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ON VARIANTS OF ARNOLD CONJECTURE

Roman Golovko

Abstract. In this note we discuss the collection of statements known as
Arnold conjecture for Hamiltonian diffeomorphisms of closed symplectic mani-
folds. We provide an overview of the homological, stable and strong versions of
Arnold conjecture for non-degenerate Hamiltonian systems, a few versions of
Arnold conjecture for possibly degenerate Hamiltonian systems, the degenerate
version of Arnold conjecture for Hamiltonian homeomorphisms and Sandon’s
version of Arnold conjecture for contactomorphisms.

1. Versions of Arnold conjecture

One of the origins of Arnold conjecture is Poincarés last geometric theorem (or
the Poincaré-Birkhoff fixed point theorem). Let φ be a self-diffeomorphism of an
annulus S1 × [0, 1] which is area and orientation preserving. If φ maps S1 × {0}
and S1 × {1} to themselves and “rotates” them in opposite directions, then the
theorem states that there are at least two fixed points of φ, we refer the reader to
[2] for more details. Arnold conjecture for closed symplectic manifolds can be seen
in a way as a natural generalization of the Poincaré-Birkhoff theorem and concerns
the existence of fixed points of a time-dependent Hamiltonian vector field on a
closed symplectic manifold. It has been formulated by Arnold in 1960s and since
then it has become such a landmark result that most of the symplectic community
thinks that the modern symplectic topology emerged from Arnold conjecture.

Let (M,ω) be a closed connected symplectic manifold and H : S1×M → R be a
periodic smooth function. Then there is a time-dependent Hamiltonian vector field
XH : S1 ×M → TM given by ω(XH(t, x), ·) = dH(t, ·). From now on we write
Ht(x) := H(t, x). We consider the set of contractible periodic orbits of XH denoted
by

(1.1) P (H) := {γ : S1 →M | γ is contractible, γ′(t) = XH(t, γ(t))} .

Observe that P (H) can be identified with the set of fixed points of the time 1-flow
of XH , φ : M →M , that we denote by Fix(φ).

If φ1
H ×M is transverse to the diagonal ∆, such a Hamiltonian system is called

nondegenerate; for such Hamiltonian systems the set of fixed points is finite.
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There are many different forms of Arnold conjecture. The literature on this
subject is quite large with many partial solutions. In this short note it would be
difficult to state all the results, we will mention the most general one and will refer
the reader to [1, 26, 35] for more details.

1.1. Strong Arnold conjecture. We start with the strongest form of Arnold
conjecture for non-degenerate Hamiltonian systems. The bound for the number of
fixed points in this case is given by the Morse number defined by

Morse(M) = min{# critical points of f | f is a Morse function on M} .

Conjecture 1.1. For a non-degenerate Hamiltonian system
|Fix(φ)| ≥ Morse(M) .

This statement is usually called the strong Arnold conjecture. Conjecture 1.1 is
still wide open.

Arnold noted that Conjecture 1.1 holds in the case when Hamiltonian H is a
C2-small function. In such a situation Conjecture 1.1 follows from the elementary
differential topology. For closed symplectic 2-manifolds it was proved by Eliashberg
[9] and for the 2n-torus it was proved by Conley-Zehnder in [6]. Then Floer’s
original result [15] proves Conjecture 1.1 under the assumptions that dimM ≥ 6
and π1(M) = 0 (under these assumptions Morse(M) is determined by the integer
graded homology groups with Z-coefficients).

1.2. Stable Arnold conjecture. There is a version called stable Arnold conjec-
ture. It is closely related to the strong Arnold conjecture, but is slightly weaker
than Conjecture 1.1. In this version Morse number is substituted with the stable
Morse number.

