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Abstract. We find, via the Selberg-Delange method, an asymptotic formula for the mean
of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).
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1. INTRODUCTION

Many number-theoretic problems lead to the study of mean values of arithmetic
functions. In [1] Cui and Wu obtain mean values of certain arithmetic functions over
short intervals by using the Selberg-Delange method and zero density estimates of
the Riemann zeta function.

In order to state their result, it is necessary to introduce some notations. From [10],
Theorem I1.5.1, the function

A(s;z) = LEZDEEDT

S

is holomorphic in disc |s — 1| < 1 and admits the Taylor series expansion

(L.1) 252 = Y B -1y,
§=0
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where 7;(2) are entire functions of z that satisfy for all B > 0 and ¢ > 0 the estimate

2 ey (G20, 4l < B).

The following is the result due to Cui and Wu.

Theorem 1.1. Let f(n) <. n° be a multiplicative funtion and let k > 0, w € C,
a>0,6>0,A>0, B>0, M >0 be some constants. Suppose that the Dirichlet

series F(s) := > f(n)n=* is of type P(k,w,a,d, A, B, M). Then for any ¢ > 0 we
have =l

(12) > ) = yllogz)" @ ) Ot ()

rz<n<x+y

uniformly for
r>y>a?00te 9 N>0, 0<k<B, |w<B

where 0(k,0) := (5k + 155 + 21) /(5 + 156 4 36), A\i(k,w) := gi(k, w)/T(k = 1),

!
1 0" (G (s K, w)C(258) ™)
T ( > dst=i 5:1%‘(#;)7
5=0
where v;(k) is defined by (1.1) and
_Y Z l|>\z 1(k, w) +M (01N+1)N+1 (clNl—t 1)N+171 3
(log z)! log x ec2(log z)1/3(log, x) =1/

for some constants ¢; > 0 and ¢y > 0. The implied constant in the O-term depends
only on A, B, a, § and ¢.

Note. Let k > 0, w € C, a>0 6>20,A>0, B>0, M >0 be some constants.
A Dirichlet series F(s) := Z f(n)n=* is said to be of type P(k,w,a,d, A, B, M) if
the following conditions are verlﬁed

(a) for any € > 0 we have
(1.3) [f(n)] <cn® (n=1),

where the implied constant depends only on ¢;



(b) we have

S ) < (e -1 (0> 1)
(c) the Dirichlet series "
(1.4) G(s;k,w) == F(s)¢(s)77¢(2s)"

can be analytically continued to a holomorphic function in (an open set contain-
ing) o > % and, in this region, G(s; k, w) satisfies the bound

(1.5) |G (s, w)| < M(|7| + 1)@= D logd (7] + 1)
uniformly for 0 < x < B and |w| < B.

It is natural to consider the analogous result of (1.2) for arithmetic progressions
mod g. Nevertheless, the problem in arithmetic progressions is more difficult for large
moduli ¢, partly because of the possible Siegel zero, and partly because of a zero-
free region for the L-function (excluding the Siegel zero). So we only consider some
special arithmetic progressions following the idea of Gallagher [4]. In this note, we
prove the following results.

Theorem 1.2. Let py be a fixed odd prime, ¢ = pj be an integer with r an integer
and | be an integer such that (I,q) = 1 and let f(n) be a multiplicative function such

that f(p) = a (0 < a < 1), f(p") < p° (v = 2) for some § < 0. For any £ > 0,
0 <6 <1 andq < z'/(20100+21))—¢

(16) > = > Tt Oty
n<x 0<k<
n=l (mod q)

uniformly for x > 2, N > 0, where

af ‘=

1 Z G(h)(LXO)’Yj(O‘)

Pla—k) =, Al j! ’
G(s,x0) = H (1 + % +i%) (i Xp_(@)
Rn(z) := O((lo;x>N+2_a + e_l‘)g(lfe)/zx)

and the implied constant depends only on €, v;(z) is defined by (1.1).

Note that for generally large moduli, at present there seems to be little hope for
a proof of this, the reason being the Grand Riemman Hypothesis.



2. NOTATIONS AND PRELIMINARIES

Throughout the paper we will use the following notations: s = o + ir, € always
denotes a sufficiently small positive number, p denotes a prime number, the pa-
rameters 7' and x are sufficiently large real numbers. When we write f = O(g) or
f < g we will mean | f| < Cg for some absolute constant C. When implied constants
depend upon some parameters, we sometimes indicate that by a subscript.

Our work is inspired by Selberg-Delange method, which was developed by Sel-
berg [9] and Delange [2], [3]. The method has been applied to some arithmetic
problems, see [5], [6] and [7]. For more details, the reader is referred to the book by
Tenenbaum [10].

