Ats_lv <Mt7MS>D = Bt_ls
for any t, s € Zs. (]
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Proposition 5.14. Let A and B be unital C*-algebras. Let X and Y be an invo-
Iutive Hilbert A— A-bimodule and an involutive Hilbert B— B-bimodule, respectively.
Let Ax = {At}tez, and Ay = {Bi}iez, be the C*-algebraic bundles over Zy induced
by X and Y, respectively. Then the following conditions are equivalent:

(1) There is an Ax — Ay -equivalence bundle M = {M;}+cz, over Zy such that

C<Mt; M9> = Ats*% <Mt7 MS>D = Bt*15

for any t,s € Zip, where C = A® X and D=Ba®Y.
(2) There is an A — B-equivalence bimodule M such that

YEM(@AX@AM

as involutive Hilbert B — B-bimodules.

Proof. This is immediate by Lemmas 5.11 and 5.13. (]

Theorem 5.15. Let A and B be unital C*-algebras. Let X andY be an involutive
Hilbert A — A-bimodule and an involutive Hilbert B — B-bimodule, respectively. Let
A C Cx and B C Cy be the unital inclusions of unital C*-algebras induced by X
and Y, respectively. Then the following hold:

(1) If there is an A — B-equivalence bimodule M such that

M@A XA MY

as involutie Hilbert B — B-bimodules, then the unital inclusions A C Cx and
B C Cy are strongly Morita equivalent.

(2) We suppose that X and Y are full with the both inner products and that
A’'N Cx = C1. If the unital inclusions A C Cx and B C Cy are strongly
Morita equivalent, then there is an A — B-equivalence bimodule M such that

M@A XA M2Y

as involutive Hilbert B — B-bimodules.

Proof. Let Ax = {Ai}iez, and Ay = {B;}iez, be the C*-algebraic bundles
over Zs induced by X and Y, respectively. We prove (1). We suppose that there is
an A — B-equivalence bimodule M such that

M@A XA M2Y
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as involutive Hilbert B — B-bimodules. Then by Proposition 5.14, there is an
Ax — Ay-equivalence bundle M = {M;}cz, over Zs such that

C<Mt7M8> = Ats—lv <Mt7MS>D = B;-1,

for any ¢,s € Zy, where C' = A® X and D = B® Y. Hence, by Proposition 2.1, the
unital inclusions of unital C*-algebras A C C and B C D are strongly Morita equiv-
alent. Since we identify A C C and B C D with A C Cx and B C Cy, respectively,
A C Cx and B C Cy are strongly Morita equivalent. Next, we prove (2). We sup-
pose that X and Y are full with the both inner products and that A’/NCx = C1. Also,
we suppose that A C Cx and B C Cy are strongly Morita equivalent. Then Ax
and Ay are saturated by Lemma 5.5. Since the identity map idz, is the only automor-
phism of Zs, by Theorem 4.6 there is an Ax — Ay -equivalence bundle M = {M; }1cz,
such that
C<Mt7Ms> = Ags-1, <Mt7MS>D = By-14

for any t,s € Z. Hence, from Proposition 5.14, there is an A — B-equivalence
bimodule M such that
Y2ZMaX®4M

as involutive Hilbert B — B-bimodules. O
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