We say that a function f : M ×Rl → R is almost quadratic at infinity if there is
a non-degenerate quadratic form G on Rl with the property that

‖df − dG‖T∗(M×Rl)

is bounded. Here ‖·‖T∗(M×Rl) is a norm on T ∗(M×Rl) which is given by a product
metric on M × Rl. The stable Morse number of a closed smooth manifold M is
defined by
StableMorse(M) = min

f∈C∞(M×Rl)
l∈N∪{0}

{# critical points of f | f is Morse and quadratic at∞} .

Conjecture 1.2. For a non-degenerate Hamiltonian system
|Fix(φ)| ≥ StableMorse(M) .

We call symplectic manifold M symplectically aspherical if the symplectic area
class and the first Chern class vanish on the elements of π2(M). According to
[8], Conjecture 1.2 holds for closed symplectic manifolds which are symplectically
aspherical.

Observe that from the definition of StableMorse(M) and Morse(M) it follows
that

StableMorse(M) ≤ Morse(M) .
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It is known that Morse number and stable Morse number are the same for
many manifolds. In particular, they coincide for surfaces, simply connected closed
three-manifolds (3-sphere by Perelman’s proof of the Poincaré conjecture [31]), and
for simply connected closed k-manifolds, where k ≥ 6, see [40].

On the other hand, Damian in [7] proved that for closed symplectic 4-manifolds
with a ‘reasonably complicated’ fundamental group Morse(M) > StableMorse(M).
Examples of the same sort exist for general symplectic manifolds of dimension 2n,
n ≥ 2, this follows from the combination of the result of Damian and the result
of Gompf [22] saying that every finitely presentable group can be realised as a
fundamental group of a closed symplectic 2n-manifold, n ≥ 2.

1.3. Homological Arnold conjecture. There is a weaker, but more feasible and
well-known version of Arnold conjecture which is completely proven these days.

It is accessible by Floer theory, introduced by Floer in the 1980s, see [13, 12,
14, 16, 15]. It constructs a chain complex generated by Fix(φ), this complex can
be compared with the Morse complex generated by the critical points of a Morse
function. When well-defined, Floer homology is independent of the Hamiltonian
and can be identified with Morse homology. This approach was used by Floer
in the absence of pseudoholomorphic spheres to prove a version of the following
homological Arnold conjecture (we will provide more details in Section 2):

Theorem 1.3. Let (M,ω) be a closed symplectic manifold and H : S1 ×M → R
a nondegenerate periodic Hamiltonian function. Then

(1.2) #|Fix(φ)| ≥
dimM∑
i=0

dimHi(M ; Q) .

Floer’s proof was later extended to general closed symplectic manifolds.
Theorem 1.3 was proven for a general closed symplectic manifold by Fukaya-Ono

[20, 21], Liu-Tian [28], and Ruan [33], based on the work of Floer. There is also a
proof of Piunikhin-Salamon-Schwarz [32]. Using an abstract perturbation scheme
provided by the polyfold theory of Fish-Hofer-Wysocki-Zehnder [11, 25], following
an approach by Piunikhin-Salamon-Schwarz, and building on polyfold descriptions
of Gromov-Witten moduli spaces as well as their degenerations in symplectic field
theory, Filippenko and Wehrheim in [10] also provided a proof of Theorem 1.3.

In addition, we would like to mention that there are improvements of the bound
1.2 involving the fundamental group of a symplectic manifold (we refer to the works
of Barraud [3] and Ono-Pajitnov [30].

From Morse theory it follows that Morse(M) and StableMorse(M) are bounded
from below by the sum of Betti numbers of M and hence the statement of Theorem
1.3 is weaker than statements of Conjectures 1.2 and 1.1.

1.4. Degenerate version of Arnold conjecture. There is a version of Arnold
conjecture for the situation when one omits the restriction of non-degeneracy of
Hamiltonian system. Sometimes this version of Arnold conjecture is called the
degenerate Arnold conjecture.
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Conjecture 1.4. Given a Hamiltonian diffeomorphism φ of a closed and connected
symplectic manifold M . Then

|Fix(φ)| ≥ Crit(M) .

