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Abstract. Let k be a field of characteristic zero and B a k-domain. Let R be a retract
of B being the kernel of a locally nilpotent derivation of B. We show that if B = R⊕ I for

some principal ideal I (in particular, if B is a UFD), then B = R[1], i.e., B is a polynomial
algebra over R in one variable. It is natural to ask that, if a retract R of a k-UFD B is
the kernel of two commuting locally nilpotent derivations of B, then does it follow that

B ∼= R[2]? We give a negative answer to this question. The interest in retracts comes from
the fact that they are closely related to Zariski’s cancellation problem and the Jacobian
conjecture in affine algebraic geometry.
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1. Introduction

Throughout the paper, k stands for a field of characteristic zero and a k-algebra

refers to a commutative k-algebra with identity 1. A subalgebra R of a k-algebra S

is called a retract if there is an idempotent k-algebra endomorphism (called a retrac-

tion) ϕ of S such that ϕ(S) = R (for more equivalent conditions, see Definition 2.1 be-

low). In the category of k-algebras, a k-algebra P is a projective object if and only if P

is a retract of some polynomial algebra in not necessarily finite number of variables.

The study of retracts of polynomial algebras k[n] := k[x1, . . . , xn] is closely re-

lated to some problems in affine algebraic geometry. For example, Shpilrain and

Yu in [15] showed that the 2-dimensional Jacobian conjecture is equivalent to the

statement that, for each pair of polynomials f, g ∈ k[x1, x2] with detJx1,x2
(f, g)
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invertible, k[f ] is a retract of k[x1, x2]. In [7], [20], retracts were applied to the auto-

morphic orbit problem for polynomial algebras in two variables. And by the use of

retracts, the second author gave in [16] a new method for describing automorphisms

of the endomorphism semigroups of free algebras such as polynomial algebras and

free Poisson algebras.

Retracts were also involved with Zariski’s cancellation problem: if A is a k-algebra

such that A[1] ∼= k[n+1] then does it follow that A ∼= k[n]? (Cf. [13], Chapter 6

or [19].) Zariski’s cancellation problem has an affirmative answer for n 6 2 and is

still open for any n > 3. (Gupta in [8] and [10] showed that if char k > 0 then it has

a negative answer for all n > 3.) Zariski’s cancellation problem has an affirmative

answer if the following problem concerning retracts has a positive solution: Is every

proper retract of the polynomial algebra k[n] isomorphic to a polynomial algebra

over k? (Cf. [3].)

Only a few results concerning retracts have been obtained up to now. Costa

in [3] showed that every proper retract of k[2] is of the form k[p] for some p ∈ k[2],

Shpilrain and Yu in [15] showed further that there is an automorphism ϕ of k[2] such

that ϕ(p) = x1 + x2q for some q ∈ k[2]. The authors described in [12] retracts of k[n]

induced by retractions with sparse homogeneous parts.

Retracts that are kernels of locally nilpotent derivations were studied by Chakra-

borty, Dasgupta, Dutta and Gupta in [2], in particular they showed that, for

a k-UFD B, if R is a retract of B being the kernel of a locally nilpotent derivation

of B, then B = R[1] (see [2]), Corollary 4.3 if B is a domain but not a UFD, it

can happen that B ≇ R[1], whence the relation between R and B was studied

given the additional condition that B = S[n] for some Noetherian normal domain S

and S ⊆ R, see [2], Theorem 4.5.

In this paper, we show that if B is a k-domain and R is a retract of B being the

kernel of a locally nilpotent derivation of B such that B = R⊕ I for some principal

ideal I, then B = R[1] (see Theorem 2.5), this generalizes Corollary 4.3 of [2] since

it is the case if B is a UFD. Note that Theorem 2.5 also follows from the work of

Das and Dutta (see [5]) on the codimension-one A1-fibration with retraction, see

Remark 2.6. Our proof is self-contained using the technique of locally nilpotent

derivations.

We consider further that if R is a retract of a k-UFD B being the kernel of two

commuting locally nilpotent derivations of B, then does it follow that B ∼= R[2]?

We give a negative answer to this question (see Example 2.13, Proposition 2.14).