3. SOME LEMMAS

o0
Lemma 3.1. Let F(s) := ) a,n~® be a Dirichlet series with finite abscissa of
n=1
absolute convergence o,. Suppose that there exists a real number 1 > 0 such that:

(1) §1 lan|n=7 < (0 —0,)™" (0> 04),

and that B (n) is a nondecreasing function satisfying
(i) Jau| < B(n) (n>1).
Then for v > 2, T > 2, 0 < 04, k:=0, — 0 + 1/logx we have

w_ 1o d logz)" = B(2 log T
an _ 1 F(SJFw)xw_erO(ngg(ogx) L B(22) (ong ))
= n® 21 J. 7 w T z° T
Proof. See [10], Corollary I1.2.2.1. O

Lemma 3.2. Let ¢ > 2 be an integer and x be Dirichlet character modulo q.
Then we have

Lo +ir,x) < ¢" (|7 + 1)"/* In(|7| + 1).
Proof. See [8], Theorem 1, page 485. O

Lemma 3.3. Let q > 2 be an integer and x be a non principal Dirichlet character
modulo q. For s=0 +ir, 0 <e < %, e<o<1,|r|+2<T we have

Lo +im,x) <e (ql/QT)l_”"'e.



Proof. The lemma is Exercise 241 of [11]. O

Lemma 3.4. For ¢ = p{, (po odd prime), the Dirichlet L-function to modulus q
has no zeros in region

(3.1) P P ——— T

log™ (q(|t] +2))
Proof. See [4], Theorem 2. O

Lemma 3.5. Let f(n) be a multiplicative function such that f(p) = a (0 < a < 1),
f(p") < p® (v = 2) for some 6§ < 0 and xq be the principal character to the modu-
lus q. For any € > 0,

@D i) = s <ZN T+ 0 ()

holds for x > 2, where

1 G (1)) (a
= k>z (1)v;(a)

41 ’
Srwralt h!j!

Gloono) = I 1+ 2202 ZXO DI (1 2y

p 4
and v;(z) is defined by (1.1).

Proof. We write for Res > 1,

(33) .
Flox) = 32 X 1;( S e e
=p( W 3 D) (- N (- )

= L. x0)"Gls.x0) = (s = )7 TT (1= 22) (65 = 165" - Glsvna)
plg

=: (S — 1)7(1 . Z(Sya) : G(S;XO);

where Z(s; «) is holomorphic and Og4(M) in the disc |s — 1] < ¢ (0 < ¢ < 1/10) and
G (s, x0) is expandable as a Dirichlet series

— g(n)
SXO Z ne’

n=1




where g(n) is a multiplicative function for which the values on primes’ powers are
determined by the identity

1+ g =1 =9"> f)E" (1€ <),
v>1 v>20

In particular, we have g(p) = 0 and Cauchy inequality implies that |g(p”)| < p*”
(e > 0). So we have shown that for o > 1 +¢

v —Vo 1 ¢
YD 19 < ijpg,g(pa,E O Se—o-12

p v=l

where ¢ is an absolute constant. Then we deduce that G(s, xo) is absolutely con-
vergent for o > % + ¢ and G(s,x0) < 1. By using Selberg-Delange theorem [10],
Theorem III. 5.3, we obtain (3.2). O

Lemma 3.6. Let f(n) be a multiplicative function such that f(p) = a (0 < a < 1),
f(p¥) < p® (v > 2) for some § < 0 and x be a nonprincipal Dirichlet character
modulo q, where ¢ = pj}y (po odd prime). For any 0 < ¢ < 4, 0 < # < 1 and

27
g < x15/(2(10a+21))76

(3.4) Z maX

X#XO

O(z exp(— log1=9)/2 )

x| > x(n)

n<y

holds for x > 2, where the implied constant depends only on €.

Proof. Asin Lemma 3.5, we have

(35) F(s.x) Z I T (1 L XOI0) | x(p”)f(p”))

pS ) pl/S

S HIGEDN

p* p*

I
VRS
—
_|_

=_
)
g
=
_|_
\MX
=
)
=
g
)
=
N———
/N
—

I
h
03
-
Q
Q
0
-

where

G(s,x)—H<1—|— +ZX )(1—XZ§§))&.

P
As similarly shown in Lemma 3.5, we easily see that G(s, x) <. 1 for Res > % +e.

We can apply Lemma 3.1 with the choice of parameters o, = 1, B(n) = n®, n =,
o =0and T = z'%/(10a+21)+Ve ¢4 write

14¢

1 bHT s
ZX / F(s,x)y—ds-l-O(y ),
n<y 27'[1 b—iT S T
where b =1+ 2/logz and 100 < T' < « such that L(o +iT,x) #0 for 0 < o < 1.
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Let £ be the boundary of the modified rectangle with vertices (3 + &) i7" and
b+ iT, where

> € > 0 is a small constant chosen so that L(3 + ¢+ 1'y x) # 0 for |y| < T, and

> the zeros of L(s, x) of the form o =+ iy with 5 > 5 and |y| < T are avoided by
the horizontal cut drawn from the critical line inside this rectangle to ¢ = 5 + iy.