Here Crit(M) denotes the minimal number of critical points of a smooth function
on M .

There are a few other versions of this bound in the degenerate case.
There is a version where one substitutes Crit(M) with the Lusternik-Schnirelmann

category of M .
Lusternik-Schnirelmann category (or LS category) of a topological space X is

the smallest integer n such that there is an open covering U1, . . . , Un of X such
that every inclusion map Ui ↪→ X is nullhomotopic. Then the conjecture can be
written as:

Conjecture 1.5. Given a Hamiltonian diffeomorphism φ of a closed and connected
symplectic manifold M , then

|Fix(φ)| ≥ LS(M) .

Here LS(M) denotes the Lusternik-Schnirelmann category of M .

There is another version of Arnold conjecture involving the cup-length of M .
The cup-length of M is defined to be

CL(M,F) := max{k + 1 | there are αi ∈ Hdi(M,F), di ≥ 1, i = 1, . . . , k
such that α1 ∪ · · · ∪ αk 6= 0} .

In this case, the conjecture has a form

Conjecture 1.6. Given a Hamiltonian diffeomorphism φ of a closed and connected
symplectic manifold M , then

|Fix(φ)| ≥ CL(M) .

Note that the following inequality holds

Crit(M) ≥ LS(M) ≥ CL(M) ,

which implies that Conjecture 1.4 is stronger than Conjecture 1.5 which is stronger
than Conjecture 1.6.

The most general answer for such settings appears in the work of of Rudyak-Oprea
[34], which shows that Conjecture 1.4 (and hence Conjectures 1.5 and 1.6) hold for
closed symplectically aspherical manifolds.

1.5. Degenerate Arnold conjecture for Hamiltonian homeomorphisms.
Given a symplectic manifold M with a Riemannian distance denoted by d, for
maps φ, ψ : M →M we define

dC0(φ, ψ) = max
p∈M

d
(
φ(p), ψ(p)

)
.
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A sequence of compactly supported maps φk : M →M is said to be C0-convergent
to φ, if there exists a compact set X ⊂M such that support(φk) ⊂ X for all k and

lim
k→∞

dC0(φk, φ) = 0 .

A homeomorphism φ : M → M is called Hamiltonian if it is the C0-limit of a
sequence of Hamiltonian diffeomorphisms.

There is a version of Arnold conjecture for Hamiltonian homeomorphisms.

Conjecture 1.7. Given a Hamiltonian homeomorphism φ of a closed and connected
symplectic manifold M , then

|Fix(φ)| ≥ Crit(M) .

Using the earlier work of Franks [17], Matsumoto in [29] has proven that Hamil-
tonian homeomorphisms of surfaces satisfy Conjecture 1.7. In addition, there is a
proof of Le Calvez [27].

In contrast, Buhovsky-Humiliere-Seyfaddini in [5] proved that Hamiltonian
homeomorphisms do not satisfy Conjecture 1.7 in high dimensions:

Theorem 1.8 (Buhovsky-Humiliere-Seyfaddini). Let M be a closed connected
symplectic manifold of dimension 2n, n ≥ 2, then there is a Hamiltonian homeo-
morphism φ : M →M such that

|Fix(φ)| = 1 .

Despite Theorem 1.8, Buhovsky-Humiliere-Seyfaddini in a recent work [4] showed
that certain Arnold-type statement (involving spectral invariants) survives in C0

settings.

1.6. Arnold conjecture for contactomorphisms. Given a cooriented contact
manifold (M, ξ = ker(α)) and a contactomorphism φ contact isotopic to the identity.
In general, φ does not have a fixed point. For example, we can take flow of the
Reeb vector field Rα, i.e. vector field Rα determined by the system α(Rα) = 1,
dα(Rα) = 0. Rα never vanishes, and hence for a small t > 0 time-t map of the
Reeb flow does not have fixed points.

In contact geometric settings Arnold conjecture makes sense only for translated
points of φ.

