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ON HYBRID CONSENSUS-BASED EXTENDED KALMAN
FILTERING WITH RANDOM LINK FAILURES
OVER SENSOR NETWORKS

Pailiang Zhu, Guoliang Wei and Jiajia Li

This paper is concerned with the distributed filtering problem for nonlinear time-varying
systems over wireless sensor networks under random link failures. To achieve consensus es-
timation, each sensor node is allowed to communicate with its neighboring nodes according
to a prescribed communication topology. Firstly, a new hybrid consensus-based filtering algo-
rithm under random link failures, which affect the information exchange between sensors and
are modeled by a set of independent Bernoulli processes, is designed via redefining the inter-
action weights. Second, a novel observability condition, called parameterized jointly uniform
observability, is proposed to ensure the stochastic boundedness of the error covariances of the
hybrid consensus-based filtering algorithm. Finally, an example is given to demonstrate the
effectiveness of the derived theoretical results.

Keywords: extended Kalman filter, hybrid consensus filter, sensor network, distributed
state estimation, random link failure

1. INTRODUCTION

In the past few decades, research on sensor networks has drawn extensive attention in
the control and signal processing societies, owing to their widespread applications in
military, aerospace, environmental, and medical fields, see, e. g., [44, 42, 15, 41, 43]. A
sensor network is referred to a network composed of a large number of stationary or
mobile sensor nodes in a self-organizing and multi-hop way. Each sensor node possesses
the capabilities of sensing, collecting, processing and transmitting information, all of
which together complete certain tasks in a collaborative manner ultimately.

It is known that the filtering (or state estimation) techniques have been widely ap-
plied to a wide range of fields including wireless camera networks [19], localization and
mapping [36], and attack detection [16]. Depending on whether there is a fusion center
or not, the problem of filtering can be classified into two categories: centralized filtering
and distributed filtering. When the fusion center exists, this problem can be regarded as
a centralized data fusion that aims to obtain improved estimation through the combina-
tion of multiple measurements [38]. In this way, it is possible to obtain the global optimal
value with a high estimation accuracy. However, the large amount of data processed by
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the fusion center is likely to cause huge energy consumption and the failure in the fusion
center will lead to the defects of the whole system, consequently limiting its application
scopes in practical systems. On the other hand, the method of distributed filtering has
recently received extensive research attention, see, e. g., [24, 35, 13, 39, 9]. To be more
specific, in terms of the distributed filtering algorithm, each estimator only makes use of
local information and the messages from neighboring sensors to generate local estimates.
Such a distributed framework is highly preferable when resource constraints become a
problem and/or the global knowledge of the network is no longer available for designing
the distributed estimators.

Several information processing techniques have been reported to deal with the prob-
lem of the distributed filtering in sensor networks, see, e. g., [16, 24, 35, 13, 39, 9, 14,
8, 26, 22, 7, 6]. In general, the distributed filtering algorithm can be divided into two
steps. The first step is that each estimator makes use of the observed information of
every intelligent sensor to generate initial local estimation. The second step is that
each sensor node exchanges information with the neighbor nodes according to certain
communication topology to produce the final local estimation. As for sensor networks,
in order to fuse limited information from scattered nodes for the purpose of improving
the estimation accuracy, a suitable multi-sensor fusion algorithm has become critical.
Additionally, the requirement of scalability, lack of fusion centers, and robustness of
sensor networks call upon suitable consensus approaches [14, 28, 29, 12, 9, 34], aiming
to iteratively fuse local estimates and further achieve a common fusion estimate. Ar-
guably, there are two widely adopted consensus-based strategies for distributed filtering
algorithms: consensus on measurements (CM) and consensus on information (CI). In
terms of CM [27], the developed distributed filtering algorithms aim to achieve consen-
sus among local measurement information. More specifically, local innovation pairs in a
distributed manner so as to achieve updated values of the centralized filter. It is worth
noting that to achieve the stability of the CM-based filter, it is of great necessity to
execute a sufficient large number of consensus steps for each sampling period. Besides,
such a consensus strategy relies on the assumption that the measurement errors com-
ing from different sensors are mutually independent, and this strategy is limited to the
Kalman-like filters. In the past few decades, the CM-based strategy has been widely
used in the field of signal processing and control, see, e. g., [27, 17].

Note that only one or few consensus iterations per time can be afforded in order to
reduce the communication overhead for higher energy efficiency in particular wireless
sensor network environment. Furthermore, there may not be enough time to wait for
CM to convergence [2]. As a result, the so-called CI strategy [1] comes into play. Con-
cerning the characteristic of the distributed filtering algorithm, CI conducts the local
average of the inverse variance (information) matrices and information vectors, aiming
to guarantee the stability under any number of consensus steps (even a single step).
For example, such a CI-based distributed filtering problem was studied in [4]. Later, it
was rigorously mathematically processed in [1], where CI was interpreted as a consensus
on the probability density function in the Kullback-Leibler average sense. However, it
should be pointed out that the employed fusion rules are conservative in the sense that
the correlations between local estimates are supposed to be completely unknown. The
authors in [3] jointly considered the characteristics of the respective algorithms of CI
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and CM, and thus presented a new class of hybrid CMCI (HCMCI) filters.

It is well recognized that in practical applications temporary failures often occur to
sensor communication links due to various factors such as signal attenuation, multipath
fading, background noise, external blocking and so on [30, 40]. Therefore, significant
efforts have been made in order to address how link failures affect filter performance. For
example, in [25], the filter performance under communication link failures was studied.
The convergence problem of the infinite product of random matrices has also been well
explored. As mentioned in [29], it is convergent in the infinite product of primitive
random matrices. Unfortunately, when it comes to distributed filtering of time-varying
systems which experience random link failures over sensor networks, there are relatively
few results due to lack of adequate analysis methods.

