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KYBERNET IKA — VOLUME 5 4 ( 2 0 1 8 ) , NUMBER 3 , PAGES 4 9 6 – 5 2 1

CONVERSE THEOREM FOR PRACTICAL STABILITY
OF NONLINEAR IMPULSIVE SYSTEMS
AND APPLICATIONS

Boulbaba Ghanmi, Mohsen Dlala and Mohamed Ali Hammami

The Lyapunov’s second method is one of the most famous techniques for studying the stabil-
ity properties of dynamic systems. This technique uses an auxiliary function, called Lyapunov
function, which checks the stability properties of a specific system without the need to generate
system solutions. An important question is about the reversibility or converse of Lyapunov’s
second method; i. e., given a specific stability property does there exist an appropriate Lya-
punov function? The main result of this paper is a converse Lyapunov Theorem for practical
asymptotic stable impulsive systems. Applying our converse Theorem, several criteria on prac-
tical asymptotic stability of the solution of perturbed impulsive systems and cascade impulsive
systems are established. Finally, some examples are given to show the effectiveness of the
derived results.

Keywords: converse Lyapunov theorem, practical asymptotic stability, impulsive systems,
cascade systems, perturbed systems

Classification: 34A37, 34D20

1. INTRODUCTION

It is well-known that the second method of Lyapunov is considered as the most widely-
used tools for stability analysis of various types of mathematically described dynamical
systems, including continuous and discrete differential equations, impulsive differential
equations, and many others.

Classical results in this direction are presented in the seminal books [13, 21, 31, 32].
Extensions of this theory can be found e. g. in [2, 18, 19, 22], and the references therein.

The strength of Lyapunov’s second method is that it is possible to ascertain stability
without solving the underlying differential equation. The second method states that
if one can find an appropriate Lyapunov function, then the system has some stability
property. However, the main draw-back of this method is the need to find a Lyapunov
function, which is frequently a difficult task. In many cases, Lyapunov theory provides
an affirmative answer to this problem. The answer takes the form of converse Lyapunov
Theorems. Unfortunately, these converse Theorems are proven by actually constructing
auxiliary functions which always assume the knowledge of the solution of the differential
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equation. Therefore, these converse Theorems cannot really be used to construct an
explicit formula for Lyapunov function, except in special cases (e. g. linear systems).
However, these Theorems prove at least that such a function exists, and on the other
hand, they can be used to study the stability of perturbed systems.

Over the years, many converse Theorems have been established for different kinds
of stability, firstly, for continuous systems see [12, 22, 24]. A recent review of converse
Theorems is given in [15] and the references therein, and later for discrete systems
see[1, 17], for hybrid systems [7, 23] and impulsive systems [2, 30].

Recently, a converse stability Theorem for practical exponential stability has been
obtained in [9]. This Theorem is used to analyze the practical exponential stability of the
zero solution of perturbed impulsive systems and cascade impulsive systems. However;
in the present paper, the contribution is to establish a converse stability Theorem for
practical asymptotic stability and its applications, which generalizes an inverse Theorem
for practical exponential stability in [9].

The practical stability, in the sense introduced in [8, 16], is very important and
very useful for analyzing the stability or for designing practical controllers of dynamical
systems since controlling a system to an idealized point is either expensive or impossible
in the presence of disruptions and the best which we can hope in such situations is to
use practical stability. The practical stability only needs to stabilize a system into a
region of phase space, namely the system may oscillate close to the state, in which the
performance is still acceptable. In the past decades, practical stability has been studied
by many researchers such as cited in [3, 4, 5, 6, 9, 10].

This paper is organized as follows: In Section 2 some definitions and notations are
given and a concept of practical asymptotic stability for impulsive systems is presented.
Criteria for asymptotic practical stability for impulsive systems are the focus of Section 3.
However; in section 4, this Theorem is used to study the practical asymptotic stability
of perturbed impulsive systems and cascade impulsive systems. In the last section, some
examples are worked out to illustrate our results.

2. PRELIMINARY NOTES

Let R+ = [0,+∞[, Rn, n ∈ N∗ be the n-dimensional Euclidean space with elements

x = col(x1, x2, . . . , xn) and the Euclidian norm ‖x‖ =
(∑n

i=1 x
2
i

) 1
2

. Moreover, we shall

use the notation Bnr = {x ∈ Rn; ‖x‖ ≤ r}, the closed ball of Rn of radius r > 0.
Let us consider the following impulsive system:

ẋ(t) = f(t, x(t)), t 6= τk, t ∈ R+

∆x(τk) = Ik(x(τ−k )), t = τk, k = 1, 2, . . .

x(t+0 ) = x0,

(1)

in which x(t), x0 ∈ Rn, are respectively the system’s state and an initial condition;
f : R+×Rn −→ Rn and Ik : Rn −→ Rn are two functions and ∆x(τk) , x(τk

+)−x(τk
−),

with x(τk
+) = limh→0+ x(τk+h) and x(τk

−) = limh→0+ x(τk−h), where x(τk
−) = x(τk).

To ensure the existence and the uniqueness of the solutions to the impulsive system (1),
we suppose that the following classical conditions are satisfied [2].
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(a) The function f is a continuous in each domain Gnk :=]τk−1, τk]× Bnr , (k ∈ N∗) and
it satisfies the following properties

(i) There exist a positive constant f0 such that, for all t ≥ 0, we have ‖f(t, 0)‖ ≤
f0.

(ii) Lipschitz condition: for all r > 0, there exists a positive constant Lr, such
that, for all x, y ∈ Bnr and t ≥ 0, we have

‖f(t, x)− f(t, y)‖ ≤ Lr‖x− y‖.

(iii) For any k ∈ N∗ and x ∈ Bnr , the function f(t, x) admits a finite limits at
(τk, x), i. e.

lim
t→τ−k

f(t, x) = f(τk, x), lim
t→τ+

k

f(t, x) = f(τ+k , x).

(b) The incremental change of the state Ik : Rn −→ Rn at the time τk, k = 1, 2, . . . are
such that

• There exists a positive constant H, such that, if ‖x‖ < H and Ik(x) 6= 0,
then ‖x+ Ik(x)‖ < H.

• Lipschitz condition: There exists a positive constant Mk, such that

‖Ik(x)− Ik(y)‖ ≤Mk‖x− y‖,

for all x, y ∈ Rn.

(c) The times of the impulsive effects τk, k ∈ N∗ are fixed and an unbounded increasing
sequence with limk→+∞ τk = +∞. Moreover, there exist a constants θ1, θ2 > 0,
such that

θ1 ≤ inf
k∈N∗
{sk} < sup

k∈N∗
{sk} ≤ θ2

where sk = τk+1 − τk, ∀ k ∈ N∗. The condition (c) says that, as k towards to +∞,
the spending time sk between two consecutive impulses, does not became infinitely long
sk → +∞ or infinitely short sk → 0.

Let (t0, x0) ∈ R+ × Rn be an initial condition. Since the conditions (a), (b) and (c)
are satisfied, then there exists an unique solution x(t) , x(t, t0, x0) of system (1), which
starts at time t0 at the point x0. Moreover, any solution x(t, t0, x0) of (1) is defined
on the interval [t0,+∞[, and is continuously differentiable for all t 6= τk with points of
discontinuity of the first kind at t = τk, k = 1, 2, . . . [2].

Let us define the following class of functions and specify the notion of practical
asymptotic stability mode of solutions of the system (1).