We also describe retracts of k[n] with the transcendence degree two using Jelonek’s

embedding theorem for affine spaces, see Theorem 2.10.
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2. Retracts that are kernels of locally nilpotent derivations

First, we recall some notions and facts concerning retracts and locally nilpotent

derivations, see [3], [6] for details.

Definition 2.1 ([3]). A subalgebra R of a k-algebra S is called a retract if it

satisfies any of the following equivalent conditions:

(1) there is an idempotent k-algebra endomorphism (called a retraction) of S such

that ϕ(S) = R,

(2) there is a k-algebra homomorphism ϕ : S → R such that ϕ|R = idR,

(3) S = R⊕ I for some ideal I of S.

A k-derivation D of a k-algebra S is a k-linear map D : S → S satisfying the Leib-

nitz rule D(ab) = D(a)b+ aD(b) for any a, b ∈ S. We say that D is locally nilpotent

if for each u ∈ S, there exists some positive integer nu such that D
nu(u) = 0. We

write kerD for the kernel of D, and we denote by LNDk(S) the set of all locally

nilpotent k-derivations of S.

Definition 2.2 ([6], Section 1.1). Let S be a k-algebra, D ∈ LNDk(S) and

A = kerD. An element r ∈ S with Dr 6= 0 and D2r = 0 is called a local slice of D.

Any nonzero locally nilpotent k-derivation D has a local slice.

Lemma 2.3 ([6], Section 1.4). Let B be a k-domain, 0 6= D ∈ LNDk(B) and

A = kerD. Take any local slice r of D. Then BDr = ADr [s], where s = r/Dr.

Moreover, the extension D̃ of D on BDr acts as ∂s on BDr.

Given a k-domain B and 0 6= D ∈ LNDk(B) for any b ∈ B put degD(b) =

min{n ∈ N : Dn+1(b) = 0}.

Further, set degD(0) = −∞ by convention. One may see that degD(b) = 0 if and

only if b ∈ kerD, and degD(b) = 1 if and only if b is a local slice of D. Lemma 2.3

implies that degD(b) equals to the degree of b as a polynomial in s. So degD is

a degree function on B.

Lemma 2.4. Let R be a retract of a k-domain B such that B = R⊕ (h) for some

h ∈ B. Then for any integer m > 1,

B = R⊕Rh⊕ . . .⊕Rhm−1 ⊕Bhm.

P r o o f. Observe that B = R ⊕ Bh = R ⊕ (R ⊕ Bh)h = R ⊕ Rh⊕ Bh2. In this

way, we have

B = R⊕Rh⊕ . . .⊕Rhm−1 ⊕Bhm

for any integer m > 1. �
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Theorem 2.5. Let B be a k-domain and R a retract of B such that R = kerD for

some 0 6= D ∈ LNDk(B). If B = R⊕ I for some principal ideal I of B (in particular,

if B is a k-UFD), then B = R[1].

P r o o f. Let I = (h) and let ϕ be the projection from B to R regarding to the

decomposition B = R⊕I. Then I = kerϕ and ϕ is a retraction such that ϕ(B) = R.

Take a local slice p of D. Since ϕ(p) ∈ R = kerD, we have that p− ϕ(p) ∈ I is also

a local slice of D. Replacing p by p − ϕ(p) we may assume that p ∈ I, say p = hv

for some v ∈ B. Observe that

1 = degD p = degD(hv) = degD(h) + degD(v),

where degD(h) > 1 (since h /∈ R = kerD). Hence, degD(h) = 1, i.e., h is a local slice

of D.

Now we show that R[h] = B. For that purpose, take any f ∈ B. Let a = D(h).

Since h is a local slice, we have R[h]a = Ba due to Lemma 2.3, and thus there exist

some positive integer m(f) and some r0, r1, . . . , rt ∈ R such that

(2.1) am(f)f = r0 + r1h+ . . .+ rth
t.