> L1 and L3 denote horizontal segment [(§ + &) £iT, (14 2/logz) £iT], L3 and L4
denote vertical segment [(1 +¢), (3 +¢) £iT]\ {0: 0= (3 +¢) £iv}, I, denotes
horizontal segment [(3 + &) £ivy, 8 £i7].

Clearly the function F(s,x) is analytic inside £. By Cauchy residue theorem, we

can write
y1+€
(3.6) Soxmfn)=h+...+L+ Y IQ+OE(T>,
nxy B>3+e
[vI<T
where g .
Y
I = — =—d
J 2TEI L:j f(S, X) s S
and

To = 2711/]:

A. Estimation of I and I3. In view of (3.5) and Lemma 3.3, we have

(37) J—-'(S’X) < (ql/QT)a(lfo'%i»g.
Thus
142/ logx ya
(3.8) |L|+ |« / (¢*/2T)*0-)te . Ly
1/2+4¢ T

1+2/log 1/2
<Y (M)l do < L . o(1/2-0)lo(("/2T)" /)
T 1/2+¢ Y T

B. Estimation of I3 and I,. For s = (1 +¢) +ir with 0 < |7] < T, in view of (3.5)
and Lemma 3.2, we have

(3.9) F(s,x) < q**(|7| + 1)2/6%<,

Thus
y1/2+5

(3.10) |I3] + | I4] <</O (q“/2(|7|+1)“/6+€)m

dr <« y1/2+€qa/2T04/6.



C. Estimation of I,. For s = o + iy with % +e<o< B <1l=o09(7),in view
of (3.5) and Lemma 3.2, we have

F(s,x) < q*17)|y|o/0%=

Then we deduce that

8 o
_ Yy

3.11 I <</ @I |/t L (g

(8.11) ¢ 1/2+5( lo +iv]

Denote by N(o,T,x) the number of zeros of L(s,x) in the region Res > ¢ and
Ims| < T. Summing (3.11) over |y| < T and interchanging the summations, we
have

1—00(T0) 6 yo—
1,| < logT max qa(lfa)Ta/ LN 0,1y, x) do.
0 g 0
B>1/2+e To<T J1/2+e To

[vI<T

It is well-known that

(3.12) N(o,T,q):= > N(o,T,x) < (qT)"*>1=)(InqT)°
x mod g
and in view of Lemma 3.4,
c

" log " (q(t] +2))’

for%—i—sgoglandT}Z Thus

(313) > > L]

X#Xo0 B>1/24¢
[vI<T

UO(t) 7 < 1)

1—00(To) 6 ya
< logT max/ qa(lf")TOa/ el ( To)(12/5)(1*”) log(qTp)? do
To<T J1/2+4¢ Ty

1—00(To) qa+12/5T12/5 1—0o 1
< ylog T max log(qTp)° / <70> g do
To<T 1/2+¢ Yy T,/
1—00(To) qa+12/5T2/5+a/3 1-0o
< ylog T max log(qTp)° / <—0> do
To<T 1/2+4¢ Y

0 qa+12/5T02/5+a/3 a0 (To)
logT 1 T e —

«ylogT max og(qTo) ( ; )

a+12/52/5+a/3 >ao(T)

< ylog T'log(qT)°? (q ;



Inserting (3.8), (3.10) and (3.13) into (3.6), we find that

> x(n)f(n)

nxy

a+12/5T2/5+a/3 oo(T) 1+e
—I—a:longog(qT)g(qf) >+05(qu )

E max
y<z

X#X0

_ (% e(1/2=e) log((¢"/*T)* /x) gl o 2 pl/2al6re

For ¢ < z!5/(00a+21)—c " yoting T = 215/(20100+21)+VE 459 0 < o < 1, we ob-
tain (3.4). O
4. PROOF OF THEOREM 1.2.

We are now ready to prove Theorem 1.2.

Proof. The starting point of the proof is the following observation.

S oim=— 3 10X ) fn)

_ n<x So(q) x (mod q) n<x
n=l (mod q)
- L (Z o+ 3 xS x(n)f(n)>-
o\ X#xo  n<w

According to Lemma 3.5 and Lemma 3.6, we have the following result:

__r %
Z f(n) - @(q)( Z (logx)kJrlfa

n<z 0<k<N
n=l (mod q)

1 log(1=0)/2 4
+OE<W)+O(6 & ))

This completes the proof of Theorem 1.2. O
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