Given a cooriented contact manifold (M, ξ = ker(α)), its contactomorphism
φ : M →M and a smooth function f : M → R such that φ∗α = efα. We say that
a point p ∈M is a translated point or φ with respect to the contact form α if both
p and φ(p) belong to the same Reeb orbit (i.e. integral curve of the Reeb flow) and
f(p) = 0. The set of translated points of φ is denoted by Translated(φ)

The following version of Arnold conjecture for translated points has been formu-
lated by Sandon [37, 38]:

Conjecture 1.9. Assume that (M, ξ = ker(α)) is a compact contact manifold and
that φ : M →M is a contactomorphism contact isotopic to the identity. Then

|Translated(φ)| ≥ Crit(M) .
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Conjecture 1.9 was previously established for the standard contact sphere S2n+1

and real projective space RP 2n+1 in [38], for all lens spaces in [23] and for the case
of prequantization bundle over a closed monotone toric manifold in [41].

2. Floer homology and its relation to Arnold conjecture

Most of the previously known results about Arnold conjecture in non-degenerate
settings have been established using Floer homology which is based upon Gromov’s
theory of pseudoholomorphic curves [24]. We finish this note by explaining the
original approach of Floer to the homological Arnold conjecture for certain basic
symplectic manifolds.

We will show the construction of Floer homology with Z2-coefficients for a
symplectic manifold (M,ω) with vanishing π2(M) and the way to prove a variant
of homological Arnold conjecture in these settings. Observe that in particular
π2(M) = 0 implies that M is symplectically aspherical. For some extra details
about Floer theory we refer the reader to [12, 13, 14, 15, 16]. In addition, we refer
the reader to the works of Fukaya-Oh-Ohta-Ono [18, 19] for the construction of
Floer homology in a much more general setting.

Take a space of smooth contractible loops on M , denote it by LM , and consider
a functional AH : LM → R defined by

AH(x) = −
∫
D2

u∗ω −
1∫

0

Ht(x(t))dt ,(2.1)

where x ∈ LM and u : D2 →M is an extension of x. Note that u exists because of
contractibility of x, and the right hand side of (2.1) is independent of the choice of
u by the symplectic asphericity.

The periodic solutions of Hamilton’s equation appear as the critical points of the
symplectic action functional AH . Note that before Floer no one tried to develop a
Morse theory for the functional AH since there is no well-defined L2 gradient flow,
and also every critical point has infinite Morse index and coindex. Floer observed
that the L2 gradient flow of AH is an elliptic equation, and this allowed him to
make Morse theory work in this settings.

To define the gradient of AH , one needs an L2 metric on LM compatible with
the symplectic structure. This metric is determined by a periodic smooth family of
compatible almost complex structures Jt, t ∈ S1 on (M,ω) (Recall that compatible
almost complex structure J on (M,ω) is an almost complex structure such that the
bilinear form gJ (u, v) := ω(u, Jv) is a Riemannian metric.) Jt induces an L2-inner
product on the tangent space of LM , and with respect to it

grad AH(x) = Jt(x)
(
x′ −XHt(x)

)
.

Then we take a negative gradient trajectory of AH , which is a path ψ : R→ LM
such that

ψ′ = −grad AH(ψ) ,
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it can be interpreted as a contractible smooth map u : R× S1 →M satisfying
∂su+ Jt(u)

(
∂tu−XHt(u)

)
= 0 .(2.2)

Here s is a coordinate on the R-factor and t is a coordinate on the S1-factor.
Non-degenerate critical points of AH are one-periodic solutions such that 1 is

not a Floquet multiplier. From now on we assume that all critical points of AH
are non-degenerate. Then AH is a Morse function and the critical points of AH
form a finite set.

Given a solution u of equation (2.2) (sometimes called Floer equation), the
energy of u is given by

E(u) :=
∞∫
−∞

1∫
0

|∂su|2dt ds .