Motivated by the discussion above, in this paper, the distributed filtering problem
over sensor networks in the presence of random link failures is studied. Since nonlinear-
ity is not uncommon in real-world dynamical systems [10, 11], the plant to be monitored
over the sensor network is described by a nonlinear time-varying stochastic system. It
has been shown in the literature that the extended Kalman filter (EKF) serves as an
effective estimation method to address the problem of filtering for nonlinear systems,
see, e. g., [32, 33]. In [3], a two-stage hybrid consensus Kalman filter algorithm was
put forward, including an update based on EKF and a consensus update of information
matrices/vectors as well as the innovation matrices/vectors. Different from [3], in the
process of the proposed consensus algorithm, we consider that the communication link
failures occur randomly in terms of independent non-uniform probability.

Notation. The notations used throughout the paper are fairly standard unless otherwise
stated. Rn and Rn×m denote, respectively, the n dimensional Euclidean space and the
set of all n ×m real matrices. I denotes the identity matrix of compatible dimension.
1 is a column vector with all entries equal to one. The notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices, means that X − Y is positive semi-
definite (respectively, positive definite). MT represents the transpose of matrix M . ||P ||
describes the Euclidean norm of a matrix P . Mn

+ denotes the set of all real n×n positive
definite matrices. The primitive matrix means that if matrix A is non-negative and there
is a positive integer m such that each element of its mth power is positive, then matrix
A is the primitive matrix.

2. STATEMENT OF THE PROBLEM

The communication topology of the sensor network is modeled as an undirected graph
G = (N , E), where N = {1, 2, 3, · · · , N} is the set of sensor nodes. N is the number of
all sensor nodes. E represents the set of connections between nodes. An edge (i, j) ∈ E
indicates that node j can receive information from node i. Furthermore, for each node
i ∈ N , Ni = {j|(j, i) ∈ E} represents the set of its neighbors.
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2.1. System model and extended Kalman filtering

In this paper, we consider a nonlinear time-varying stochastic system described by the
following state-space model:

xk =fk−1(xk−1) + wk−1, (1)

and the measurement equation of the ith sensor is described by

zik = hik(xk) + vik, i = 1, 2, . . . , N, (2)

where xk ∈ Rn is the system state vector, wk−1 ∈ Rn and vik ∈ Rm are mutually indepen-
dent white Gaussian random variables with zero mean values and bounded covariances
Qk−1 > 0 and Rik > 0. fk(·) and hik(·) are known nonlinear functions which are twice
continuously differentiable, and they are bounded for any xk.

The local state estimation for the system (1) – (2) can be generated by EKF, which
consists of the prediction process

x̂ik|k−1 =fk−1(x̂ik−1),

P ik|k−1 =Aik−1P
i
k−1(Aik−1)T +Qk−1

(3)

and the local update process

x̂ik =x̂ik|k−1 +Ki
k(zik − hik(x̂ik|k−1)),

P ik =(In −Ki
kC

i
k)P ik|k−1

=[(P ik|k−1)−1 + (Cik)T (Rik)−1Cik]−1,

(4)

where x̂ik|k−1 and x̂ik represents the one-step prediction and the update estimation of

the plant state, respectively, and their corresponding error covariances are P ik|k−1 and

P ik. Aik−1 and Cik are given by

Aik−1 =
∂fk−1

∂xk−1
|xk−1=x̂i

k−1
(5)

and

Cik =
∂hik
xk
|xk=x̂i

k|k−1
. (6)

In addition, the Kalman gain matrix is given as follows:

Ki
k =P ik|k−1(Cik)T [CikP

i
k|k−1(Cik)T +Rik]−1. (7)

From the above analysis, we can get the following equations:

(P ik)−1 =(P ik|k−1)−1 + (Cik)T (Rik)−1Cik, (8)

(P ik)−1x̂ik =(P ik|k−1)−1x̂ik|k−1 + (Cik)T (Rik)−1z̄ik, (9)

where z̄ik = zik−hik(x̂ik|k−1)+Cikx̂
i
k|k−1 is known as the virtual measurement, (Cik)T (Rik)−1Cik

and (Cik)T (Rik)−1z̄ik are usually called the innovation matrix and the innovation vector.
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2.2. CI and CM algorithms

The local estimation method is given in the above subsection. In this subsection, we will
briefly introduce two existing solutions to solve the distributed state estimation problem,
i. e., the well-known CI and CM algorithms.

This paper adopts an information form of CI algorithm, under which the information
needs to be exchanged via a predetermined communication topology in order to realize
the consensus filtering. Specifically, denote the information matrices

Ωici,k|k−1 , (P ik|k−1)−1, (10)

Ωici,k(0) , (P ik)−1, (11)

and the information vectors

qici,k|k−1 , (P ik|k−1)−1x̂ik|k−1, (12)

qici,k(0) , (P ik)−1x̂ik. (13)

It should be pointed out that (qici,k(0),Ωici,k(0)) (i ∈ N ) is the initial information pair at
time-step k which will be broadcast to sensor i’s neighbors. Furthermore, the number
of consensus steps is denoted as L and the CI algorithm is essentially to implement the
following iterations

qici,k(l + 1) =
∑

j∈Ni

πi,jq
j
ci,k(l), (14)

Ωici,k(l + 1) =
∑

j∈Ni

πi,jΩ
j
ci,k(l), (15)

where l = 0, 1, . . . , L− 1.

