Commentationes Mathematicae Universitatis Carolinae

Barbora Batikova; Tomas J. Kepka; Petr C. Némec
Inequalities of DVT-type — the one-dimensional case

Commentationes Mathematicae Universitatis Carolinae, Vol. 61 (2020), No. 4, 411-426

Persistent URL: http://dml.cz/dmlcz/148655

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2020

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/148655
http://dml.cz

Comment.Math.Univ.Carolin. 61,4 (2020) 411-426 411

Inequalities of DVT-type — the one-dimensional case

BARBORA BATiKOVA, ToMAS J. KEPKA, PETR C. NEMEC

Abstract. In this note, particular inequalities of DVT-type in real and integer
numbers are investigated.

Keywords: real number; inequality

Classification: 11D75

Let @ be a finite quasigroup of order n. The associativity index a(Q) is the
number of associative triples, i.e., a(Q) = |[{(a,b,c) € Q3: a(bc) = (ab)c}|.
course, a(Q) < n? and a(Q) = n? if and only if @ is a group. On the other hand,
to find lower bounds for a(Q) is rather complicated. The problem of finding
a(Q) has been investigated since 1983, see [4]. Recently, it was discovered that
quasigroups with small associative index may have applications in cryptography,
see [2].

n [1], A. Drapal and V. Valent proved that a(Q) > 2n —i(Q) + (91 + d2),
where i(Q) is the number of idempotents in Q, i.e., i(Q) = |[{z € Q: zz = z}|,
h=NHzeQ:zzx#x forallz € Q}| and 62 = [{z € Q: xz # z for all x € Q}|
(Theorem 2.5). This important result is an easy consequence of the inequality

n

k
Z(a + b2 + a;b;) Zaerb >3n— 2k + (r + s),
i=1

i=1

where n >k >0, a1,...,an, by ..., b, are nonnegative integers such that Y a; =
n=>b;,a; >1andb; >1for1<i<k,risthe number of ¢ with a; =0 and s
is the number of ¢ with b; = 0 (Proposition 2.4 (ii)). The lengthy and complicated
proof of this DVT-inequality (inequality of Drapal-Valent type) in [1] is based on
highly semantically involved insight.

In [3], a short and elementary arithmetical proof of a more general inequal-
ity of this type was found (unfortunately on expenses of brutalist syntax). This
inequality is two-dimensional in the sense that it works with two n-tuples of inte-
gers. The approach in [3] opens a road to investigation of similar inequalities of
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DVT-type which could be useful in further investigations of estimates in nonas-
sociative algebra and they are also of independent interest. Hence they deserve
a thorough examination, however the research is only at its beginning. In this
note, the one-dimensional case working with one n-tuple of real numbers is inves-
tigated. Inequalities derived for different properties of the n-tuple aq,...,a, in
case of real numbers and integers together with some examples are summarized
in Section 6.

1. First concepts

1.1. Let n > 1 and let a = (a1, ...,a,) be an ordered n-tuple of real numbers.
We put

—~
—_

~—
I

( )

(2) z(a) = z(a, 0);
(3) Z(Oz, +) = Za>0 z(a, a)a
(4) Z(Oz, 7) = Za<0 Z(av a’)ﬂ
(5) max(a) = max(a,...,an);
(6) min(«) = min(aq, ..., a,);
(7) z(a,max) = z(a, max(«));
(8) z(a,min) = z(c, min());
(9) s(@) =301, as;

(10) r(a) = X21, af;

(11) g(a) = r(a) — s(a);

—~
—_
\v)

~—

t(a) = g(a) — z().
It is immediately clear that
(13) 1= ¥ oer 2(0,0);
(14) 0 = (0 +) + 2(a, —) + 2(a);
(15) gla) = X1, aifa; — 1);
(16) r(a) + 5(a) = 37 asla; + 1),
For every a € R, let Z,(a) ={i: 1 <i <n, a;, = a}. We have
(17) q(@) = Xicv () (a? — a;), where V(o) = {1,...,n}\ (Zo(a) U Z1(a));
(18) t(a) = Xiey () (a7 — a:) = | Zo(a)l-
Weput |o] = (Jai, .- ., |an]), a+a = (a1+a, ..., ap+a) and ac = (aaq, . .., aay)
for every a € R. The following two lemmas are obvious.

Lemma 1.2.

(i) g(@) = q(lal).

(ii) ¢g(a) = q(Je|) if and only if a; > 0 for every i =1,...,n.
(i) () > t(|al).
(iv) t(a) = t(Je|) if and only if a; > 0 for every i =1,...,n.
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Lemma 1.3. Assume that |a;| > 1 for every j ¢ Zo(o). Then:
(i) () >n—z(a) = z(a, +) + 2(c, —) > 0.
(ii) r(a) =n — z(«a) if and only if a; € {0,1, -1} for every i =1,...,n.
(ili) r(a) = z(ev, +) if and only if a; € {0,1} for every i =1,...,n.
) r(a) = z(a,—) if and only if a; € {0,—1} for every i =1,...,n.

(iv) r(a

Lemma 1.4. Assume that |a;| > 1 for every j ¢ Zo(«). Then:

(i) r(a) = s(a) + 2z(a, —).