By Lemma 2.4, B = R⊕Rh⊕ . . .⊕Rht ⊕Bht+1, say

(2.2) f = c0 + c1h+ . . .+ cth
t + dht+1

for some c0, c1, . . . , ct ∈ R and some d ∈ B. Combining (2.1) and (2.2), we obtain

that

(2.3) am(f)c0 + am(f)c1h+ . . .+ am(f)cth
t + am(f)dht+1 = r0 + r1h+ . . .+ rth

t.

Since a, ci, ri ∈ R and B = R⊕Rh⊕ . . .⊕Rht−1⊕Bht+1, we obtain from (2.3) that

am(f)dht+1 = 0 and thus d = 0. Then it follows from (2.2) that f ∈ R[h]. Therefore,

R[h] = B.

Finally, assume that B is a k-UFD. Since R is a retract of B, B = R⊕ J for some

ideal J of B. It suffices to show that J is a principal ideal. Similar as above, we may

take a local slice p ∈ J . Let p = p1p2 . . . ps be the decomposition of p into irreducible

elements. Since

1 = degD(p) = degD(p1) + degD(p2) + . . .+ degD(ps),

there is exact one i such that degD(pi) = 1, say degD(p1) = 1 and degD(p2) = . . . =

degD(ps) = 0, i.e., p1 is a local slice and p2, . . . , ps ∈ R = kerD. Noticing that

B = R⊕ J , p = p1p2 . . . ps ∈ J and p2, . . . , ps ∈ R, we have p1 ∈ J .
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Let a1 = D(p1). Then Ba1
= R[p1]a1

due to Lemma 2.3. For any u ∈ J , there

exist some positive integer m(u) and some r0, r1, . . . , rt ∈ R such that

a
m(u)
1 u = r0 + r1p1 + . . .+ rtp

t
1.

Since u, p1 ∈ J we have r0 ∈ J ∩ R and thus r0 = 0. It follows that a
m(u)
1 u ∈ (p1).

Since B is a UFD and p1 is irreducible, we have then u ∈ (p1) or a
m(u)
1 ∈ (p1). If

a
m(u)
1 ∈ (p1), then noticing that kerD is factorially closed and a1 ∈ kerD we have

p1 ∈ kerD = R, a contradiction. So u ∈ (p1). Therefore, J = (p1) as desired. �

Remark 2.6. Theorem 2.5 also follows from some results of Das and Dutta in [5],

where they investigated a codimension-one A1-fibration with retraction. More pre-

cisely, combining Lemma 3.6 and Remark 3.7 in [5], one has the following conclusion:

If R is a retract of a domain B with a retraction ϕ : B → R such that (i) kerϕ = GB

for some G ∈ B and (ii) B ⊗K R = K [1], where K is the fractions field of R, then

B = R[G]. In Theorem 2.5, the hypothesis B = R⊕ I for some principal ideal I en-

sures that (i) is satisfied and the hypothesis R is the kernel of some locally nilpotent

derivation of B ensures that (ii) is satisfied. Our proof is self-contained using the

technique of locally nilpotent derivations.

Corollary 2.7. Let R be a retract of k[3] = k[x, y, z] which is the kernel of some

nonzero locally nilpotent derivation of k[3]. Then there is a coordinate system f , g, h

of k[3] such that R = k[f, g].

P r o o f. Due to Theorem 2.5, R[h] = k[3] for some h ∈ k[3]. By Miyanishi’s

theorem (cf. [6], Theorem 5.1), the kernel of any locally nilpotent derivation of k[3]

is isomorphic to k[2]. So R = k[f, g] for some f, g ∈ k[3]. Thus k[f, g, h] = k[x, y, z],

i.e., f , g, h is a coordinate system of k[3] = k[x, y, z]. �

Remark 2.8. There exists a retract of k[3] = k[x, y, z] with transcendence degree

two which is not the kernel of any locally nilpotent derivation of k[3], for example

the retract R = k[x + xz, y] defined by the retraction ϕ of k[3], ϕ(x) = x + xz,

ϕ(y) = y, ϕ(z) = 0. In fact, if R = kerD for some 0 6= D ∈ LNDk(k
[3]), then

R[h] = k[3] for some h ∈ k[3] due to Theorem 2.5, and thus x + xz is a coordinate

of k[3], a contradiction.