• F(R+) the set of all functions from R+ to R+. If ϕ ∈ F(R+), we denote by

Ia,b(α,ϕ) the following expression Ia,b(α,ϕ) :=
∫ b
a
e−α(b−z)ϕ(z) dz, where α > 0

and a, b ∈ R+ such that a ≤ b.
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• M(I,C) the set of all measurable functions from I to C, where I is an interval of
R.

• F(I, J) (resp C(I, J)) be the set of all functions (resp all continuous functions)
from I into J .

• C1(I, J) the set of continuously differentiable functions from I into J .

• PC(R+,R), the set of functions ψ : R+ → R which are continuous for t ∈
[τk, τk+1[, k ∈ N∗ such that ψ(τ−k ), ψ(τ+k ) exist and ψ(τ−k ) = ψ(τk) for all , k ∈ N∗.

• PC1(R+,R) the set of functions ψ : R+ → R which are piecewise continuous
differentiable.

• Lp(I) =
{
ϕ ∈ M(I,C); ‖ϕ‖p < +∞

}
, where ‖ϕ‖p =

[ ∫
I |ϕ(s)|p ds

] 1
p

, and

p ∈ [1,+∞[.

• B(R+) is the set of all bounded functions from R+ to R+,

B(R+) =
{
ϕ ∈ F(R+);∃ mϕ ≥ 0, 0 ≤ ϕ(t) ≤ mϕ, ∀ t ∈ R+

}
.

• A =
{
ϕ ∈ F(R+); ∃ r := νϕ,Mϕ ≥ 0; Ia,b(α,ϕ) ≤ Mϕ

ανϕ ; ∀ b ≥ a ≥ 0, α > 0
}

.

As a first step, we give some properties of the set A.

Remark 2.1. It is not difficult to establish the following useful properties

• For all p ≥ 1, we have Lp(R+) ⊂ A and if ϕ ∈ Lp(R+), we obtain

∀p ∈ [1,+∞], Mϕ = ‖ϕ‖p, and νϕ = 1− 1

p
.

• B(R+) ⊂ A and if ϕ ∈ B(R+), we obtain

Mϕ = mϕ and νϕ = 1.

• If ϕ1 ∈ A, ϕ2 ∈ B(R+), then ϕ1ϕ2 ∈ A and we have

Mϕ1ϕ2
= mϕ2

Mϕ1
, and νϕ1ϕ2

= νϕ1
.

• If ϕ1, ϕ2 ∈ A, then ϕ1 + ϕ2 ∈ A. Moreover, we have

Mϕ1+ϕ2
= 2 max(Mϕ1

,Mϕ2
) and νϕ1+ϕ2

∈
{
νϕ1

, νϕ2

}
.

• If ϕ ∈ B(R+) such that ϕ′ ≥ 0, then ϕ′ ∈ A with Mϕ′ = mϕ and νϕ′ = 0.

In control theory, it is often required to check if a nonautonomous system is stable or
not. To cope with this, it is necessary to use some special comparison functions. Class
K and KL functions belong to this family:
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Definition 2.1. (Khalil [18]) A continuous function α : [0, a)→ [0, b) is said to belong
to class K if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if
a = b = +∞ and α(r)→ +∞ as r → +∞.

Definition 2.2. (Khalil [18]) A continuous function β : [0, a) × [0,+∞[→ [0,+∞[ is
said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K
with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with respect to
s and β(r, s)→ 0 as s→ +∞.

In the following, we give some definitions which will be used in this paper.

Definition 2.3. (Jiang et al. [16]) System (1) is uniformly practically asymptotically
stable (U.P.A.S), if a function β of class KL and a nonnegative constant ρ exist such
that, for each initial condition (t0, x0) with x0 ∈ Bnr , we have

‖x(t, t0, x0)‖ ≤ ρ+ β
(
‖x0‖, t− t0

)
, ∀ t ≥ t0. (2)

Remark 2.2. Recall that, if (2) is satisfied with β(r, s) = kre−λs, k, λ > 0, then the
system (1) is said to be uniformly practically exponentially stable (U.P.E.S) with rate λ
and region of attraction Bnr ([8],[9]). It is well known that if the system (1) is uniformly
practically exponentially stable, then it is uniformly practically asymptotically stable.
However, the converse is false. In our recent result [9], we have derived a converse
Lyapunov Theorem for a practical exponential stable impulsive system. In the present
work, we generalize our cited paper for practical asymptotic stable impulsive systems.
We point out, that the proposed Lyapunov function in this paper (see (8)) is different
from the one given in [9].

Definition 2.4. (Yang [30]) The function V : R+ × Rn → R+ is said to belong class
V2 if V (t, x) is positive definite, locally Lipschitz in x, continuous everywhere except
possibly at a sequence of points {τk} at which V (t, x) is left continuous and the right
limit V (τ+k , x) exists for all x ∈ Rn.

Definition 2.5. (Yang [30]) The Dini derivative or the upper right-hand generalized
derivative of a function V (t, x) along the solutions of system (1) is defined by:

D+
(1)V (t, x) = lim sup

h→0

1

h

[
V (t+ h, x+ hf(t, x))− V (t, x)

]
. (3)

To prove of the main results, we shall use the following lemmas.

Lemma 2.6. If α ∈ K∞ then, for all a, b ≥ 0, we have

α(a+ b) ≤ α(2a) + α(2b).

Lemma 2.7. (Lakshmikantham et al. [20]) Let u, v ∈ PC(R+,R) a nonnegative func-
tions satisfying,

u(t) ≤ c+

∫ t

t0

v(s)u(s) ds+
∑

t0≤τi<t

biu(τi), (4)
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for all t ≥ t0 ≥ 0, where the constants c and bi are positive. Then, we have

u(t) ≤ c
∏

t0≤τi<t

(1 + bi) exp
(∫ t

t0

v(s) ds
)
. (5)

Lemma 2.8. (Lakshmikantham et al. [20]) Assume that v ∈ PC1(R+,R) and v(t) is
left-continuous at τk, k = 1, 2, . . ., satisfying:

v̇(t) ≤ a(t)v(t) + b(t), t 6= τk,

v(τ+k ) ≤ ckv(τk) + dk, t = τk, k = 1, 2, . . . (6)

v(t+0 ) = v0,

where the functions a, b ∈ C(R+,R), ck ≥ 0 and dk ∈ R are constants. Then, v satisfies
the following inequality

v(t) ≤ v0
∏

t0<τk<t

cke
A(t,t0) +

∑
t0<τk<t

 ∏
τk<τj<t

cj

 eA(t,τk)dk

+

∫ t

t0

( ∏
s<τk<t

ck

)
eA(t,s)b(s) ds,

where A(t, s) =
∫ t
s
a(s) ds, for all t ≥ s ≥ 0.

3. MAIN RESULTS

This section is dedicated to start the main results of this paper. In the following sub-
section, we introduce a sufficient conditions satisfied by a Lyapunov function that guar-
anteed the practical asymptotic stability of the nonlinear impulsive system (1). Then,
we establish a converse Lyapunov Theorem for a practical asymptotic stable impulsive
system (1).

3.1. Practical asymptotic stability

In the following Theorem, we give some sufficient conditions to ensure the practical
asymptotic stability of the nonlinear impulsive systems (1).