(ii) r(a) = s(a)+2z(a, —) if and only if a; € {0,1,—1} forevery i = 1,...,n.
ProoOF: We have a? >a+2-0fora>1,a°=a+2-0fora=1,0,a®>=a+2-1
for a = —1and a® > a+2-1 for a < —1. The rest is clear. (I

Lemma 1.5. Assume that |a;| > 1 for every j ¢ Zo(c) and that s(a) > 0. Then:
(i) r(a) > 2z(a, —).
(ii) r(a) = 2z(«a,—) if and only if s(a) = 0 and a; € {0,1,—1} for every
1=1,...,n.

ProOF: This follows immediately from Lemma 1.4. (]

Lemma 1.6. Assume that |a;| > 1 for every j ¢ Zo(o). Then:
(i) r(a) > 2z(a,+) — s(a).
(ii) r(a) = 2z(a, +)—s() if and only if a; € {0,1,—1} forevery i = 1,...,n.

PRroOOF: This follows from Lemma 1.4 via o <> —a. O

Lemma 1.7. Assume that |a;| > 1 for every j ¢ Zo(c) and that s(a) < 0. Then:
(i) r(a) > 22(a,+).
(ii) r(a) = 2z(a,+) if and only if s(a) = 0 and a; € {0,1,—1} for every
i=1,...,n.

PRrROOF: This follows immediately from Lemma 1.6. O

Example 1.8. Put a = (4,3, —1). Then s(a) =0, r(e) = 3 <2 =2z(a, —) and
r(a) =32 <4=2z(a,+).

Example 1.9. Assume that —1 < s(a) < 0 and r(a) < 2z(a,—). Ifn =1
then a = (a1), =1 < a1 < 0 and r(a) = a? < 1 < 2 = 2z(a, —). Assume,
therefore, that n > 2, a,, = min(«) and put g = (ai,...,a,—1). We have a,, <0,
S(8) = 5(a) — an > —1 — an, 7(8) = (a) — a2, #(f,~) = 2(a,—) — 1 and
22(8,—) = 22(a, =) =2 >r(a) =2 =7(B) + a2 — 2 > r(a) — 3.

If s(8) > 0 and |a;| > 1 for every j ¢ Zo(a), j # n, then r(8) > 2z(8,—) by
Lemma 1.4, and so a,, > —/2.

If a, < —1 then s(f) > s(a) +1>0.
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Example 1.10. Assume that s(a) = —1 and r(a) = 2z(a,—). If n = 1 then

a = (—1) and r(a) = 1 < 2 = 2z(a, —), so that n > 2. Assume again that

an = min(e) and put 8 = (a1,...,an—1). We have a, <0, s(ﬁ) =s(a) —a, =

—1 —an, 7(8) = r(a) —d? = 2z( —) — a2 = 22(8,—) + 2 — a?. Consequently,

r(B) > 2z(B,—) if and only if a, > —v/2 and r(8) = 2z(3, — ) if and only if
an = —V/2 (then s(8) = —1++/2 > 0).

Lemma 1.11. Put 8 =a — 1. Then:

Proor: It follows directly from the definition of the respective numbers. (I

Lemma 1.12. Let all the numbers a1, ..., a, be nonnegative. Then:
i) tla)=r(a—1)+s(a—1)— z(a — 1, —).
(ii) t(a) —z(a) =r(a—1) +s(a—1) = 2z(a — 1,—).
PRrROOF: We have r(a — 1) sla—1)—z(a—1,—) =r(a) — 2s(ar) + n + s(«) —
n—z(a—1,-1) =r(a) — s(a) — z(a) = t(a) by (11), (12) and Lemma 1.11. O
= (

Example 1.13. Put « = (1,1,1,-1,—1) (n = 5). Then s(a) = 1, r(a) = 5,

z(a,—) = 2 and r(a) z(a —) for every a € R, a > 2. Furthermore, 3 =
a—1 = (0,0,0,-2, s(B) = —4, r(B) = 8, z(B,—) = 2, z(B) = 3 and
r(B) +s(8) > z(B)-

Remark 1.14. Put W(a) = {1,...,n} \ Zo(a). Clearly, t(a) = —|Zo(a)| +

Yiew (o) (@7 = i) = Yiew (o) (@i = 1)? + Xiew (o) i — W(a)| = n +[W(a)| =
Z'LEV () (@i — 1)2+s(a) —n. Therefore, t(a) > 0 if and only if s(a)+2 ey (a)(ai—

1)2 > n (in particular, t(o) > 0, provided that s(a) > n). We also have t(a) =
Ziev(a)(az 1?4+ v (@) @i+ Z1(@)| =n and t(a) = 2(a) = 3y (o (@i — 1)+
s(a)+|W(a)| —2n. (In particular, t(a) > z(«), provided that s(a)+|W (a)| > 2n.
That is, s(a) > n+ z(a).)

Lemma 1.15. Assume that for everyi = 1,...,n we have either a; < 1 or a; > 2.
Then:

(i) (o) —3s(a) +2n > 0.

(ii) r(a) —3s(a) +2n =0 if and only if a; € {1,2} forevery i =1,...,n

PRrROOF: It is enough to observe that a®? —3a+2 > 0 for @ < 1 or a > 2 and that
a? —3a+2=0 just fora=1,2. O
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Lemma 1.16. Assume that for every i = 1,...,n we have either a; < 1 or
a; > 2. Then:

(i) r(a) —3s(a) +2n — 2z(a)) > 0.

(ii) r(a) — 3s(a) + 2n — 2z(a) = 0 if and only if a; € {0,1,2} for every

i=1,...,n.