Remark 2.1. For each consensus iteration, each node i calculates the regional mean,
i. e., the combination of the values from its neighboring Ni with the appropriate consen-
sus weight πi,j (j ∈ Ni). In this paper, we use linear convex combination by supposing
πi,j ≥ 0 and

∑
j∈Ni

πi,j = 1, ∀i ∈ N . Furthermore, the CI algorithm is degenerated
into the so-called covariance intersection [18] under a single consensus step. In other
words, such an algorithm is the generalization of the covariance intersection to multiple
consensus steps. It is worth noting that the larger the step size L, the greater the com-
putational and communication burden although the consensus performance is improved.
Therefore, L should be chosen appropriately as a trade-off between the calculation and
communication cost, and the consensus performance.

The mechanism of CM algorithm is to exploit both the innovation vector and the
innovation matrix

qicm,k = (Cik)T (Rik)−1z̄ik, (16)

Ωicm,k = (Cik)T (Rik)−1Cik. (17)

At time k, for each node i ∈ N , qicm,k = qicm,k(0), Ωicm,k = Ωicm,k(0), consensus steps
can be described as follows

qicm,k(l + 1) =
∑

j∈Ni

πi,jq
j
cm,k(l), (18)
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Ωicm,k(l + 1) =
∑

j∈Ni

πi,jΩ
j
cm,k(l). (19)

where l = 0, 1, . . . , L− 1.

2.3. The objective of this paper

Due to the limited bandwidth, inter-sensor communication could be subject to random
link failures, which inevitably affect the consensus performance and the convergence of
consensus algorithms. For the convenience of later analysis, we redefine the interaction
weights as follows:

π̃k,li,j =

{
γk,li,j πi,j , i 6= j

πi,i, i = j
(20)

where the stochastic variables γk,li,j (k ≥ 0, l ≥ 1, j, i ∈ N ) follow the well-known Bernoulli
distribution with the probabilities

Prob{γk,li,j = 1} = γ̄i,j , Prob{γk,li,j = 0} = 1− γ̄i,j (21)

where 0 < γ̄i,j ≤ 1 are known scalars. For j 6= i, k ≥ 0 and 0 ≤ l ≤ L − 1, the

communication between nodes i and j is successful if γk,li,j = γk,lj,i = 1, otherwise it
fails. Furthermore, the nodes access to the local information regardless of the network
conditions for the case i = j. It is assumed that the stochastic variables γk,li,j (i 6= j) are
independent with the process noise wk, measurement noise vk and the initial state x0.

Remark 2.2. The stochastic variables γk,li,j (k ≥ 0, l ≥ 1, j, i ∈ N ) follow the well-known
Bernoulli distribution and are not known. They are randomly generated sequences based
on link failure probabilities.

It is worth mentioning that CI and CM algorithms have their own advantages and
disadvantages. On the one hand, the boundedness of the estimation error can be guar-
anteed for the CI algorithm with any L consensus steps, but for CM requiring L to be
large enough. On the other hand, the performance of the CM algorithm is close to the
one of the centralized filter when L is large enough but CI is not. In order to prolong
the life of sensor networks in the actual situation, only a limited number of consensus
steps can be provided to reduce both the communication and calculation burden. As
such, it is very interesting to develop a new algorithm to achieve a trade-off between the
communication and calculation burden and the consensus performance while thoroughly
addressing the impact from random link failures. Therefore, the purpose of this paper
is to

R1) design an improved consensus-based filtering algorithm so as to achieve a trade-off
between the communication and calculation burden and the consensus perfor-
mance;

R2) disclose the condition to guarantee the boundedness of the error covariance of
developed algorithm under random link failures.



On hybrid consensus-based extended Kalman filtering 195

3. MAIN RESULTS

Random link failures over sensor networks make it difficult to design the desired dis-
tributed filters and analyze the convergence of the consensus filtering algorithm. Since
sensor network link failures occur randomly, a suitable model needs to be found to
characterize it. (20) has given a portrayal model of link failures, which facilitates the
design of incomplete information hybrid consensus filtering. The observability condi-
tion is an important condition for guaranteeing the boundedness of the corresponding
error covariance. The inevitable requirement in distributed extended Kalman filtering
requires linearization of nonlinear functions to produce multiple system matrices and
measurement matrices, which poses challenges for designing observability conditions.

3.1. Hybrid consensus-based EKF

In this subsection, a hybrid consensus-based approach, named as the hybrid consensus-
based EKF, is designed via the complementary advantages of both CM and CI algo-
rithms. Taking the random link failures into consideration, we first introduce a modified
consensus matrix. Specifically, denote the traditional consensus matrix asM, whose el-
ements are the consensus weights πi,j (i, j ∈ N ). When link failures occur, the element
of such a matrix is changed and we denote the practical consensus matrix at step l and
time k as M̃k,l, whose elements are the consensus weights π̃k,li,j defined in (20).

Now, the pseudocode of the hybrid consensus-based EKF with random link failures
is shown in Table 1.

Step 1. For i ∈ N , ith sensor utilizes the EKF (3) and (4) to compute
the local estimate.

Step 2. For l = 0, 1, · · · , L−1, perform the consensus of L steps as (14)
- (15) and (18) - (19)

Step 3. Correction:

Ωik =
∑
j∈N

π̃k,Li,j Ωjci,k|k−1 + |N |
∑
j∈N

π̃k,Li,j Ωjcm,k

qik =
∑
j∈N

π̃k,Li,j q
j
ci,k|k−1 + |N |

∑
j∈N

π̃k,Li,j q
j
cm,k

where |N | is the cardinality of the set N .
Step 4. Compute P ik = (Ωik)−1 and xik = P ikq

i
k.