Theorem 3.1. Assume that the impulsive system (1) satisfies the conditions (a), (b)
and (c). Furthermore, suppose that there exist a function V ∈ V2, a function L ∈
PC(R+,R+), a function r ∈ A, positive scalars constants a, λ, ck, dk (k ∈ N∗) and
α1, α2 ∈ K which satisfy:

1. α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) + a, ∀ x ∈ Bnr , t ≥ 0,

2. D+V (t, x) ≤ −λV (t, x) + r(t),∀ x ∈ Bnr , t 6= τk,

3. |V (t, x)− V (t, y)| ≤ L(t)‖x− y‖, ∀ x, y ∈ Bnr ,
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4. V (τ+k , x(τ+k )) ≤ ckV (τk, x(τk)) + dk, ∀ k ∈ N∗,

where
∏+∞
k=1 ck < +∞ and

∑
k≥1 dke

−αsk converges for some positive constant α.
Then, the impulsive system (1) is uniformly practically asymptotically stable.

P r o o f . Let us consider t ≥ t0 and m0,m ∈ N∗ such that t0 ∈ [τm0
, τm0+1[ and

t ∈ [τm, τm+1[. Since the infinite product
∏
k≥1 ck converges, then there exists a positive

constant P > 0, such that Pn =
∏n
k=1 ck ≤ P, for all n ≥ 1. Conditions 2 and 4 of

Theorem 3.1 implies that the function V (t, x) satisfies Lemma 2.8. Then, we obtain the
following estimation for all t ≥ t0,

V (t, x(t)) ≤ V (t+0 , x0)

( ∏
t0<τk<t

ck

)
e−λ(t−t0) +

∑
t0<τk<t

 ∏
τk<τj<t

cj

 e−λ(t−τk)dk

+

∫ t

t0

( ∏
s<τk<t

ck

)
e−λ(t−s)r(s) ds.

(7)

Then, from (7), one get

V (t, x(t)) ≤ V (t+0 , x0)Pe−λ(t−t0) + Peαθ2−λθ1
m∑

k=m0+1

dke
−αsk

+ P

∫ t

t0

e−λ(t−s)r(s) ds.

It follows that,
V (t, x(t)) ≤ V (t+0 , x0)Pe−λ(t−t0) +R,

where R = P
(
eαθ2(1 + e−λθ1)

∑+∞
k=1 dke

−αsk + Mr

λνr

)
. Using the condition 1 of Theorem

3.1 and Lemma 2.6, we can easily see that for all x0 ∈ Bnr ,

‖x(t, t0, x0)‖ ≤ α−11

(
V (t+0 , x0)Pe−λ(t−t0) +R

)
,

≤ α−11

(
(α2(‖x0‖) + a)Pe−λ(t−t0) +R

)
,

≤ α−11

(
Pα2(‖x0‖)e−λ(t−t0) + aP +R

)
,

≤ α−11

(
2Pα2(‖x0‖)e−λ(t−t0)

)
+ α−11

(
2aP + 2R

)
,

≤ β(‖x0‖, t− t0) + ρ,

where
β(r, s) = α−11

(
2Pα2(r)e−λs

)
∈ KL, ρ = α−11

(
2aP + 2R

)
.

This finishes and shows the proof of Theorem 3.1. �

Remark 3.1. Note that, if r(t) = 0, a = 0 and dk = 0 for all k ∈ N∗, we obtain
the uniform asymptotic stability of the impulsive system (1)(see [2]). In the above
Theorem, we have established some sufficient conditions that guaranteed the practical
asymptotic stability of system (1) using Lyapunov function. Our result is different from
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other many Lyapunov Theorem for nonlinear impulsive systems due to special structure
of the set A. Obviously, our Theorem does not generalize other Lyapunov Theorems
for impulsive systems, but it is a simple variant which gives different class of Lyapunov
Theorem by introducing the set A which is a very large set as pointed out in Remark
2.1. The importance the above Theorem does not became only from its results, but it
is a consequence from the fact that the sufficient conditions satisfied by the Lyapunov
function are also necessary for any U.P.A.S. impulsive system (1). In the following, we
give a positive answer to the following natural question: if the impulsive system (1) is
U.P.A.S., is there a Lyapunov function V (t, x) which satisfies the conditions 1-4 of the
above Theorem? In fact, we prove in the following subsection that a U.P.A.S. impulsive
system (1) admits a Lyapunov function satisfying the conditions 1− 4, with r ∈ A.

3.2. A converse stability Theorem

In this subsection, a so-called converse Lyapunov Theorem for practical asymptotic
stable impulsive system (1) is stated and proved. This Theorem will be applied in the
sequel to two problems in control theory, and it will be shown that it leads to an elegant
solutions to each of these problems.

Theorem 3.2. Assume that the impulsive system (1) satisfies the conditions (a), (b)
and (c). Moreover, we suppose that the impulsive system (1) is uniformly practically
asymptotically stable. Then, there exist α1, α2 ∈ K, a positive constants a, λ, ck, dk, a
functions L ∈ PC(R+,R+), r ∈ A, and a Lyapunov function V ∈ V2 that satisfy:

1. α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) + a, ∀ x ∈ Bnr , t ≥ 0,

2. D+V (t, x) ≤ −λV (t, x) + r(t),∀ x ∈ Bnr , t 6= τk,

3. |V (t, x)− V (t, y)| ≤ L(t)‖x− y‖, ∀ x, y ∈ Bnr ,

4. V (τ+k , x(τ+k )) ≤ ckV (τk, x(τk)) + dk, ∀ k ∈ N∗,

where
∏+∞
k=1 ck < +∞ and

∑
k≥1 dke

−αsk converges for some positive constant α.

P r o o f . For (t, x) ∈ R+ × Bnr , let V (t, x) be the function given by:

V (t, x) = sup
s≥0

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + θ(t)s

1 + s

}
, t 6= τk,

V (τk, x) = lim
t−→τ−k

V (t, x) = V (τ−k , x), k ∈ N∗,
(8)

where the function ϕ ∈ K∞ ∩ C1(R+,R+) and θ ∈ B(R+), such that θ′(t) ≥ 0 and
λ := inft≥0{θ(t)} − 1 > 0. Obviously, the function V (t, x) is well defined since the
function

s 7→ ϕ
(
‖x(t+ s, t, x)‖

)1 + θ(t)s

1 + s

is bounded on R+. We prove in Appendix A, that the Lyapunov function candidate V
belong to the class V2. The details of the proof are given in appendix. The different
stages of the proof are inspired by the recent work [9]. �
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4. APPLICATIONS OF CONVERSE THEOREM

The converse Lyapunov Theorem derived in the above section is used in this section to
solve two problems in stability analysis and control theory. The first application is about
the practical stability of perturbed impulsive system, while the second one concerns the
practical stability of cascaded impulsive systems.

4.1. Practical asymptotic stability of perturbed impulsive system

Let us consider the perturbed impulsive system having the form

ẋ(t) = f(t, x(t)) + g(t, x(t)), t 6= τk, k = 1, 2, . . .
∆x = Ik(x) + Jk(x), t = τk, k = 1, 2, . . .
x(t+0 ) = x0,

(9)

where x(t), x0 ∈ Rn and f, g : R+ × Rn → Rn are two continuous functions in each
domain Gnk and for any k ∈ N∗ and x ∈ Rn there exist the finite limits

lim
t→τ−k

f(t, x) = f(τk, x), lim
t→τ+

k

f(t, x) = f(τ+k , x),

and

lim
t→τ−k

g(t, x) = g(τk, x), lim
t→τ+

k

g(t, x) = g(τ+k , x).

In addition, suppose that f is a locally Lipschitz function with respect the variable x.
The nominal system associated at the perturbed system (9) is the impulsive system (1)
where g(t, x) and Jk(x) are the perturbations that affect the impulsive system under
consideration.

Consider the following hypotheses:

(H1): The nominal system (1) is assumed to be U.P.A.S and the perturbation term
g(t, x) satisfies,

‖g(t, x)‖ ≤ φ(t), (10)

for all (t, x) ∈ R+ × Rn, where φ ∈ A.