PRrOOF: We can assume that aq,...,a,, are nonzero and a1 = --- = a, = 0.
Then z(a) = n —m. If m = n then the result is settled down by Lemma 1.15.
If m = 0 then the result is clear. Assume, therefore, that 1 < m < n. Put g =
(a1,...,am). By Lemma 1.15 r(a) — 3s(a) + 2n — 2z(a) = r(8) —3s(8) + 2m > 0.
The rest is clear. O

2. First bunch of technical results

Throughout this section, let n > 2, @ = (a1,...,a,) be an ordered n-tuple
of integers, 1 < 5,k <mn, j #k, bj =a;for 1 <i < n,i#jk, bj =a; -1,
b =ar+1and 5= (b1,...,b,).

The following six assertions are easy.

Lemma 2.1. z(f) € {z(a) — 2, z(a) — 1, z2(), 2(a) + 1, z(x) + 2}.
Lemma 2.2. z(8) = z(«) if and only if at least (and then just) one of the
following three cases takes place:
(1) a; =0, ax = —1;
(2) aj =1, ar =0;
(3) a; #0,1 and ax # —1,0.
Lemma 2.3. z(8) = z(a) + 2 if and only if a; =1, ap = —1.
Lemma 2.4. z(8) = z(«) + 1 if and only if at least (and then just) one of the
following two cases takes place:
(1) aj =1, ap # —1,0;
(2) aj 75 0,1, ap = —1.
Lemma 2.5. z(8) = z(«a) — 1 if and only if at least (and then just) one of the
following two cases takes place:
(1) a; =0, ar # —1,0;
(2) a; #0,1, ar =0.
Lemma 2.6. z(8) = z(a) — 2 if and only if a; =0 = ag.
Lemma 2.7. s(8) = s(«a).

PRrROOF: We have s(8) = 32" | ;40 +aj—1+ap+1=370 a; =s(a). O
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Lemma 2.8. r(a) —7(8) = 2(a; — ar — 1).
ProOF: We have 7(a) — 7(8) = af + af + D01 0@ — D ivjn @ —

(aj —1)* = (ap + 1)* = 2a; — 1 — 2a;, — 1. O
Lemma 2.9. t(a) —t(8) =2(a; —ar — 1) + 2(8) — z().
PRrROOF: Use Lemma 2.7 and Lemma 2.8. O

Lemma 2.10. If a; > aj + 2 then t(a) > t(5).

PrOOF: By Lemma 2.9 t(a)—t(8) = 2(a; —ar — 1)+ 2(8) — 2(«) > 0 (use Lem-
ma 2.1). If ¢(a) = t(8) then z(f) = z(a) — 2 and Lemma 2.6 yields a; = ar =0,
a contradiction. O

Lemma 2.11. If a; = ay + 1 then t(a) = t(5).

PROOF: First, it follows from Lemmas 2.1, 2.3, 2.4, 2.5 and 2.6 that z(8) = z(«).
Now it remains to use Lemma 2.9. [

Lemma 2.12. If a; < ay then t(a) < t(5).

PROOF: First, it follows from Lemmas 2.1 and 2.3 that z(3) — z(a) < 1. Now it
remains to use Lemma 2.9. O

The following three lemmas are easy.

Lemma 2.13. Let ax # max(«a), max(a) — 1.
(i) If a; # max(a) then max(f) = max(«) and z(f, max) = z(a, max).
(i) If a; = max(a) and z(a, max) > 2 then max(f) = max(«) and
z(B, max) = z(a, max) — 1.
(ili) If a; = max(a) and z(a, max) = 1 then max(f) < max(a).
Lemma 2.14. Let a;, = max(«). Then max(f) = max(«) + 1, 2(8, max) = 1.

Lemma 2.15. Let ax = max(a) — 1.
(i) If a; # max(a) then max(f) = max(«) and z(f, max) = z(a, max) + 1.
(ii) If a; = max(a) then max(f) = max(«) and z(5, max) = z(a, max).
Lemma 2.16. max(f) < max(«a) if and only if a; = max(a) # ap # max(a) —1
and z(a, max) = 1.

PRrROOF: Combine Lemmas 2.13, 2.14 and 2.15. O

Lemma 2.17. Let a; = max(«), ar = min(e) and a; > ay + 2. Then:
(i) t(e) > ().
(ii) If z(o,max) =1 then max(f) < max(a).
(iii) If z(a,max) > 2 then max(f) = max(«) and z(8, max) = z(«, max) — 1.

PROOF: (i) is Lemma 2.10, (ii) is Lemma 2.13 (iii) and (iii) is Lemma 2.13 (ii). O
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Lemma 2.18. Let a; = max(«), ar = min(«) and a; = ap+1. Thent(a) = t(F),
max(a) = max(f) and z(«, max) = z(f, max).

PROOF: See Lemmas 2.11 and 2.15. O

Lemma 2.19. Let a; = max(«) = min(a) = ag. Then t(a) < t(8), max(8) =
max(a) + 1 and z(f, max) =1 < z(a, max) = n.

Proor: Using Lemma 2.12, this is obvious. (]

Example 2.20.

(i) Let a; > 2 and ar = 0. Then z(8) = z(a)—1 and t(«) = t(8)+2a; —3, see
Lemma 2.9. If a; = 2 then t(a) = t(8)+1. If a; > 3 then t(a) > t( )+ 3.

(ii) Let a;j > ar + 2 and ai > 1 (so that a; > 3). Then z(ﬂ) = z(a) and
t(a) = t(B) +2(a; —ax) — 2. If a; = ax + 2 then t(a) = t(B) + 2.
a; > ap + 3 then t(a) > ¢(B) + 4.