Step 5. Set k = k + 1, prediction step described as

x̂ik+1|k = fk(x̂ik), Aik = ∂fk
xk
|x̂i

k
,

P ik+1|k = AikP
i
k(Aik)T +Qk.

Tab. 1. Hybrid consensus-based EKF algorithm.
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Remark 3.1. In Step 2, each node i ∈ N needs to broadcast messages (qicm,k, q
i
ci,k|k−1)

and (Ωicm,k,Ω
i
ci,k|k−1) to its neighbor nodes, where the information on predicted covari-

ance matrices is employed in the final consensus step (i. e. Step 3). Obviously, using
qici,k|k−1 and Ωici,k|k−1 as information to implement consensus steps is different from the

traditional CI algorithm (i. e. (14) and (15)).

Remark 3.2. In this paper, |N | represents the cardinality of the set N which makes
hybrid consensus-based EKF algorithm converging to the centralized EKF. Different
from [3], |N | is a time-invariant parameter.

Next, we will discuss the boundedness of the error covariance under random link fail-
ures in the cases of the finite consensus step and the infinite consensus step, respectively.

3.2. Boundedness analysis

In this subsection, we aim to analyze the stochastic boundedness of error covariance
matrices of hybrid consensus-based filtering scheme with random link failures, which
include two cases, i. e. the finite and infinite consensus steps.

In order to analyze the stability of the hybrid consensus-based EKF algorithm, in-
spired by [45, 37, 5], we propose a definition of parameterized jointly uniform observ-
ability, and give some assumptions and lemmas.

Assumption 3.3. The system is reconfigurable, i. e., suppose Aik is a bounded nonsin-
gular matrix, there exist positive real numbers χ1 and χ2 so that for all k ≥ m and for
some finite m > 0 we have

χ1In ≤ OTε (k −m, k)R(k −m, k)Oε(k −m, k) ≤ χ2In

with

Oε(k −m, k) =


Cik−m(Aik−m)−1(Aik−m+1)−1 · · · (Aik−1)−1

Cik−m+1(Aik−m+1)−1(Aik−m+2)−1 · · · (Aik−1)−1

·
·
Cik


R(k −m, k) = Diag((Rik−m)−1, · · · , (Rik)−1)

where Aik and Cik are defined by (5)and (6), respectively, then the system (and its
associated EKF for x̂ik|k−1 and x̂ik sufficiently close to the true state xk) is said to be
reconstructible.

Definition 3.4. (Parameterized Jointly Uniform Observability) The system (1) with
measurements (2) is said to be parameterized jointly uniformly observability, if there
are parameters m ≥ 1, 0 < ω < 1 and constants λ and λ̄ satisfing 0 < λ ≤ λ̄ <∞ such
that the Grammian matrix satisfies

λIn ≤
k∑

t=k−m

O(t, k) ≤ λ̄In
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where
O(k, k) = |N |

∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk

O(k − 1, k) = |N |ω
∑
j∈N

∑
s∈N

πLi,jπ
L
j,s(A

j
k−1)−T

× (Csk)T (Rsk−1)−1Csk(Ajk−1)−1

...

O(k −m, k) = |N |ωm
∑
j∈N

∑
s∈N
· · ·
∑
t∈N︸ ︷︷ ︸

m+1

πLi,jπ
L
j,s · · ·πLu,t(A

j
k−1)−T

× (Ask−2)−T · · · (Atk−m)−T (Ctk−m)T (Rtk−m)−1

× Ctk−m(Atk−m)−1 · · · (Ask−2)−1(Ajk−1)−1.

Remark 3.5. To perform EKF stability analysis, it is shown in [33] that the uniform
observability condition is a necessary condition to guarantee the boundedness of the
corresponding error covariance, and the relationship between the nonlinear observabil-
ity matrix and the observability Gramian matrix has also been given. The proposed
distributed EKF in this paper needs to design new observability conditions. Accord-
ing to Assumption 3.3, there are constants λ and λ̄ that satisfy the definition of the
parameterized jointly uniform observability.

Remark 3.6. Different from existing uniform observability, scalars ω and |N | are in-
troduced into Grammian matrix to get a tighter bound of the error covariance, where ω
can be any number in interval (0, 1). In this paper, ω is determined by the Proposition
3.14.

Assumption 3.7. For each node i ∈ N , there exist real numbers f , f̄ , h, h̄6= 0 and
positive real constants q, q, r, r> 0, such that the following bounds on various matrices
are fulfilled for every k ≥ 0

f2In ≤ Aik(Aik)T ≤ f2
In (22)

h2Im ≤ Cik(Cik)T ≤ h2
Im (23)

qIn ≤ Qk ≤ qIn (24)

rIm ≤ Rik ≤ rIm. (25)

Remark 3.8. Due to the nonlinear function fk(·) of this paper is bounded for any xk,
it is reasonable to assume that the spectral norm of Aik is bounded. Note that such a
bounded assumption is conservative, but it is nevertheless serving as an effective way to
derive bounds for the error covariance matrices produced by EKF [20, 5, 31].

Assumption 3.9. The initial error covariances P i0 (i ∈ N ) are positive semi-definite.

Lemma 3.10. For A, B ∈ Rn×n, if A > 0 and B ≥ 0, then

A−1 ≥ (A+B)−1. (26)
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Lemma 3.11. (Li et al. [21]) Consider the local algorithm (4) and Assumption 3.7. If
there is a positive real number p such that, for all k > 0 and i ∈ N , the error covariance

P ik satisfies P ik ≥ pIn, then there is always a positive real number α satisfying 0 < α < 1
such that

(P ik+1|k)−1 ≥ α(Aik)−T (P ik)−1(Aik)−1 (27)

is true.