It was shown in [2] (and independently in [14]) that every retract R of k[n] with

transcendence degree two is isomorphic to k[2]. We give below an explicit description

for such retracts using Jelonek’s embedding theorem for affine spaces.
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An embedding α : Ar
k → An

k is called rectifiable if there exists some ϕ ∈ Aut(An
k )

such that α = ϕ ◦ j, where j : Ar
k → An

k , (x1, . . . , xr) 7→ (x1, . . . , xr, 0, . . . , 0) is the

standard embedding. The well-known Abhyanker-Moh-Suzuki theorem (see [1], [17])

says that every embedding of A1
k to A2

k is rectifiable. And Craighero in [4] showed

that, when n > 4, every embedding of A1
k to A

n
k is rectifiable. A more general result

is as follows.

Lemma 2.9 (Jelonek [11]). If n > 2r + 1, then every embedding of Ar
k to A

n
k is

rectifiable.

Theorem 2.10. Let n > 5 and let R be a retract of B = k[n] = k[x1, x2, . . . , xn]

with transcendence degree two. Then there exists a ψ ∈ Autk(k
[n]) such that ψ(R) =

k[x1 + h1, x2 + h2], where h1, h2 belong to the ideal (x3, . . . , xn) of B.

P r o o f. By [2], [14], R ∼= k[2], say R = k[f1, f2] for some f1, f2 ∈ B. Let

ϕ̃ : B → B, ϕ̃(xi) = ϕi(f1, f2), 1 6 i 6 n, be a retraction such that ϕ̃(B) = R. Then

̺ : A2
k → An

k , (x1, x2) 7→ (ϕ1(x1, x2), . . . , ϕn(x1, x2))

is an embedding. Let j : A2
k → An

k , (x1, x2) 7→ (x1, x2, 0, . . . , 0), be the stan-

dard embedding. Since n > 5, by Lemma 2.9, there exists a ψ ∈ Aut(An
k )

such that ψj = ̺. Thus for j = 1, 2, fiψj = fi̺, i.e., fiψ(x1, x2, 0, . . . , 0) =

fi(ϕ1(x1, x2), . . . , ϕn(x1, x2)). So

fiψ(f1, f2, 0, . . . , 0) = fi(ϕ1(f1, f2), . . . , ϕn(f1, f2)) = fi,

where the last equality is due to ϕ̃|R = id|R. So

fiψ(x1, x2, 0, . . . , 0) = xi,

which implies that fiψ = xi + hi, where hi ∈ (x3, . . . , xn), i = 1, 2. Therefore,

ψ̃(R) = k[ψ̃(f1), ψ̃(f2)] = k[x1 + h1, x2 + h2],

where ψ̃ is the automorphism of k[n] corresponding to ψ ∈ Aut(An
k ). �

Finally, we consider retract being the kernel of two commuting locally nilpotent

derivations. It is natural to state the following problem.

Problem 2.11. Let R be a retract of a k-UFD B such that R is the kernel of two

B-linearly independent commuting locally nilpotent derivations of B. Does it follow

that B ∼= R[2]?

The condition of B-linear independence is necessary, for otherwise the kernels of

the two derivations are the same, whence B ∼= R[1] due to Theorem 2.5.
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Proposition 2.12. LetB be a k-UFD andR a retract ofB such thatR = kerD1∩

kerD2 for two B-linearly independent commuting derivations D1, D2 ∈ LNDk(B).

Then

(1) kerD1 = R[h1] and kerD2 = R[h2] for some h1, h2 ∈ B,

(2) Rw[h1, h2] = Bw for some w ∈ R.

P r o o f. Noticing that B is a UFD and D1 is a locally nilpotent derivation of B,

we have that B1 := kerD1 is a UFD because kerD1 is factorially closed. Since D1

and D2 commute, D2 restricts to B1 = kerD1. Noticing that R is a retract of B, it

is easy to verify that R is also a retract of B1. Due to Theorem 2.5, B1 = R[h1] for

some h1 ∈ B1 and D2|B1
= w∂h1

for some w ∈ R.