Observation 2.21. Assume that s(a) > n, a; = max(a) and ar = min(a).
Clearly, a; > 1. If aj = 1 then a1 = -+ = a, = 1 and t(a) = 0. Assume,
therefore, that a; > 2.

Let a; = ap = a. Then t(«) = na(a — 1) > 2n > 4 (t(a) = 4 just for n = 2,
a=2).

Let a; > ar = a. If aj = a+ 1 then a > 1. For u = z(a,a + 1) and
v = z(a,a), we have t(a) = u(a + 1)? + va®? — u(a + 1) — va = ua® + 2ua + u +
va? —ua —u —va = (u+ v)a® + (u — v)a. However u + v = n, and therefore
t(a) = na? +na —2va > na® +na—2(n—1)a = na(a — 1) +2a > 2. In this case,
t(a) = 2 if and only if a =1 and z(a, max) = 1.

Finally, let a; > ax + 2. We have ¢(a) = t(8) +2(a; —ar — 1) + 2(8) — z(a) by

Lemma 2.9. If a; > 2 and a; < —2 then t(a) > t(8) + 6. If a; > 2 and ar = —1
then t(a) > ¢(8) + 5. If a; > 2 and ax = 0 then ¢(a) > t(8) + 1 (in this case
t(a) = t(B) + 1 just for a; = 2). If a; > 2 and ag > 1 then t(a) > ¢(8) + 2 (in
this case, t(a) = t(8) + 2 just for a; = ax + 2).
Observation 2.22. If a; = 1 and ar = —1 then (o) = t() +4. If a; =1
and ar < —2 then t(a) > t(8) + 5. Notice also that max(8) < max(a). If
z(a,max) = 1 then max(8) = max(a) — 1. If z(a,max) > 2 then max(b) =
max(a) and z(f, max) = z(«, max) — 1.

3. Second bunch of technical results

In this section, let n > 2, a = (ay,...,a,) be an ordered n-tuple of integers,
1<j<n,b=q;for1 <i<j—1,b;=a;41forj<i<nandf = (by,...,bn—1).
The following two assertions are obvious.

417
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Lemma 3.1.

(i) If aj =0 then z(8) = z(a) — 1.
(ii) If aj # 0 then z(B) = z().
)

Lemma 3.2. s(8) = s(a) — a; and r(8) = r(a)
Lemma 3.3. Let a; = 0. Then t(8) =t(a) +1
PrOOF: We have t(8) = r(8) — s(8) — 2(8) = r(a) — s(a) + 1 = t(a) + 1. O

Lemma 3.4. Let a; # 0. Then t(8) = t(a) — (a — a;) < t(a). The equality
occurs if and only if a; = 1.

PROOF: We have t(8) = 7(8) — s(8) — 2(8) = () — a3 — s(a) + a; — 2(a) =
t(a) — (af — a;) < (). Now, a5 = a; only for a; = 1. O
Lemma 3.5. Let a; = 0. Then t(8) — z(8) = t(a) — z() + 2.

PROOF: We have t(8)—z(8) = t(a)+1—2(8) = t(o)+1—2(a) +1 by Lemmas 3.3
and 3.1 (i). O
Lemma 3.6. Let aj # 0. Then t(8) — 2(8) < t(a) — z(a). The equality occurs
if and only if a; = 1.

PrOOF: Use Lemmas 3.4 and 3.1 (ii). O

Lemma 3.7.

(i) If a; > 0 then z(B,+) = z(a,+) — 1 and 2(8, —) = z(®, —).
(ii) If a; =0 then z(8,+) = z(a,+) and z(8, — ) z(a 7)
(ili) If a; <O then z(8,+) = z(o, +) and z(8, —) = z(«a,

PRoOF: This is obvious. (I
Lemma 3.8. 0 < z(a,+) — 2(8,+) <1 and 0 < z(a, —) — 2(8,—) < 1.

ProOF: This follows from Lemma 3.7. O

4. Third bunch of technical results

In this section, let n > 2, o = (aq,...,a,) be an ordered n-tuple of integers
such that a,, = 0 and put 8 = (a1 —1,a2,...,a,—1). The following two assertions
are obvious.

Lemma 4.1.
(i) If a; =1 then z(8) = z(«).
(ii) If a3 =0 then z(8) = z(a) — 2.
(iii) If a1 # 0,1 then z(8) = z(a) — 1.
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Lemma 4.2.

() 5(8) = s(a) — 1.

(ii) r(B) = r(a) —2a1 + 1.
Lemma 4.3.

(i) If a; =1 then t(B) = t(«).

(ii) If a3 = 0 then t(B) = t(a) + 4.

)
(iii) If a1 # 0,1 then t(B) = t(a) — 2a1 + 3.
(iv) t(B) < t(«) if and only if a3 > 2.

ProOOF: By Lemma 4.2, we have t(8) = r(8) — s(8) — 2(8) = r(a) — s(a) — 2a1 +
2 — z(). The rest follows from Lemma 4.1. O

Lemma 4.4.
(i) If a1 =1 then ¢(8) — 2( (@) — .
(ii) If a; = 0 then t(B) — z( (@) — z(a) + 6.
(ili) If a1 # 0,1 then t(8) — z(8) = t(a) — z(a) — 2a1 + 4.