(H2): The incremental changes Ik(.) and Jk(.) of the state at the time τk satisfy,

i) For all k ∈ N∗, ∀x, y ∈ Rn, ‖Ik(x)−Ik(y)‖ ≤Mk‖x−y‖, such that
∑+∞
k=1Mk < +∞,

ii) For all k ∈ N∗, ∀x ∈ Rn, ‖Jk(x)‖ ≤ µk, and there exist β > 0, such

+∞∑
k=1

µke
−βsk < +∞.

Then, one can state the following Theorem.

Theorem 4.1. Assume that (H1) and (H2) hold. Then, the perturbed impulsive
system (9) is uniformly practically asymptotically stable.
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P r o o f . By assumption (H1) there exists a Lyapunov function V (t, x) which satisfying
conditions 1−4 of Theorem 3.2. Since, the series

∑
k≥1Mk converges, then the function

L(t), given by the formula (35), is bounded by a positive constant l, i. e. L(t) ≤ l, for
all t ≥ 0.

If t = τk, we have

V
(
τ+k , x(τ+k )

)
= V

(
τ+k , x(τk) + Ik(x(τk)) + Jk(x(τk))

)
,

= V
(
τ+k , x(τk) + Ik(x(τk)) + Jk(x(τk))

)
− V

(
τ+k , x(τk) + Ik(x(τk))

)
+ V

(
τ+k , x(τk) + Ik(x(τk))

)
,

≤ ckV
(
τk, x(τk)

)
+ dk + l‖Jk

(
x(τk)

)
‖,

≤ ckV (τk, x(τk)) + `(dk + µk),

where ` = max(1, l). Other, if t 6= τk, we get

D+
(9)V (t, x(t)) = lim sup

h→0+

1

h

[
V (t+ h, x+ hf(t, x) + hg(t, x))− V (t, x)

]
,

= lim sup
h→0+

1

h

[
V (t+ h, x+ hf(t, x) + hg(t, x))− V (t+ h, x+ hf(t, x))

+ V (t+ h, x+ hf(t, x))− V (t, x)
]
,

= lim sup
h→0+

1

h

[
V (t+ h, x+ hf(t, x) + hg(t, x))− V (t+ h, x+ hf(t, x))

]
+D+

(1)V (t, x),

≤ D+
(1)V (t, x) + l‖g(t, x)‖,

≤ −λV (t, x) + r(t) + lφ(t) ≤ −λV (t, x) + `(r(t) + φ(t)).

Then, by Theorem 3.1, the solution x(t, t0, x0) of the perturbed impulsive system (9)
satisfies the following estimation,

‖x(t, t0, x0)‖ ≤ ρ+ β(‖x0‖, t− t0),

for all t ≥ t0 ≥ 0, and x0 ∈ Bnr , where,

β(r, s) = α−11

(
2Pα2(r)e−λs

)
∈ KL and ρ = α−11 (2M),

with,

M = `P
[a
`

+ (1 + e−λθ1)
(
eαθ2

+∞∑
k=1

dke
−αsk + eβθ2

+∞∑
k=1

µke
−βsk

)
+
Mφ

λνφ
+
Mr

λνr

]
.

�
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4.2. Practical asymptotic stability of cascade impulsive systems

In this part, we establish sufficient conditions for uniform practical asymptotic stability
of cascade impulsive systems. Let us consider the following cascade impulsive system:

ẋ1 = f(t, x1) + g(t, x), t 6= τk, k = 1, 2, . . .
ẋ2 = h(t, x2), t 6= τk, k = 1, 2, . . .
4x1 = Ik(x1) + Jk(x1, x2), t = τk, k = 1, 2, . . .
4x2 = Lk(x2), t = τk, k = 1, 2, . . .

x1(t+0 ) = x0, x2(t+0 ) = x20

(11)

where x1 ∈ Rn, x2 ∈ Rm, x := col(x1, x2), and f : R+ × Rn → Rn, h : R+ × Rm → Rm,
g : R+×Rn+m → Rn are three continuous functions in each domains Gnk , Gmk and Gn+mk

respectively such that for any k ∈ N∗ there exist the finite limits

lim
t→τ−k

f(t, x1) = f(τk, x1), lim
t→τ+

k

f(t, x1) = f(τ+k , x1), ∀x1 ∈ Rn,

lim
t→τ−k

g(t, x) = g(τk, x), lim
t→τ+

k

g(t, x) = g(τ+k , x), ∀x ∈ Rn+m,

and

lim
t→τ−k

h(t, x2) = h(τk, x2), lim
t→τ+

k

h(t, x2) = h(τ+k , x2), ∀x2 ∈ Rm.

Denoted by x0 := col(x10, x20) and x(., t0, x0) = (x1(., t0, x0), x2(., t0, x20)) the solu-
tion of the system (11) starting from x0 at t = t0, i. e. x(t0, t0, x0) = (x10, x20).

Consider now the following two subsystems:

ẋ1 = f(t, x1), t 6= τk, k = 1, 2, . . .
4x1 = Ik(x1), t = τk, k = 1, 2, . . .

x1(t+0 ) = x10,
(12)

and
ẋ2 = h(t, x2), t 6= τk, k = 1, 2, . . .
4x2 = Lk(x2), t = τk, k = 1, 2, . . .

x2(t+0 ) = x20.
(13)

These two subsystems satisfy conditions (a), (b) and (c). In addition, suppose the fol-
lowing hypotheses hold:

(H3): Systems (12) and (13) are assumed to be U.P.A.S and the interconnection term
g(t, x, y) satisfies

‖g(t, x, y)‖ ≤ ψ(t), ∀ t ≥ 0, (x, y) ∈ Rn × Rm,

with ψ ∈ A.
(H4): Functions Ik(.) and Jk(.) satisfy

i) ∀ k ∈ N∗, ∀x, y ∈ Rn, ‖Ik(x)− Ik(y)‖ ≤Mk‖x− y‖, such that
∑
k≥1Mk converges.
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ii) For all k ≥ 1 and (x, y) ∈ Rn × Rm ‖Jk(x, y)‖ ≤ δk and there exist δ > 0, such that∑+∞
k=1 δke

−δsk < +∞.

In the following Theorem, we establish the practical uniform asymptotic stability of
cascade system (11) under the above hypotheses.

Theorem 4.2. Suppose that assumptions (H3) and (H4) hold. Then, the cascade
impulsive system (11) is uniformly practically asymptotically stable.

P r o o f . By assumption (H3) there exists a Lyapunov function V (t, x) which satisfies
Theorem 3.2 and by using the fact that

∑
k≥1Mk converges, then as in the proof of

Theorem 4.1, we obtain

|V (t, x)− V (t, y)| ≤ l‖x− y‖, x, y ∈ Rn, t ≥ 0

for some l > 0.
For t 6= τk, we have

D+V(11)(t, x1) = lim sup
h→0+

1

h

[
V
(
t+ h, x1 + h(f(t, x1) + g(t, x)

)
− V (t, x1)

]
,

≤ lim sup
h→0+

1

h

[
V
(
t+ h, x1 + h(f(t, x1) + g(t, x))

)
− V

(
t+ h, x1 + hf(t, x1)

)]
+ lim sup

h→0+

1

h

[
V
(
t+ h, x1 + hf(t, x1)

)
− V (t, x1)

]
,

≤ D+V(12)(t, x1) + l‖g(t, x)‖,
≤ D+V(12)(t, x1) + lψ(t).