Similarly, B2 := kerD2 = R[h2] for some h2 ∈ B2. Since D2(h1) = w ∈ R, h1 is

a local slice of D2. Therefore, by Lemma 2.3 we have

Bw = (kerD2)w[h1] = Rw[h2, h1].

�

The following example gives a negative answer to Problem 2.11.

Example 2.13. Let B = k[x, y, u, v]/(xa+yb+ucv), where a, b, c > 2 are integers

and gcd(a, b) = 1. Then B is a UFD and there are two commuting locally nilpotent

derivations D1 and D2 on B:

D1(x) = D1(u) = 0, D1(v) = byb−1, D1(y) = −uc,

D2(y) = D2(u) = 0, D2(v) = axa−1, D2(x) = −uc.

One may verify that D1D2 = D2D1 = 0 and R := kerD1 ∩ kerD2 = k[u]. By

Proposition 2.14 below, B ≇ k[3] and thus B ≇ R[2].

The Makar-Limanov invariant and Derksen invariant are powerful tools for dis-

tinguishing an An
k -like affine variety from An

k . The Derksen invariant DK(S) of

a k-algebra S is the subalgebra of S generated by all kernels of locally nilpotent

derivations on S, cf. [6], Chapter 9. Note that for S = k[n], DK(S) = S if n > 1.

Proposition 2.14. Let B be as in Example 2.13. Then DK(B) = k[x, y, u] 6= B

and thus B ≇ k[3].

P r o o f. It suffices to show that DK(B) = k[x, y, u]. Consider the Z2 grading g

on B in the lexicographic order such that x, y, u, v are homogeneous with degrees

deg
g
u =

(
−1

0

)
, deg

g
v =

(
c

−ab

)
, deg

g
x =

(
0

−b

)
, deg

g
y =

(
0

−a

)
.

Let D1 and D2 be as in Example 2.13. Then D1 and D2 are both g-homogeneous,

and kerD1 = k[u, x], kerD2 = k[u, y]. So DK(B) ⊇ k[x, y, u].
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To show that DK(B) ⊆ k[x, y, u], take any nonzero D ∈ LNDk(B) and any

f ∈ kerD. Denote by f and D the highest homogeneous parts of f and D, respec-

tively, regarding the grading g. Then D is a g-homogeneous locally nilpotent deriva-

tion of B, and f ∈ kerD. By [6], Lemma 9.8, the kernel of a nonzero g-homogeneous

locally nilpotent derivation of B is k[u, x] or k[u, y]. So f ∈ k[u, x] or f ∈ k[u, y],

which implies that deg
g
f <

(
0

0

)
and thus deg

g
f <

(
0

0

)
. If i2 > 0 is such that

deg
g
ui1vi2xi3yi4 =

(
−i1 + i2c

−(i2ab+ i3b+ i4a)

)
<

(
0

0

)
,

then i1 > i2c, and by the relation x
a + yb + ucv = 0, we have ui1vi2 ∈ k[x, y, u].

It follows that f ∈ k[x, y, u] since deg
g
f <

(
0

0

)
. Therefore, DK(B) ⊆ k[x, y, u], as

desired. �

Remark 2.15. Proposition 2.14 can follow from some general deep results in the

literature. The conclusionB ≇ k[3] follows from the equivalence of (iv) and (ix) in [9],

Theorem 3.11. The description DK(B) = k[x, y, u] follows from [9], Proposition 3.7.

(Precisely, Proposition 3.7 of [9] says that if DK(B) 6= k[x, y, u], then there exist z, t ∈

k[x, y] such that k[z, t] = k[x, y] and xa+yb = f(z)+g(z)t for some f(z), g(z) ∈ k[z].

Let d1 and d2 be the t-degrees of x and y, respectively. Since k[z, t] = k[x, y], Jung’s

theorem (cf. [18], Section 5.1) ensures that d1 | d2 or d2 | d1. The equality x
a + yb =

f(z) + g(z)t implies that ad1 = bd2, contradicts the condition gcd(a, b) = 1. Hence,

DK(B) = k[x, y, u].) Our proof of Proposition 2.14 is simple and self-contained.
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