Lemma 3.12. (Olfati-Saber et al. [29]) Let S = {S1, S2, . . . , Sm} be a finite set of
primitive stochastic matrices. For any sequence of matrices Sp1 , Sp2 , . . . , Spk ∈ S with
k ≥ 1, the product Spk · · ·Sp2Sp1 is also a primitive matrix. Furthermore, there exists a
row vector such that

lim
k→∞

{Spk · · ·Sp2Sp1} = 1d.

Many stability analysis criteria of distributed Kalman filter are limited to time-
invariant systems, while systems in real-world applications are usually time-varying.
Therefore, it is necessary to establish a systematic method to study the stability of
distributed Kalman filter for general time-varying systems.

Let πli,j be the (i, j)th element ofMl, i. e., the lth power of the consensus matrixM.

Remark 3.13. The matrix P ik obtained in the proposed algorithm is not the actual error
covariance matrix. The actual estimation error covariance after multi-step consensus
update is E[(xk− x̂ik)(xk− x̂ik)′]. The hybrid consensus-based EKF algorithm subject to
stochastic link failures yields a consistent fused estimate. The phrase “consistent” here
indicates that the actual covariance is always bounded by the estimated covariance i. e.,
E[(xk− x̂ik)(xk− x̂ik)′] ≤ P ik, ∀i = 1, · · · , N . By imitating the proof of Theorem 3 in [1],
consistent proof can be obtained. We can see that, for arbitrary cross correlations, the
proposed hybrid consensus-based EKF algorithm still yields the estimate consistency,
which is essential for establishing the conditions for stochastic boundedness. In the
following bounded analysis, we only need to prove that P ik is bounded.

Case 1: Finite number of consensus steps

In this case, the finite number of consensus steps is considered. Before analyzing
the stochastic boundedness of the error covariance under the random link failures, the
uniform boundedness of the error covariance matrix P ik without link failures can be
shown in the following proposition.

Proposition 3.14. Under Definition 3.4 and Assumption 3.7, there exists an instant m
satisfying m ≤ k, such that when no communication failure occurs during the interval
[k −m, k], then the error covariance matrix P ik (i ∈ N ) given by Table 1 is uniformly
bounded. Specifically, there exist positive scalars p and p̄ such that

pIn ≤ P ik ≤ p̄In,∀P 1
k , P

2
k , · · · , PNk ∈Mn

+ (28)
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where

p = [(1/q) + (|N |h2
)/r]−1

p = (λ)−1.

P r o o f . We first prove that there is a lower bound, and then give the proof of the
upper bound.

A Lower Bound: According to Step 4 of the hybrid consensus-based EKF algorithm,
we can get the following equation

(P ik)−1 =
∑
j∈N

πLi,j(P
j
k|k−1)−1 + |N |

∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk. (29)

According to Lemma 3.10, the following inequality is obtained

(Qk−1)−1 ≥ (Ajk−1P
i
k(Ajk−1)T +Qk−1)−1 = (P jk|k−1)−1. (30)

Then, due to Assumption 3.7, (29) and (30), we have

(P ik)−1 ≤ (Qk−1)−1 + |N |
∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk (31)

≤ (
1

q
+ |N |h

2

r
)In. (32)

Finally, from above analysis we can conclude

P ik ≥ (
1

q
+ |N |h

2

r
)−1In , pIn. (33)

A Upper Bound: Apply Lemma 3.11 to rewrite (33) as

(P ik)−1

≥ α
∑
j∈N

πLi,j(A
j
k−1)−T (P jk−1)−1(Ajk−1)−1

+ |N |
∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk.

(34)

Once again, we utilize the Lemma 3.11 with respect to the above inequality and have

(P ik)−1

≥ α[
∑
j∈N

πLi,j(A
j
k−1)−T (α[

∑
s∈N

πLj,s(A
s
k−2)−T (P sk−2)−1

× (Ask−2)−1] + |N |
∑
s∈N

πLj,s(C
s
k−1)T (Rsk−1)−1Csk−1)
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× (Ajk−1)−1] + |N |
∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk. (35)

The above inequality is equivalent to

(P ik)−1

≥ α2
∑
j∈N

∑
s∈N

πLi,jπ
L
j,s(A

j
k−1)−T (Ask−2)−T (P sk−2)−1

× (Ask−2)−1(Ajk−1)−1

+ α|N |
∑
j∈N

∑
s∈N

πLi,jπ
L
j,s(A

j
k−1)−T

× (Csk−1)T (Rsk−1)−1(Csk−1)−1(Ajk−1)−1 (36)

+ |N |
∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk.