Then, we obtain the following inequality,

D+V(11)(t, x1) ≤ −λV (t, x1) + r(t) + lψ(t) ≤ −λV (t, x1) + `(r(t) + ψ(t)) (14)

with ` = max(1, l).
If t = τk, we get

V (τ+k , x1(τ+k )) = V
(
τ+k , x1(τk) + Ik(x1(τk)) + Jk(x1(τk), x2(τk))

)
,

≤ V
(
τ+k , x1(τk) + Ik(x1(τk)) + Jk(x1(τk), x2(τk)))

)
− V

(
τ+k , x1(τk) + Ik(x1(τk))

)
+ V

(
τ+k , x1(τk) + Ik(x1(τk))

)
,

≤ V
(
τ+k , x1(τk) + Ik(x1(τk))

)
+ l‖Jk(x1(τk), x2(τk))‖,

≤ V
(
τ+k , x1(τk) + Ik(x1(τk))

)
+ lδk.

It follows that,
V (τ+k , x1(τ+k )) ≤ ckV (τk, x1(τk)) + lδk + dk,

≤ ckV (τk, x1(τk)) + `(δk + dk).
(15)
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So, by using the inequalities (14) and (15), we conclude that the Lyapunov function
V (t, x1) verifies the conditions of Theorem 3.1. Then, the solution x1(t, t0, x0) of the
cascade system (11) satisfies, for all x0 ∈ Bnr ,

‖x1(t, t0, x0)‖ ≤ ρ+ β(‖x0‖, t− t0)

with,

β(r, s) = α−11

(
2Pα2(r)e−λs

)
and ρ = α−11 (2M),

where,

M = `P
[a
`

+ (1 + e−λθ1)
(
eαθ2

+∞∑
k=1

dke
−αsk + eδθ2

+∞∑
k=1

δke
−δsk

)
+
Mψ

λνψ
+
Mr

λνr

]
.

Thus, we achieve the proof of Theorem 4.2. �

5. NUMERICAL EXAMPLES

In this section we give some examples to illustrate the main result. Our first example
shows the applicability of Theorem 4.1 for a simple class of perturbed systems. The sec-
ond and third examples illustrate the uniform practical asymptotic stability of a cascade
impulsive system.

Example 5.1. Impulsive neural network system
Consider the perturbed impulsive neural network system:

ẋ = f(t, x) + g(t, x), t 6= τk, k = 1, 2, . . .
∆x = Ik(x) + Jk(x), t = τk, k = 1, 2, . . .
x(t+0 ) = x0,

(16)

where, x = [x1, x2]T ∈ R2 and x0 ∈ R2

f(t, x) =

[
f1(t, x)
f2(t, x)

]
=

 −2x1 + tanh(x1) + tanh(x2)− 4π sin3(t) cos(t)

−52x2 − 100 tanh(x1) + 2 tanh(x2)− cos(t) sin3(t)


and the perturbation term g(t, x) is given by

g(t, x) =

[
g1(t, x)
g2(t, x)

]
=

 1 + π
13 exp(−πx21 − 2πx22)ρ(t)

− π
27 − 2π exp(−3t) exp(−x21 − x22)ρ(t)


for all t ≥ 0 and x ∈ R2.

The impulsive jumps ∆(x) = ∆(x1, x2)T are characterized by:

∆(x1, x2)T = Ik(x1, x2) + Jk(x1, x2),

where
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Ik(x1, x2) =
[
π3 (−1)k

3k
x1, 2π(−1)k+1 cos(k) exp(−k2)x2

]T
and

Jk(x1, x2) =
[
2π

cos(k)

k2
,−π sin(k)

2k
]T

such that ρ is the integrable unbounded function given by

ρ(t) =


0, t ∈ [0, 2− 2

8 ]
n4t+ n− n5, t ∈ [n− 1

n3 , n], n ≥ 2
−n4t+ n+ n5, t ∈ [n, n+ 1

n3 ], n ≥ 2
0, t ∈ [n+ 1

n3 , n+ 1− 1
(n+1)3 ].

Now, by choosing V (t, x) = x21 + x22, all assumptions of Theorem 4.1 are satisfied with

λ = 1, a = 0, r(t) = 103+2(1+2π)2 and ck = 1+
π3

3k
(2+

π3

3k
)+4πe−k

2

(1+πe−k
2

), k ≥ 1.

It follows that, the nominal system of (16)

ẋ = f(t, x), t 6= τk, k = 1, 2, . . .
∆x = Ik(x), t = τk, k = 1, 2, . . .
x(t+0 ) = x0,

(17)

is U.P.A.S. Moreover, by using the fact that perturbation term g(t, x) = [g1(t, x), g2(t, x)]T

satisfies (10) with φ(t) =
√

2 + 2π2

272 + 4ρ2(t) and the assumption (H2) is satisfied with

Mk = π3

3k
+ 2πe−k

2

and µk =
√

4π2

k4 + π2

4k
. Then, all conditions of Theorem 4.1 are

satisfied and we can conclude the U.P.A.S of perturbed system (16). For the simulation,
we select x0 = (−4.4, 10.4) as an initial condition. Then we obtain the following result:
The convergence dynamics of the network system (16) with impulses are shown in figure
1. The figure 1 shows the evolution of the solution of the nominal system (17) and the
perturbed impulsive system (16) over time.
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Fig. 1. Trajectories of systems (16) and (17) with impulses.
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Example 5.2. Application in robot control: Impulsive Mechanical Systems.
Consider the Lagrangian formulation of the dynamics of an n−degree-of-freedom me-
chanical system

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = B(θ)τ, (18)

where θ ∈ Rn is the vector of generalized coordinates, D(θ) is the inertia matrix, C(θ, θ̇)
is the matrix of Coriolis and centrifugal terms, G(θ) is the gradient of the potential
energy field, τ ∈ Rm, (m < n) is the input generalized force and B(θ) ∈ Rn×m has
full rank for all θ, describes the effects of actuators on the generalized coordinates. We
partition the vector θ ∈ Rn of generalized coordinates as θT = [θT1 , θ

T
2 ], where θ1 ∈ Rn−m

represents the unactuated (passive) joints and θ2 ∈ Rm represents the actuated (active)
joints. The Euler-Lagrange equation of motion of such a system are then given by [26]

M11(θ)θ̈1 +M12(θ)θ̈2 + h1(θ1, θ̇1, θ2, θ̇2) + φ1(θ1, θ2) = 0 (19)

M12(θ)θ̈1 +M22(θ)θ̈2 + h2(θ1, θ̇1, θ2, θ̇2) + φ2(θ1, θ2) = Λ(θ1, θ2)τ (20)

where hi includes Coriolis and centrifugal terms and φi contains the terms derived from
the potential energy, such as gravitational and elastic generalized forces. The m × m
matrix Λ(θ1, θ2) is assumed to be invertible.

An interesting property that holds for the entire class of underactuated mechanical
system is the so-called collocated partial feedback linearization property [27], which is
a consequence of positive definiteness of the inertia matrix. The advantage of the collo-
cated partial feedback linearization is both a conceptual and a structural simplification
of the control problem. We can write the system (19) – (20) under consideration after
the stage collocated partial feedback linearization, as

η̇ = ϕ(t, η, x, u) := w(t, η) + h(t, η, x) + g(t, η, x)u, (21)

ẋ = Ax+Bu, (22)

with suitable definitions of all quantities, such that h(t, η, 0) = 0 and u is a new control
input to be determined. The pair (A,B) is controllable since the linear system is a set
of m double integrator and the expression

η̇ = w(t, η) (23)

represents the zero dynamics [14].
The Lagrangian formulation of the dynamics of an n-degree-of-freedom mechanical

system can now be expressed as a system with impulse effects [25](e. g., for a walking
robot, states at which the foot of the swing leg hits the ground, and a new step begins).
Assuming that the system trajectories possess finite left and right limits, the model is
then in cascade form.