ProOOF: This follows from Lemmas 4.3 and 4.1. O

Lemma 4.5. t(«) — z(«) > t(8) — 2(B) if and only if a1 > 1. The equality occurs
if and only if a1 =1, 2.

ProOF: This follows from Lemma 4.4. O

5. Fourth bunch of technical results

Let n > 2 and «, 3, 7, k be as in the second section. Now, we denote by A (B, re-

spectively) the set of ordered pairs (i1,i2) ((i3,44), respectively) of indices such
that a;, > ai, (bi, > bs,, respectively) and we put u(a) = 32 ;)ealai — ai,)
and u(f) = Z(ig,u)eB(big. —biy).
5.1. Let A; (B, respectively) designate the set of the pairs (i5,i5) € A
((i7,i8) € B, respectively) such that j £ i5 £ k £ i¢ £ j (J # i7r # k # is # J,
respectively). Put ui(a) = > (ai; — ais) and ui1(5) = D (bi, — big). One sees
readily that uq(«) = u1(8) (we have A; = By).

5.2. Let As (Ba, respectively) designate the set of the pairs (j,ig) € A
((4,710) € B, respectively) such that a; > a;, +2 (b; > b;,, + 1, respectively)
and ig # k (410 # k, respectively). Since b; = a; — 1 and a;, = by, (@i, = biyg,
respectively), we have Ay = By. Furthermore, (a; — a;) — 1 = b; — b;,. Thus
uz(a) = ua(B)+q1, where ug(a) = > (a;—ai, ), u2(8) = >_(bj—bi,,) and ¢1 = |As|
(= |Bzl).

419
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5.3. Let A3 (Bs, respectively) designate the set of the pairs (i11,j) € A
((i12,7) € B, respectively) such that a;,, > a; +1 (b;;,) > b; + 2, respectively)
and i11 # k (i12 # k, respectively). Since b; = a; — 1 and a;,, = b;y, (a4, = biys,
respectively), we have As = Bs. Furthermore, (a;,, — a;) +1 = b;;, —b;. Thus
uz(a) = uz(B) — g2, where uz(a) = > (ai,, — aj), us(8) = > (b;;, — b;) and
42 = |As| (= |Bsl)-

5.4. Let Ay (B4, respectively) designate the set of the pairs (k,i13) € A
((k,i14) € B, respectively) such that ap > ai,, + 1, (br > b;,, + 2, respectively)
and i13 # j (i14 # j, respectively). Since by, = ar + 1 and a;,, = by, (a5, = biyy,
respectively), we have Ay = By. Furthermore, (ax — a;,5) + 1 = by — b;,,. Thus
ug(a) = uqg(B) — g3, where ug(a) = > (ar — asyy), ua(B) = > (b — b;,,) and
q3 = |Aa] (= [Bal).

5.5. Let As (Bs, respectively) designate the set of the pairs (i15,k) ((i16, k),
respectively) such that a;,. > ax + 2 (bi,, > b + 1, respectively) i15 # j (i16 # 7,
respectively). Since by = ar + 1 and a;,; = by (@i, = biyg, respectively), we
have A5 = Bs. Furthermore, (a;,; —ar)—1 = b;;, —br. Thus us(a) = us(8) + qa,
where us(ar) = 3 (i, — ar), us(B) = 32(bi,; — bi) and qu = |As] (= [Bs|).

5.6. Put A6 = A1 UA2 UA3 UA4 UA5 = Bl UB2 UB3 UB4 UB5. Notice that this
union is disjoint and that |Ag| = go + ¢1 + g2 + g3 + g4 = | Bg|, where ¢ = |A;]
(= |B1]). Notice also that Ag (= Bg) is just the set of pairs (i17,415) € AN B such
that {i17ﬂi18} 7é {jvk} Put UG(OA) = Z(ain - ails) and U6(ﬂ) = Z(biu - bils)'
We have ug(a) = Z?:l ui(a), ug(B) = Z?:l u;(B) and ug(a) —ue(B) = q1 — g2 —
g3+ qa = |[A2 U As| — |A3 U Ay|.

5.7. Put A7 = A\ A¢ and By = B\ Bg (of course, we have Ag = Bg).

5.8. Let (i19,i20) € A7. Then a;,, > a;,, and just one of the following six cases
takes place:
(a) i19 = j, 20 # J, K, @iy = aj —1;
(b) 19 # J, i20 =k, iy = ar + 1;
) ilgij, iQOZk, aj:ak+1;
) ilgij, iQOZk, aj :ak+2,
e) i19 =J, 20 =k, a; > ar + 3;
) ilgik, igoij, ak>aj+1.

5.9. We put Ag = {(j,9): ¢ # k, a; = a; — 1}, ¢5 = |As|, A9 = {(i,k): i # 7,
a; = ap + 1}, g6 = |Aol, Ao = {(j,k): aj = ap + 1}, ¢z = |Awo| (= 0,1),
All = {(j,k') a]— = ag —+ 2}, qs = |A11| (: 0,1), A12 = {(j,k') aj Z Ak + 3},
qo = |A12| (=0,1), A1z = {(k,j): ar > a; + 1}, quo = |A13| (=0, 1).
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NOW, A7 = Ag @] Ag U A10 @] A11 @] A12 U A13 and this union is diSjOiIlt.
Henceforth, |A7| = 2;25 qi-

Put ur = > (aiyy — @iy, ). Since A = Ag U A7, we have u(a) = ug(a) + uz(a).
Now, u(a) = ¢5s+qs+g7+2gs+us(a)+ug(a), where ug(e) = aj—ay, for a; > ar+3,
ug(a) =0 for aj < ax + 2, ug(a) = ar — a; for ar, > a+ j+ 1 and ug(er) = 0 for

a < a;. Consequently, u(a) = ug(a) + g5 + g6 + g7 + 2qs + us() + ug(a).