Then we continue to recurse to k −m step for (35), we arrive at

(P ik)−1

≥ αm+1
∑
j∈N

∑
s∈N
· · ·
∑
t∈N︸ ︷︷ ︸

m+1

πLi,jπ
L
j,s · · ·πLu,t(A

j
k−1)−T

× (Ask−2)−T · · · (Atk−m−1)−T (P tk−m−1)−1

× (Atk−m−1)−1 . . . (Ask−2)−1(Ajk−1)−1

+ |N |αm
∑
j∈N

∑
s∈N
· · ·
∑
t∈N︸ ︷︷ ︸

m+1

πLi,jπ
L
j,s · · ·πLu,t(A

j
k−1)−T

× (Ask−2)−T · · · (Atk−m)−T (Ctk−m)T (Rtk−m)−1

× Ctk−m(Atk−m)−1 · · · (Ask−2)−1(Ajk−1)−1

+ · · ·+ |N |α2
∑
j∈N

∑
s∈N

∑
u∈N

πLi,jπ
L
j,sπ

L
s,u(Ajk−1)−T

× (Ask−2)−T (Cuk−2)T (Ruk−m)−1Cuk−2(Ask−2)−1(Ajk−1)−1

+ α|N |
∑
j∈N

∑
s∈N

πLi,jπ
L
j,s(A

j
k−1)−T (Csk−1)T (Rsk−1)−1Csk−1 (37)

× (Ajk−1)−1 + |N |
∑
j∈N

πLi,j(C
j
k)T (Rjk)−1Cjk.

Since there is a positive real number α satisfying 0 < α < 1, ω can be an arbitrary num-
ber in the interval (0, 1). Therefore, the value of ω can be taken as α. The above formula
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uses the parameterized jointly uniform observability, we get the following conclusion

(P ik)−1

≥ αm+1
∑
j∈N

∑
s∈N
· · ·
∑
t∈N︸ ︷︷ ︸

m+1

πLi,jπ
L
j,s · · ·πLu,t

× (Ajk−1)−T (Ask−2)−T · · · (Atk−m−1)−T (P tk−m−1)−1

× (Atk−m−1)−1 . . . (Ask−2)−1(Ajk−1)−1

+ λIn.

At this point, we get an upper bound on P ik at the interval [k −m, k]

P ik ≤
1

λ
In , p̄In. (38)

Combining the results in (33) and (38), at the end of the interval [k −m, k], we obtain

pIn ≤ P ik ≤ p̄In. (39)

�

So far, we have given uniformly bounded results of error covariance under perfect
communication link conditions. In the case of communication links suffering from ran-
dom failures, covariance stochastic boundedness will be proved in the following analysis.

Link failures in sensor networks occur randomly, for presentation convenience, we
denote

Ok = {Θk,l = [γk,li,j ]N×N , 0 ≤ l ≤ L− 1}

where Θk,l ∈ RN×N is the matrix of all link condition indicator variables as entries.
Moreover, during the interval [k−m+1, k], a set describing the communication statuses
is denoted as follows:

Qk = {Ok−m+1,Ok−m, · · · ,Ok}.

Furthermore, we denote a set to represent the event that no communication failure
occurs by

Q̄ = {Ō1, Ō2, · · · , Ōm}

where Ōk = {Θ̄k,l = [1]N×N , 0 ≤ l ≤ L − 1}. Finally, we introduce a finite set Ψ, let
Qk ∈ Ψ, and obviously, Q̄ ∈ Ψ.

By stochastic analysis, we get the following result.

Theorem 3.15. Under the Definition 3.4 and Assumption 3.7, the prediction error
covariance of the sensor network is stochastically bounded, i. e.,

lim
ε→∞

sup
k∈N

P(‖P ik+1|k‖ > ε) = 0. (40)
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P r o o f . From the Lemma 3.11, we can get

(P ik+1|k)−1 ≥ α(Aik)−T (P ik)−1(Aik)−1. (41)

Substituting Step 3 of Table 1 into the above inequality and have

(P ik+1|k)−1 ≥ α(Aik)−T (
∑
j∈N

π̃k,Li,j (P jk|k−1)−1

+ |N |
∑
j∈N

π̃k,Li,j (Cjk)T (Rjk)−1Cjk)(Aik)−1.
(42)

Each sensor receives local information without a link failure, for ∀i ∈ N , γk,li,i = 1,

πi,i > 0, and obvious π̃k,Li,i > 0, so there exists a positive scalar µ satisfying π̃k,Li,i ≥ µ.

Also because π̃k,Li,j ≥ 0, Σj∈N π̃
k,L
i,j > µ can obviously be obtained. We can find a positive

scalar α̃ such that the following inequality holds

(P ik+1|k)−1 ≥ α̃(Aik)−T (P ik|k−1)−1(Aik)−1

+ |N |α(Aik)−T
∑
j∈N

π̃k,Li,j (Cjk)T (Rjk)−1Cjk(Aik)−1

≥ α̃(Aik)−T (P ik|k−1)−1(Aik)−1 +
|N |αµh2

r̄f̄2
In.

(43)

For convenience of representation, we define Pk+1 , P ik+1|k. Given Lemma 3.10,
there exists a positive parameter ν such that the following inequality

Pk+1 < α̃−1Aik(P ik|k−1)−1Aik
T

+ νIn. (44)

Let

κ(ε) = max
k∈N
{k ∈ N|p̃ζ2k +

ζ2k − 1

ζ2 − 1
ν ≤ ε} (45)

where p̃ = p̄f
2

+ q, and ζ = α̃−1\2|f |. Under the formula (43), we choose a small α̃ to
ensure ζ > 1.

Next, we will prove that the following inequality holds:

P(‖Pk0+1‖ ≤ ε)
> P( event Q̄ occurs in k ∈ [k0 − κ(ε), k0]).

(46)

The event Q̄ occurs in the time interval [k0−κ(ε), k0], this means that there is a constant
k
′ ∈ [k0 − κ(ε), k0] satisfying Ok′−m+l = Ōl, ∀l = 1, 2, · · · ,m. Therefore, from the

Proposition 3.14 we can obtain P i
k′
≤ p̄In, then from the prediction equation (3) and

Assumption 3.7, we get

Pk′+1 = Ai
k′
P i
k′

(Ai
k′

)T +Qk′

≤ p̄‖Ai
k′
‖2In + ‖Qk′‖In

≤ p̄f2
In + qIn

= p̃In.