The practical stability is very useful for designing practical controllers because in
many cases, control a system to an idealized point is either expensive or impossible
because of the finite measuring accuracy of sensors and actuators. We move away from
the paradigm of asymptotic stabilization. Instead, we focus on practical stabilization.
More specifically, we consider the following practical stabilization problem. Find a
smooth function u : R × Rn → Rn, (t, x) 7→ u(t, x), such that, the system (21) – (22) is
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U.P.A.S. If the control term u is chosen to be a function only of x ant t, for example,
u(t, x) = −Kx + v(t), with ‖v‖ ∈ A, then the system (21) – (22) will be in a cascade
impulsive form

η̇ = w(t, η) + g(t, η, x), t 6= τk, k = 1, 2, . . . ,
ẋ = Ax+Bv(t), t 6= τk, k = 1, 2, . . . ,

∆(η) = Ik(η) + Jk(η, x), t = τk, k = 1, 2, . . . ,
∆(x) = Lk(x), t = τk, k = 1, 2, . . . ,
η(t+0 ) = η0, x(t+0 ) = x0,

(24)

with A := A−BK is a Hurwitz matrix and g(t, η, x) := h(t, η, x) + g(t, η, x)(v(t)−Kx).
Let us consider the following subsystems

η̇ = w(t, η), t 6= τk, k = 1, 2, . . . ,
∆(η) = Ik(η), t = τk, k = 1, 2, . . . ,
η(t+0 ) = η0,

(25)

and
ẋ = Ax+Bv(t), t 6= τk, k = 1, 2, . . . ,

∆(x) = Lk(x), t = τk, k = 1, 2, . . . ,
x(t+0 ) = x0.

(26)

Let us assume that

1. Systems (25) and (26) are assumed to be U.P.A.S,

2. ‖g(t, η, x)‖ ≤ χ(t)
‖v‖+‖K‖‖x‖ where χ ∈ A,

3. ‖h(t, η, x)‖ ≤ ψ(t) such that ψ ∈ A,

4. ‖Ik(η1)− Ik(η2)‖ ≤Mk‖η1 − η2‖, such that
∑
k≥1Mk converges,

5. ‖Jk(η, x)‖ ≤ δk and there exists a constant δ > 0, such that
∑
k≥1 δke

−δsk con-
verges.

Then all conditions of Theorem 4.2 are satisfied and cascade system (24) is U.P.A.S.
The planar compass-gait biped of Figure 2 is one of the classic examples and yet it still
holds some interesting challenges from the standpoint of global nonlinear control. Refer-
ring to Figure 2, the single-support phase dynamics are represented by the continuous
2nd-order differential equation

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ, θ = (θs, θns)
T ∈ D ⊂ R2, (27)

where the matrices D, C and G are given symbolically by

D(θ) =

[
`2

4 (5m+ 4mh) − `
2m
2 cos(θs − θns)

− `
2m
2 cos(θs − θns) `2m

4

]
,

C(θ, θ̇) =
`2m

2

[
0 −θ̇ns sin(θs − θns)

θ̇ns sin(θs − θns) 0

]
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and G(θ) =

[
−g`(3m+ 2mh) sin(θs)

2

g`(m) sin(θns)
2

]
. The continuous-time single-support phase is

defined by constraint h(θ) ≥ 0, where scalar

h(θ) = `
(
(cos(θs)− cos(θns)) + (sin(θs)− sin(θns)) tan(γ)

)
gives the height of the swing foot above ground with slope angle γ. The instantaneous
impact event from foot-ground strike is indicated by the guard condition/switching sur-
face

G = {(θ, θ̇)|h(θ) = 0, ḣ = (∇θh)θ̇ < 0}.

We model these impulsive events as perfectly plastic (inelastic) collisions, so any so-
lution trajectory x(t) = (θ(t), θ̇(t)) intersecting the ground plane is subjected to the
discontinuous impact map ∆ : G −→ TQ. Thus, we have the impulsive dynamical
system

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ, (θ, θ̇) /∈ G, t /∈ T , (28)

(θ+, θ̇+) = ∆(θ−, θ̇−), (θ, θ̇) ∈ G, t ∈ T , (29)

where T ⊂]0,+∞[. The − and the + signs denote the state variables, respectively,
before and after the collision. For brevity we defer the details regarding map ∆. In the
literature, the resetting set T ×G is defined in terms of a countable number of functions
τk : D −→]0,+∞[, and is given by

T × G =
⋃
k∈N∗

{
(τk(θ), θ), θ ∈ D

}
.

The time-dependent impulsive dynamical systems can be written as (28) and (29) with
T ×G defined as T ×G , {τ1, τ2, . . .}×D where 0 ≤ τ1 < τ1 < · · · < τk < are prescribed
resetting times.

Now, (28) and (29) can be rewritten in the form of the time-dependent impulsive
dynamical system

D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ, t 6= τk, k ∈ N∗, (30)

(θ+, θ̇+) = ∆(θ−, θ̇−), t = τk, k ∈ N∗. (31)

Fig. 2. Model diagram for the planar compass-gait biped.
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Next, we give another example of cascade impulsive system, in three dimension with
a simulation.

Example 5.3. Consider the cascade impulsive system having the following form:

ẋ = f(t, x) + g(t, x, y), t 6= τk, k = 1, 2, . . .
ẏ = h(t, y), t 6= τk, k = 1, 2 . . .
4x = Ik(x) + Jk(x, y), t = τk, k = 1, 2 . . .
4y = Lk(y), t = τk, k = 1, 2 . . .

x(t+0 ) = x0, y(t+0 ) = y0

(32)

where x = [x1, x2]T ∈ R2 and y ∈ R. The functions f , h are given by

f(t, x) =

 f1(t, x)

f2(t, x)

 =

 −a1x1 + α1(x1) + x1α2(x2)− 50π2 sin(t)

t
−a2x2 + x2β1(x1) + β2(x2)− 20π3 cos(t)

1+t

 (33)

and

h(t, y) = −a3y + Ψ(y)− 5π
cos3(t)

1 + t
+ 1 (34)

such that

• ai > 1
2 , for i = 1, 2, 3.

• For all s ∈ R, we have s(2Ψ(s) − 1) ≤ 0, sα1(s) ≤ 0, sβ2(s) ≤ 0, α2(s) ≤ 0 and
β1(s) ≤ 0.

The interconnection term g(t, x, y) is described by

g(t, x, y) =

 g1(t, x, y)

g2(t, x, y)

 =

 105ρ(t)
1
3x2e

−x2
2−y

2 − ρ(t)x1
1 + ‖x‖2

−102ρ(t)
1
3x1e

−2x2
1−4x

2
2−y

2 − πρ(t)x2
2 + ‖x‖2

 ,
where ρ(t) is the integrable unbounded function defined in Example 5.1.
The impulsive jumps are characterized by

∆(x) = ∆(x1, x2) = Ik(x) + Jk(x, y),

∆y = −cos2(k)

k2
y

1 + y2
,

where Ik(x) = − 2
(kπ)k

[x1, x2]T and Jk(x, y) = −π cos2(k)
k3

1
(1+x4

1+x
4
2+y

4))
[x1, x2]T .