5.10. Let (i21,i22) € By. Then b;,, > b;,, and just one of the following six cases
takes place:

(a) i21 = k’, i22 #], k’, Ajyy = Ak
(b) i21 #], k’, ’i22 = j, Ay = aj;
) io1 =k, io2 =J, ar =a; — 1;
) 21 =k, d22 = j, ax = aj;

e) io1 = k, 192 = 7, akzaj—i—l;
)iglzj, iog =k, ajzak—i—S.

5.11. We put Bs = {(k,i): i # j,k, a; = ax}, qu1 = |Bs|, Bg = {(i,7): i # j, k,
a; = aj}a qi2 = |BQ|’ B = {(ka.j) aj = ax + 1}’a q13 = |BlO|’ B = {(k’j)
a; = ak}7 qia = |B11|, By = {(k,j)i ar > aj + 1}, qi5 = |B12|, Bz =
{(,k): aj > ar + 3}, q16 = [Bis|.

Now, By = Bg U Bg U BygU Bj1 U B2 U Bjs and this union is disjoint.
Henceforth, |Br| = >21°,, ai.

Put uz(B8) = > (biy; — biy,). Since B = BgU By, we have u(8) = ug(8) + u7(5).
Now, uz(8) = qi1 + q12 + q13 + 214 +us(5) + ug(3), where ug(3) = ar —a; +2 for
ar > a;+1, ug(B) = 0for ar, < a;, ug(B8) = a;—ar—2for a; > ar+3 and ug(8) =0
for a; < ap+2. Consequently, u(5) = us(8)+q11 +q12+q13+2q14+us(8) +uo(B).

5.12. We have g7 = q13, and so u(a) — u(8) = ¢1 + g4 + ¢5 + g6 + 2qs + us(o) +
ug(@) — g2 — g3 — qu11 — q12 — 2q14 — us(B) — uo(f).

5.13. If a; > ax + 3 then ¢7 = ¢s = q10 = ug(@) = q13 = q14 = q15 = us(8) =0,
g9 = q16 = 1, ug(a) = a; — a, and ug(B) = a; —ar — 2. If a; = ap + 2 then ¢7 =
g9 = quo = ug(a) = ug(a) = q13 = qua = @15 = q16 = us(ff) = ug(B) =0, gz = 1.
In both these cases we get u(a) —u(8) = q¢1+qa+a5+9 — g2 — q3 — @11 — Q12 + 2.

5.14. If a; = ap + 1 then ¢ = qi3 = 1, ¢s = ¢9 = quo = ug(a) = ug(a) =
q1a = @15 = q16 = ug(B) = ug(B) = 0. In this case we get u(a) — u(f) =
g1+ g4+ g5 +4g6 — g2 — g3 — q11 — q12-

If aj = ay then ¢z = g8 = qo = quo = ug(a) = ug(@) = q13 = qua =
@15 = qi6 = ug(B) = ug(B) = 0, qua = 1. In this case we get u(a) — u(B) =
G1+qa+¢5+4d6—q2—g3—qu —q12 — 2.
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5.15. In the sequel, let a; = max(«) and ar = min(a) = 0. If a; =0 then a; =0
for every ¢ and we have u(a) =0 < 2n — 2 = u(f), u(a) —u(f) =2 —2n < —-2.
If a; =1 then u(a) = s(a)z(a) = u(B), and so u(a) — u(B) = 0.

5.16. Let a; = 2. It follows from 5.13 that u(a) —u(8) = g1 +qa+g5+q6—g2—g3—
qi1 —qi2+2. Now, 1 = 2(a) =1, g2 =0, g3 = 0, g4 = z(, max) — 1 = 2(a,2) - 1,
g5 = z(o, 1), g6 = z(e, 1), g11 = z(a) — 1, q12 = z(a,max) — 1 = z(a,2) — 1.
Altogether, we arrive at u(a) —u(8) = z(a) =1+ 2(,2) = 1 + z(, 1) + 2(, 1) —
z(a) +1—2(0,2) +14+2 = 2z(, 1) + 2 > 2. Of course, u(a) — u(B) = 2 if and
only if z(a,1) = 0. That is, a; € {0,2} for every i € {1,...,n}.

5.17. And now, let a; > 3. Again, u(a) —u(8) =1 +q1+¢+q— 92— q3 — q11 —
q12 +2, g2 =0, g3 = 0, so that u(a) —u(B) = q1 + @ + ¢ + g6 — q11 — q12 + 2.
Furthermore, ¢; is the number of indices ¢ such that ¢ # k and a; = max(«a) >
a; + 2, qq is the number of indices ¢ such that ¢ # j and a; > 2, g5 = z(a, a; — 1),
g6 = z(a, 1), 11 = z(a) — 1, q12 = z(a,max) — 1 = z(,a;) — 1. Of course,
ga = n—qs — 2z(a) — 1, and so u(a) —u(B) = ¢1 + ¢5 — q12 + n, where ¢1 >
z(a, 1)+ z(a) =1, g5 > 0, g12 > n—2. Thus u(a) —u(B) > z(a, 1)+ 2z(a) + 1 > 2.
The equality u(a) —u(8) = 2 is achieved if and only if a; = a; = max(«) for every
i=1,...,n,i# k ((ax =0 =min(e)). In this case, s(o) = (n — 1)a; > 3n — 3.