(47)
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Take the norm of (44)

‖Pk+1‖ = α̃−1‖Aik‖2‖Pk‖+ ν. (48)

Accordingly, it follows from (47) and (48) that

‖Pk0+1‖ ≤ p̃ζ2(k0−k
′
) +

ζ2(k0−k
′
) − 1

ζ2 − 1
ν

≤ p̃ζ2κ(ε) +
ζ2κ(ε) − 1

ζ2 − 1
ν

≤ ε,

(49)

by (46) and k0 − k
′ ≤ κ(ε), the above inequality is true. According to the above

explanation, we can infer when the event Q̄ occurs in the interval [k0 − κ(ε), k0], the
inequality ‖Pk0+1‖ ≤ ε is always true, so the inequality (46) holds and we can conclude

{ event Q̄ occurs in k ∈ [k0 − κ(ε), k0]}
⊂ {‖Pk0+1‖ ≤ ε}

Counter-proposition through the above conclusion, we can get

P(‖Pk0+1‖ > ε)

≤ P(no event Q̄ occurs in k ∈ [k0 − κ(ε), k0]).
(50)

In order to continue the analysis, we also define two time constants k1 and k2

k1 , min
k
{k ≥ m|Qk = Q̄}

k2 , min
k
{k ≥ k0 − κ(ε)|Qk = Q̄}

By the total probability formula and inequality (46), we have

P(‖Pk0+1‖ > ε) ≤ P(k2 > k0)

=
∑
τ∈Ψ

P(k2 > k0|Qk0−κ(ε)−1=τ )P(Qk0−κ(ε)−1=τ ) (51)

Recalling
P(k2 > k0|Qk0−κ(ε)−1=τ ) = P(k1 > κ(ε) + 1|Qm = τ) (52)

it is easy to get from (45) that when ε→∞, κ(ε)→∞. Obviously,

lim
ε→∞

P(k1 > κ(ε) + 1|Qm = τ) = 0 (53)

Finally, combining (52) – (53), we have

lim
ε→∞

sup
k∈N

P(‖Pk+1‖ > ε) = 0

Further, due to Pk+1 , P ik+1|k, one has

lim
ε→∞

sup
k∈N

P(‖P ik+1|k‖ > ε) = 0

This completes the proof. �
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Case 2: Infinite number of consensus steps

In the previous case, we have analyzed the stochastic boundedness of error covariance
matrix with finite number of consensus steps. This case, we analyze the case of the hybrid
consensus-based EKF algorithm when the number of consensus steps is large enough.

Theorem 3.16. Under Definition 3.4 and Assumption 3.7, if the number of consensus
steps is large enough, there must be a positive scalar p̂ such that the error covariance
matrix satisfies the following uniform boundedness condition

P ik ≤ p̂In, i = 1, 2, . . . , N.

P r o o f . We first define Ωk = col(Ωik)i∈N , Ωci,k|k−1 = col(Ωici,k|k−1)i∈N , Ωcm,k =

col(Ωicm,k)i∈N and M̃l
k = M̃k,l · · · M̃k,1M̃k,0, 0 ≤ l ≤ L − 1, then according to Step 3

of Table 1, we have

Ωk = (M̃L
k ⊗ In)Ωci,k|k−1 + |N |(M̃L

k ⊗ In)Ωcm,k (54)

Note that M̃k,l, . . . ,M̃k,1 and M̃k,0 are non-negative matrices. Recalling Lemma 3.12,
the following form is easy to get

lim
l→∞

M̃k,l, · · · M̃k,1M̃k,0 = 1d,

where d = [d1, · · · , dN ] ∈ RN . Then, when 1 ≤ k ≤ m − 1 and l → ∞, (54) can be
approximated as follows

Ωk = (1d⊗ In)Ωci,k|k−1 + |N |(1d⊗ In)Ωcm,k

or equivalently,

Ωik =d1Ω1
ci,k|k−1 + d1|N |Ω1

cm,k + d2Ω2
ci,k|k−1 + d2|N |Ω2

cm,k

+ · · ·+ dNΩNci,k|k−1 + dN |N |ΩNcm,k
=Ω∗k.

As can be seen from the above, l→∞, the information matrix tends to reach consensus.
Therefore, when 1 ≤ k ≤ m−1, we can always find a positive scalar p̂1 in a limited time
interval to satisfy P ik ≤ p̂1In. As for the case k ≥ m, from (37), we can verify that
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(P ik)−1

≥ |N |αm
∑
j∈N

∑
s∈N
· · ·
∑
t∈N︸ ︷︷ ︸

m+1

π̃k,∞i,j π̃k−1,∞
j,s · · · π̃k−m,∞u,t

× (Ajk−1)−T (Ask−2)−T · · · (Atk−m)−T (Ctk−m)T

× (Rtk−m)−1Ctk−m(Atk−m)−1 · · · (Ask−2)−1(Ajk−1)−1

+ · · ·+ |N |α2
∑
j∈N

∑
s∈N

∑
u∈N

π̃k,∞i,j π̃k−1,∞
j,s π̃k−2,∞

s,u (Ajk−1)−T

× (Ask−2)−T (Cuk−2)T (Ruk−m)−1Cuk−2(Ask−2)−1(Ajk−1)−1

+ α|N |
∑
j∈N

∑
s∈N

π̃k,∞i,j π̃k−1,∞
j,s (Ajk−1)−T (Csk−1)T (Rsk−1)−1

× Csk−1(Ajk−1)−1 + |N |
∑
j∈N

π̃k,∞i,j (Cjk)T (Rjk)−1Cjk.