Using V (t, x) = x21 + x22 and W (t, y) = y2 as Lyapunov functions for the isolated
sub-systems (12) and (13), with f and h are given by (33) and (34) respectively, we
can show by Theorem 3.1 that they are U.P.A.S. Moreover, the interconnection term
g(t, x, y) satisfies (H3) with

ψ(t) = 102e−
1
2

√
1 + 106ρ(t)

1
3 +

√
2(π2 + 1)ρ(t),
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and the assumption (H4) is satisfied with

Mk =
2

(πk)k
, µk =

cos2(k)

k3
, ∀ k ∈ N∗.

Finally we can deduce that all assumptions of Theorem 4.2 are satisfied. Then the
cascade system (32) is U.P.A.S. The convergence dynamics of the impulsive cascade
system (32) is shown in Figure 3.

For simulation, we take, Ψ(s) = −s5 + 1
2 , α1(s) = β2(s) = −s3, α2(s) = β1(s) = −s4,

a1 = a2 = a3 = 1 and (x1(0), x2(0), x3(0)) = (−4.4, 2.4, π), we obtain the dynamics
presented in Figures 3 and 4.
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Fig. 3. Trajectories of cascade system (32).
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Fig. 4. Boundedness of solution of cascade system (32).

6. CONCLUSION

In this paper, we have established some sufficient conditions for uniform practical asymp-
totic stability of nonlinear impulsive systems using Lyapunov function. We have proved
a converse Lyapunov Theorem for uniform practical asymptotic stability of nonlinear
impulsive systems, which states that an U.P.A.S. nonlinear impulsive system admits
a Lyapunov function satisfying all mentioned sufficient conditions. Some applications of
our converse Lyapunov Theorem for uniform practical asymptotic stability of perturbed
impulsive systems and cascade impulsive systems are given. Furthermore, a numerical
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examples have been shown, to verify our theoretical results and their effectiveness. Also,
Some simulation results are given to illustrate the applicability of our results.
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Appendix

A. PROOF OF THEOREM 3.3

The proof of Theorem 3.2 is inspired by our recent work [9] and it is divided into five stages.
Assume that the impulsive system (1) is U.P.A.S. Then, there exist a class KL function
β(·, ·) and a positive constant ρ such that, for all initial condition (t, x) ∈ R+ × Rn, we have
‖x(s, t, x)‖ ≤ ρ+ β(‖x‖, s− t), for all s ≥ t ≥ 0 and x ∈ Bnr .

1. First step: First, it is not difficult to establish that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) + a,

where α1(s) = ϕ(s), α2(s) = 1
2
ϕ2
(
2β(s, 0))

)
and a = 1

2
supt≥0 θ

2(t) +ϕ(2ρ) supt≥0 θ(t) ∈
R+. Then, the property 1 of Theorem 3.2 is proved. Notice that for all t ∈ R+\{τk, k ∈
N∗} and x ∈ Bnr , we have

0 ≤ ϕ
(
‖x(t+ s, t, x)‖

)1 + θ(t)s

1 + s
≤ ϕ(ρ+ β(r, 0))θ(t) ∈ B(R+).

Then, there exists T > 0 such that for t 6= τk and x ∈ Bnr

V (t, x) = sup
0≤s≤T

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + θ(t)s

1 + s

}
.

2. Second step: Let x1 = x(t+ h, t, x), it follows that for all x ∈ Bnr and t 6= τk, we have

V (t+ h, x1) = sup
s≥0

{
ϕ
(
‖x(t+ h+ s, t+ h, x1)‖)1 + θ(t+ h)s

1 + s

}
,

= sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + (τ − h)θ(t+ h)

1 + τ − h

}
,

=
1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + hθ(t)

1 + h

1 + (τ − h)θ(t+ h)

1 + τ − h

}
,

≤ 1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + hθ(t)

1 + h

1 + θ(t+ h)τ

1 + τ

}
,

=
1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + hθ(t)

1 + h

[1 + θ(t)τ

1 + τ

+
(θ(t+ h)− θ(t))τ

1 + τ

]}
,

≤ 1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + hθ(t)

1 + h

[1 + θ(t)τ

1 + τ

+ (θ(t+ h)− θ(t))
]}
,

≤ 1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)[1 + θ(t)τ

1 + τ
+
hθ(t)

1 + h

1 + θ(t)τ

1 + τ

+
1 + hθ(t)

1 + h
(θ(t+ h)− θ(t))

]}
,

≤ 1 + h

1 + hθ(t)
sup
τ≥h

{
ϕ
(
‖x(t+ τ, t, x)‖

)[1 + θ(t)τ

1 + τ
+ hθ2(t)

+
1 + hθ(t)

1 + h
(θ(t+ h)− θ(t))

]}
,

≤ 1 + h

1 + hθ(t)
V (t, x) + Cr,ρ

(h(1 + h)θ2(t)

1 + hθ(t)
+ θ(t+ h)− θ(t)

)
,
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with Cr,ρ = ϕ(2ρ) + ϕ(2β(r, 0)).

Therefore,

D+V (t, x) = lim sup
h→0+

V
(
t+ h, x(t+ h, t, x)

)
− V (t, x)

h

≤ lim
h→0+

[ 1

h

( 1 + h

1 + hθ(t)
− 1
)
V (t, x)

+
( (1 + h)θ2(t)

1 + hθ(t)
+
θ(t+ h)− θ(t)

h

)(
ϕ(2ρ) + ϕ(2β(r, 0))

)]
= −(θ(t)− 1)V (t, x) + Cr,ρ

(
θ′(t) + θ2(t)

)
.

It follows that,
D+V (t, x) ≤ −λV (t, x) + r(t),

with,

λ = inf
t≥0
{θ(t)} − 1 > 0 and r(t) = Cr,ρ

(
θ′(t) + θ2(t)

)
∈ A.

Which proves property 2.

3. Third step: Let x, y ∈ Bnr and 0 < τ ≤ T . By using Lemma 2.7, we obtain the following
estimation

‖x(t+ τ, t, x)− x(t+ τ, t, y)‖ ≤ ‖x− y‖eτLρ
∏

t<τk<t+τ

(1 +Mk).

It follows that, if t 6= τk, k ∈ N∗

|V (t, x)− V (t, y)| =
∣∣∣ sup
0≤s≤T

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + sθ(t)

1 + s

}
− sup

0≤s≤T

{
ϕ
(
‖x(t+ s, t, y)‖

)1 + sθ(t)

1 + s

}∣∣∣,
≤ sup

0≤s≤T

{∣∣∣ϕ(‖x(t+ s, t, x)‖
)
− ϕ

(
‖x(t+ s, t, y)‖

)∣∣∣1 + sθ(t)

1 + s

}
,

≤ sup
z∈[0,r+β(ρ,0)]

|ϕ′(z)| sup
0≤s≤T

{∣∣∣‖x(t+ s, t, x)‖ − ‖x(t+ s, t, y)‖
∣∣∣1 + sθ(t)

1 + s

}
,

≤ sup
z∈[0,r+β(ρ,0)]

|ϕ′(z)| sup
0≤s≤T

{
eLρs

1 + sθ(t)

1 + s

∏
t<τk<t+s

(1 +Mk)
}
‖x− y‖,

:= L(t)‖x− y‖,

where,

L(t) = sup
z∈[0,r+β(ρ,0)]

|ϕ′(z)| sup
0≤s≤T

{
eLρs

1 + sθ(t)

1 + s

∏
t<τk<t+s

(1 +Mk)
}
,

≤ eLρT θ(t) sup
z∈[0,r+β(ρ,0)]

|ϕ′(z)|
∏

t<τk<t+T

(1 +Mk), t ≥ 0.
(35)

Thus, property 3 is proved for t 6= τk.
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4. Fourth step: Let η(t, t0, x0) be the solution of the impulsive system (1) starting from
x0 at t = t0. Since for τk−1 < λ < τk < µ < τk+1, and s > µ the relation

x(s, µ, η(µ, τk, x+ Ik(x))) = x(s, λ, η(λ, τk, x))

holds, then
V (µ, η(µ, τk, x+ Ik(x))) ≤ V (λ, η(λ, τk, x)).