Lemma 5.18. If a; = max(«) > 2 and a;, = min(«) = 0 then u(a) > u(B).

PROOF: See 5.16 and 5.17. O

6. Inequalities

Throughout this section, let n > 1, a4, ..., a, be real numbers and let z denote
the number of indices i such that a; = 0.

Proposition 6.1. Let |a;| > 2 whenever 1 < j <n and a; # 0,%1. Then:

(i) YSr,a?>2z—2n+3% 0 |lai| >2z—2n+3>" | a;.
(ii) Yo af =2z —2n+3>." , |a;| if and only if a; € {0,+1, £2} for every

1=1,...,n.
(iil) >",a? = 22 —2n + 3> a; if and only if a; € {0,1,2} for every
i=1,...,n.
ProOF: All the assertions follow easily from Lemma 1.16. (]

Proposition 6.2. Let |a;| > 2 whenever 1 < j < n and a; # 0,£1, and let
iy lai| > n. Then:

(1) Ximaf 222+ il 2 224 350, @i
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(ii) Yo af =2z+> 1, |a;| ifand onlyif Y7, |a;| = n and a; € {0,£1, £2}

for every i =1,...,n.
(iil) >, a? =22+4> "  a; ifand only if Y., a; =n and a; € {0,1,2} for
every 1 =1,...,n.

PROOF: (i) This follows easily from Proposition 6.1 (i).

(ii) First, assume that > .  a? = 2z + > ., |a;|. According to Proposi-
tion 6.1 (i), we have 2n+ > |a;| > 331 | |a;| > 3n, and hence Y - |a;| =n
and )i af =2z —2n =3) . |a;]. Now, it follows from Proposition 6.1 (ii)
that a; = 0, +1, +2.

Conversely, if Y1 | |a;| =n and a; = 0,+1,+2 then Y ", a? =22+ > | |a;]
by Proposition 6.1 (ii).

(iii) This follows from (i) and (ii). O

Proposition 6.3. Let Y ., |a;| > n. Then:

(1) Yy af > 24300 lail > 300 as.
() Sy a? >z 4n
(i) >r,a? = 24+ > |a;| (or = z+n) if and only if a; € {1,-1} for

%

every n.
(iv) Y a?=z+> 1"  a; ifand only if ay = -~ =a, = 1.
PRroor: Easy, see Remark 1.14. O
Remark 6.4.

(i) If > a; >n+zthen Y !  a? > > " a; + 2z > n+3z by Lemma 1.15.
(ii) If Y7, lail > n+ 2z then >0 a2 > >0 | |ai| +22 > n+ 3z (it follows
from (i) and Lemma 1.2 (iv)).

Example 6.5. Let n > 3, a1 = -+ = an_1 = =5 and a, = 0. We have

n—1

S a2 = n’ Srjai=n,z=1,22-2n4+3%" ja;=n+2and >, af —

i=1"" n—1’

22 +2n -3 a; = 2=2 < —1. Besides, >.;' a? — 22— Y1 a; = 22 and

n—ll n
no 2 L
Doim1 @i —F T D G =
_ o _ n—1 n 2 _ (n—1)?
Example 6.6. Let n > 2, a1 = --- = a, = *—=. Then i1 @i = n

Y =n—1,2=0>"a; —2z2+2n—-3) . ,a; = nt as — 2z —

n 7
n —1ln -1 o2, N . — 1-n
Dy @i = S g D1 G; — = D G = n
Proposition 6.7. Let ay,...,a, be integers such that Y ., |a;| <n. Then:

(i) Y ,a?<z+n*>—n+1(<n?if a; #0 for at least one j).
(ii) Yo af = z+n? —n+1if and only if there is k € {1,...,n} such that
ar, € {n,—n} and a; =0 for i # k (then z =n —1).
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ProoF: Put a = (aq,...,a,). Without loss of generality we can assume that
n > 2 and all numbers a1, ...,a, are nonnegative. If z(«) = n then aqy = --- =

=0=7>Y_",a? and both ( ) and () are true. If z(a) =n—1 then ay # 0 just
for oneindex k, |ax| <nand Y. | a? = ai < n? =n—14+n*—n+1=z4+n’*—n+1.
Again, (i) and (ii) are true. Assume, therefore, that z(a) < n — 2. First, observe
that r(a) < ns(a) < n? and we will proceed by induction on n? — r(«). Since
z(a) <m—2, we can find indices j and k such that j # k and 1 < a; < ag. Now,
consider the n-tuple 3 treated in the second section of the paper. By Lemma 2.8,
r(a)—r(B) =2(a; —ar—1) < =2, n* —r(B) < —=2+n? —r(a) < n? —r(a). Now,
either due to the first part of the proof or due to the induction hypothesis, we get
r(B) < 2(B) + n? —n + 1. Consequently, r(a) <7(8) =2 < 2(8) +n? —n—1. If
aj > 2 then z(a) = 2(8), and hence r(a) < z(a) +n? —n—1< z(a) +n* —n+1.
If a; =1 then z(8) = z(a)+ 1l and r(a) < z(a) +n®  —n < z(a) +n*—n+1. O

1

Example 6.8. Let n = 2, a1 = %g, az = 1g- Then a1 + a2 = 2, z = 0 and

2 2 _ 181 150 _
a1+a2—50>50—z+n n+ 1.