Next, we denote π̃k,∞i,j π̃k−1,∞
j,s · · · π̃k−m,∞u,t = π̃(m+1)∞ and πLi,jπ

L
j,s · · ·πLu,t = π(m+1)L.

Since 0 ≤ πLi,j ≤ 1 and π̃k,Li,j ≤ πLi,j , when the number of consensus steps is infinite,

π̃(m+1)∞ ≤ π(m+1)∞ (∀m ≥ 0,∀i, j ∈ N ) holds almost surely. There is a number 0 <
c < 1 that satisfies c ≤ λ, then by utilizing parameterized jointly uniform observability,
we have

(P ik)−1 ≥ cIn,

therefore

P ik ≤
1

c
In.

Choosing p̂ = max{p̂1,
1
c}, we can conclude that P ik ≤ p̂In. This completes the proof. �

4. SIMULATION RESULTS

In this section, a kinematic nearly constant velocity model [1] is adopted to verify the
results established in this paper. For the sake of simplicity, we choose fk(xk) = Akxk,
here xk = [pxk

, vxk
, pyk , vyk ] is an unknown state vector, pxk

, pyk and vxk
, vyk are the

position and velocity components on the coordinate axes, respectively. The system
model is described as follows:

xk+1 =


1 + 0.01sink ∆ 0 0

0 1 0 0
0 0 1 + 0.01sink ∆
0 0 0 1

xk + wk
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where ∆ = 4 is the sampling interval and the covariance matrix of the process noise wk
is Q = Gq2 with

G =


∆3

3
∆2

2 0 0
∆2

2 ∆ 0 0

0 0 ∆3

3
∆2

2

0 0 ∆2

2 ∆


and q2 = 5.

The state trajectory is estimated to pass through the sensor network G = (N , E) of
10 sensor nodes in Figure 1.

Each sensor measures the position of the target in Cartesian coordinates, that is,

yik =

[
1 + 0.01sink 0 0 0

0 0 1 + 0.01sink 0

]
xk + vik, i ∈ N

where vk is an Gaussian measurement noise with zero mean and the covariance Ri =
6.25I.

For consensus steps L = 1, consensus weights are selected according to Metropolis’s
weighting rules [23]. In the case of random link failures of the sensor network, the
probabilities of successfully transmitting informations are given as follows

p(γk,li,j = 1) = 0.75, (i, j) ∈ E .

To verify the stochastic boundedness of the error covariance in Theorem 3.15, we
perform the simulation and then confirm that the event ‖P ik‖ > ε, where ε = 100N and
i = 1, 2, · · · , N . The result shows that P(‖P ik‖ > ε) = 0, and thus the error covariance
is bounded. In order to obtain an objective result, a 50-step independent Monte Carlo
experiment is performed here, and all experiments use the same initialization conditions.
The average root mean-square error (ARMSE) of the position is used as a performance
indicator. First define the root mean-square error (RMSE) at time instant k as

RMSEik = [
1

50

50∑
m=1

((pmx,k − p̂
i,m
x,k )2 + (pmy,k − p̂

i,m
y,k )2)]

1
2

where (pmx,k, p
m
y,k) and (p̂i,mx,k , p̂

i,m
y,k ) represent the true and estimated position at the mth

Monte Carlo run. Then ARMSE is expressed as follows

ARMSEk =
1

N

N∑
i=1

RMSEik.

The ARMSE of the hybrid consensus-based filtering is shown in Figure 3, from which
we can see that the HCMCI algorithm can reach a reliable filtering performance under
no link failure rates and larger noise covariance Ri = 400. In Figure 4, we can clearly
see that filtering performance mainly depends on the link failure rate. In addition, we
also compare the ARMSE of the HCMCI filter with different measured noise variances in
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Figure 5, show that the greater the noise covariance, the worse the performance. Finally,
for a sufficiently large number of consensus steps (L=100), let P(γk,li,j = 1) = 0.95 and
run 10 independent simulation experiments, by obtaining the eigenvalues of the matrix
M̃L

k in the results, it is shown that M̃L
k is a non-negative matrix, and each element of

the 10th power of M̃L
k is positive. Therefore, we conclude that the error covariance is

bounded.

Fig. 1. Communication topology of 10 sensor nodes.
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Fig. 2. State trajectory of the system.
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Fig. 3. Position ARMSE of the HCMCI filters under no link failure

rates. The number of consensus steps is chosen as L = 1 and the

covariance Ri = 400.
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Fig. 4. Position ARMSE of the HCMCI filters under difference link

failure rates. The number of consensus steps is chosen as L = 1.

5. CONCLUSIONS

This paper has investigated the distributed state estimation problems of sensor net-
works under random communication link failures. According to two existing consensus
approaches, i. e., CI and CM, a hybrid consensus-based approach, consisting of a stan-
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Fig. 5. Position ARMSE of the HCMCI filters under difference

measurement noise variances. The number of consensus steps is

chosen as L = 1.

dard extend Kalman filter update and a consensus update, has been introduced. The
analysis of stochastic boundedness has been carried out in the cases of finite and infinite
consensus steps, respectively. The results have shown that the system observability and
the characteristics of some matrices satisfy certain conditions, and the error covariance
of HCMCI filtering is stochastically bounded in distribution. Furthermore, if the num-
ber of consensus steps is infinite, it has been indicated that uniform boundedness can be
almost certainly achieved. Finally, the effectiveness of the proposed HCMCI filter has
been evaluated through a numerical example.
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