If u is a contractible finite energy solution of Floer’s equation, then
lim

s→±∞
u(s, t) = x±(t)(2.3)

exists and is a contractible periodic Hamiltonian trajectory. On the other hand,
every solution of (2.2) and (2.3) has finite energy and satisfies

E(u) = AH(x−)−AH(x+) .
Given two critical points x± of AH we define the moduli space of Floer trajecto-

ries connecting x− and x+

M̃(x−, x+) := {u | u satisfies (2.2), (2.3)} .
The construction of Floer theory is based on three main ingredients: transversa-

lity, compactness and gluing.
(i) Transversality is based on the fact that Floer equation is elliptic. There is a

Fredholm theory providing that moduli spaces M̃(x−, x+) are finite-dimensional
transversally cut out manifolds. The dimension of M̃(x−, x+) is µCZ(x−)−
µCZ(x+), where µCZ denotes Conley-Zehnder index (see [36]).

(ii) Compactness is based on the Gromov compactness theorem. Solutions of
equation (2.2) behave like pseudoholomorphic curves, and hence in general
pseudoholomorphic spheres may bubble off, which in this case is impossible
because of the property that π2(M) = 0. This allows for a generic J to count
the elements of the spaces of index-1 Floer gradient trajectories, which is a
finite set. This count is used to define the differential ∂ on the Floer chain
complex.

(iii) Floer’s gluing theorem is needed to show that ∂2 = 0. This theorem is a
highly non-trivial result, but in a way it is analogous to the gluing theorem in
Morse theory.

We recall that in general the gradient flow of a smooth function f on a manifold
M is Morse-Smale if stable manifolds and unstable manifolds intersect transversally.
Given a Morse function f such that the gradient flow of f is Morse-Smale. Then
the Morse complex of f is a module generated by the critical point of f and
Morse differential is defined by counting (with signs) gradient trajectories joining
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two critical points of index difference 1. The homology of this complex is Morse
homology and it is isomorphic to the ordinary homology of M . For details we refer
the reader to [39].

The same way as in Morse theory, Floer complex CF (H,J) is defined to be a
Z2-vector space generated by non-degenerate critical points of AH . Let CFi(H,J)
denote the Z2-vector space generated by critical points of Conley-Zehnder index
µCZ = i. Hence, CF (H,J) =

⊕
i CFi(H,J). The differential ∂H,J : CFi(H,J)→

CFi−1(H,J) can be written as

∂H,J(x−) =
∑
x+

m(x−, x+)x+ .

Note that Floer’s equation is invariant under translations in the s variable,
therefore R acts on M̃(x−, x+). Here

m(x−, x+) = #2M̃(x−, x+)/R ,
where #2 denotes the mod 2 count and the quotient by R is a quotient by the
translation in the s variable described above.

From ingredients (i), (ii), (iii) described above it follows that Floer complex is
well-defined and Floer homology is given by

HFi(H,J) := Hi(CF (H,J), ∂H,J) .
In the definition of Floer complex we used Z2-coefficients in order to avoid

addressing problems of orientation. However, Floer’s construction extends to more
sophisticated coefficients.

Floer proved that Floer homology groups HF (H,J) are independent on the
choices of a Hamiltonian and almost complex structure up to natural isomorphism.
This proof is also based on the ingredients (i), (ii), (iii) needed to define Floer
complex.

The last step can described the following way: In the case of time-independent J
and H which is also assumed to be C2-small, the relevant Floer gradient trajectories
are gradient flow lines of the function −H, and hence the Floer chain complex
reduces to the Morse complex of −H. Then the sum of Betti numbers of M with
Z2-coefficients provides a lower bound for the number of critical points of AH ,
which implies a version of Theorem 1.3 with Z2-coefficients for symplectic manifolds
with vanishing π2.
Acknowledgement. The author is grateful to the organizers of the 40th Winter
School on Geometry and Physics in Srni for the hospitality.
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