Proposition 6.9. Let ay,...,a, be integers such that .., |a;| = n. Then:

(i) n? >n? —n+1+z>z L al>n+2z>n.

(ii) Y°i, a? = n if and only if a; € {1,—1} for every i =1,...,n

(iii) Y>>, a? = n+ 2z if and only if a; € {0, :I:l,:l:2} for every i=1,...,n
(iv) Yoi,a? =n?ifand only if Y ;| a? = n*—n+1+z and this is equivalent

to the fact that there is k € {1,...,n} such that ay € {n,—n} and a; =0
for i # k.

PRrROOF: Combine Proposition 6.2 (i), (ii) and Proposition 6.7 (i), (ii). O

Remark 6.10. Let aq,...,a, be integers and let m = >""" , |a;| < n. Clearly,
a; = 0 for at least one j € {1,...,n}. Put o = (a1,...,a,) and define g =
(b1,...,by) by b; = a; for i # j and b; =n —m. Clearly, st(8) =Y., |bi| =n
and z(8) = z(a)—1. Now, by Proposition 6.1 (i), we have r( )+n2 —2nm+m? =
r(B) > sT(8)+22(8) = n+2z(a)—2. Consequently, Y1, a? > (2n—"1; |a;|) x
(>0 Jail) + n—n? — 2 4+ 22(a).

For example, if m =n — 1 then we get Y., a? > n — 3+ 2z(a).

Remark 6.11. There are other ways of proving Proposition 6.1.
(i) Let n > 2, « = (a1,...,a,), where all the numbers a; are nonnegative
and let s(a) =n. If z(a) =0thena; =--- =a, =1 and t(a) —z(a) = 0.
If z(a) > 1 then max(a) > 2 and min(«) = 0. Choose j and k such that
a; = max(a) and a; = min(a) = 0, and consider the n-tuple 8 from the
second section. Clearly, z(8) = z(a) — 1. Consequently, by Lemma 2.9,
t(a) — t(B) = 2a; — 3 and (t(a) — z(a)) — (¢(B) — 2(B)) = 2a; — 4. If
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a; > 3 then t(a) — z(a) > t(8) — 2(B8). On the other hand, if a; = 2 then
a; € {0,1,2} for every ¢ and we have t(a) — z(a) = r(a) — s(a) — 2z(a) =
4z(0,2) 4+ z(, 1) = 22(, 2) — z(r, 1) — 22(a) = 22(v, 2) — 22(a) = 0, since
2(e,2) + z(a, 1) + z(a) = n = s(a) = 22(, 2) + z(a, 1).

(ii) Taking into account (i), we can proceed by induction on z(a) to show
Proposition 6.1 (for s(a) = n). We can also proceed by induction on
max(a) + z(a, max(a)), see Lemma 2.17.

(iii) Assume that a3 > 1, a,, = 0, and put 8 = (a1 — 1,a2,...,an—1). Then
s(B8) =s(a) =1 =n—1and t(a) — z(a) > t(8) — s(3), see Lemma 4.5.
We see that we can proceed by induction on n.

Remark 6.12. Let ay, ..., a, be integers such that m = Y| |a;| > n. Now, put
a = (ay,...,a,) and consider the m-tuple 8 = (a,0,...,0). We have sT(3) = m,
z(B) = z( )+m—n. Now, it follows from Proposition 6.9 that 3m —2n+2z(a) <
i ai <m® —n+1+z(q).

For instance, if m = n+1 then we obtain n+3+2z(a) < Y.  a? <n?+n+
2+ z(«).

Remark 6.13. Let ay,...,a, be integers such that m = >°" ; |a;| < n. Now,
put « = (a1,...,a,) and consider the m-tuple § used in Remark 6.10. We
have s*(8) = n, z(8) = z(a) — 1. Now, it follows from Proposition 6.9 that
n+2z(8) <3 b7 < n27n+1+z(ﬂ) We have Y7, b7 = >0 | a?+(n—m)>.
Thus n(2m+1)—n —m? =2+ 2z(a) <> " aZ <nm-—1)— m2—|—z( ).

For instance, if m = n — 1 then we get n — 3+ 2z(a) < > i a? <n®’ —n+
1+ z(a).

Observation 6.14.

(i) Of course, we can proceed also in the following way: > ., a?—3> " | a;+
2n — 22> 300 (lag] = 1)* = 300, fag| +n — 22 = Zi:l,ai;é0(|a’1| 1)? —
St acrg 0+ =2 = Ty (o =17 = (il = 1))

(ii) Due to (i), we have >.1  a? — 33" a; + 2n — 2z > 0, provided that
a; € (—oo,—2) U (—1,1) U <2 oo) for every i.

(iii) Another (shghtly different) way: > jaf —3> " a; +2n—2z =
271@_;&0 P32 1a;£0a1+2(”_z) i 1a;é0( —3a; +2).

(iv) Due to (iii), we have Y, a? — 3> 1" a; + 2n — 2z > 0, provided that
a; € (—o00,1) U (2,00) for every i.

Example 6.15. Let n =2 and a; = 3. Then af + a3 — (a1 +a2) +4— 22 > 0 if
and only if az # 0 (so that z = 0) and az € (—o0, (3 — v/2)/2) U ((3 ++/2)/2,00)
(so that either ag < 1 or az > 2).
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