Passing to the limit as µ→ τ+k and λ→ τ−k , we obtain

V (τ+k , x(τ+k )) ≤ V (τk, x(τk)) ≤ (1 + uk)V (τk, x(τk)) + dk,

where (uk)k≥1, (dk)k≥1 are any positive sequences such that

•
∑
k≥1 uk converges

•
∑
k≥1 dke

−αsk converges for some α > 0 with sk = τk+1 − τk, k ∈ N∗.

Let us consider the numerical sequence (γk)k≥1 defined by, for all k ∈ N∗, γk = dke
−αsk ,

α > 0. Note that
∑
k≥1 γk converges. Which proves property 4.

5. Fifth step: Now, let τk ∈ R+ and x ∈ Bnr be fixed and ti ∈]τk, τk+1[, xi ∈ Bnr and
ui = x(ti, τk, x) for i = 1, 2. Then, using [9], we get∣∣∣V (ti, xi)− V (ti, ui)

∣∣∣ ≤ L(ti)‖xi − x‖+ L(ti)N(ti)(f0 + Lρ‖x‖), i = 1, 2,

where

N(ti) = ti − τk + Lρ

∫ ti

τk

(s− τk)eLρ(ti−s) ds, ti ∈]τk, τk+1[.

Moreover, it is easy to show that

lim
ti→τ

+
k

L(ti) = L(τ+k ), lim
ti→τ

+
k

N(ti) = 0.

Denote

at(δ) = sup
s≥δ

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + sθ(t)

1 + s

}
.

The function at(δ) is non-increasing for δ ≥ 0 and limδ→0+ at(δ) = at(0) since

ϕ
(
‖x(t + s, t, x)‖

)
1+sθ(t)

1+s
is a bounded and piecewise continuous function for s ≥ 0 and

is continuous in some neighborhood of s = 0. Then, we obtain∣∣∣V (t1, u1)− V (t2, u2)
∣∣∣ =

∣∣∣ sup
s≥0

{
ϕ
(
‖x(t1 + s, t1, u1)‖

)1 + sθ(t1)

1 + s

}
− sup
s≥0

{
ϕ
(
‖x(t2 + s, t2, u2)‖

)1 + sθ(t2)

1 + s

}∣∣∣,
=
∣∣∣ sup
τ≥t1−τk

{
ϕ
(
‖x(τk + τ, t1, x(t1, τk, x))‖

)1 + θ(t1)(τk + τ − t1)

1 + τk + τ − t1

}
− sup
τ≥t2−τk

{
ϕ
(
‖x(τk + τ, t2, x(t2, τk, x))‖

)1 + θ(t2)(τk + τ − t2)

1 + τk + τ − t2

}∣∣∣,
=
∣∣∣ sup
τ≥t1−τk

{
ϕ
(
‖x(τk + τ, τk, x)‖

)1 + θ(t1)(τk + τ − t1)

1 + τk + τ − t1

}
− sup
τ≥t2−τk

{
ϕ
(
‖x(τk + τ, τk, x))‖

)1 + θ(t2)(τk + τ − t2)

1 + τk + τ − t2

}∣∣∣,
≤
∣∣∣aτk (t1 − τk)− aτk (t2 − τk)

∣∣∣+ I(t1, t1 − τk) + I(t2, t2 − τk) −→ 0,
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as ti → τ+k , i = 1, 2, where

I(t1, t1 − τk) = sup
τ≥t1−τk

{
ϕ
(
‖x(τk + τ, τk, x)‖

)}(
θ(t1)− θ(τk) + (t1 − τk)(θ(t1)− 1)

)
and

I(t2, t2 − τk) = sup
τ≥t2−τk

{
ϕ
(
‖x(τk + τ, τk, x)‖

)}(
θ(t2)− θ(τk) + (t2 − τk)(θ(t2)− 1)

)
.

Thus, we obtain the following inequality∣∣∣V (τ+k , x1)− V (τ+k , x2)
∣∣∣ ≤ L(τ+k )

(
‖x1 − x‖+ ‖x2 − x‖

)
.

The last inequality is satisfied for all x1, x2 ∈ Bnr , in particular if x2 = x, we get∣∣∣V (τ+k , x1)− V (τ+k , x)
∣∣∣ ≤ L(τ+k )‖x1 − x‖.

It follows that, the mapping x 7→ V (τ+k , x) is continuous on the compact set Bnr . Then,
we conclude that V (τ+k , x) exists and the prove of property 1 is finished.

To prove the continuity of the function V (t, x), let x, x1 ∈ Bnr , τk−1 < t < τk and δ > 0
be such that t+ δ < τk. Then

|V (t+ δ, x1)− V (t, x)| ≤ |V (t+ δ, x1)− V (t+ δ, x)|+ |V (t+ δ, x)− V (t+ δ, x(t+ δ, t, x)|
+ |V (t+ δ, x(t+ δ, t, x)− V (t, x)|.

(36)
Property 3 implies the estimation

|V (t+ δ, x1)− V (t+ δ, x)| ≤ L(t+ δ)‖x1 − x‖,

and
|V (t+ δ, x)− V (t+ δ, x(t+ δ, t, x)| ≤ L(t+ δ)‖x− x(t+ δ, t, x)‖.

Since, for t 6= τk, limδ→0 L(t+ δ) = L(t) and limδ→0 ‖x−x(t+ δ, t, x)‖ = 0, then the first
two terms in the right-hand side of estimate (36) are small if ‖x − x1‖ and δ are small.
For the third term in (36), we proceed as follows

0 ≤ |V (t+ δ, x(t+ δ, t, x)− V (t, x)|,

= | sup
s≥0

{
ϕ
(
‖x(t+ δ + s, t+ δ, x(t+ δ, t, x))‖

)1 + sθ(t+ δ)

1 + s

}
− sup
s≥0

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + sθ(t)

1 + s

}∣∣∣,
=
∣∣∣ sup
τ≥δ

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + θ(t+ δ)(τ − δ)
1 + τ − δ

}
− sup
s≥0

{
ϕ
(
‖x(t+ s, t, x)‖

)1 + sθ(t)

1 + s

}∣∣∣,
≤ |at(δ)− at(0)|+

∣∣∣at(δ)− sup
τ≥δ

{
ϕ
(
‖x(t+ τ, t, x)‖

)1 + θ(t+ δ)(τ − δ)
1 + τ − δ

}∣∣∣,
≤ |at(δ)− at(0)|+ sup

τ≥δ

{
ϕ
(
‖x(t+ τ, t, x)‖

)∣∣∣1 + τθ(t)

1 + τ
− 1 + θ(t+ δ)(τ − δ)

1 + τ − δ

∣∣∣},
≤ |at(δ)− at(0)|+

(
θ(t+ δ)− θ(t) + δθ(t+ δ)

)
sup
τ≥δ

{
ϕ
(
‖x(t+ τ, t, x)‖

)}
−→ 0
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as δ −→ 0. Hence, V (t, x) is continuous for x ∈ Bnr and t 6= τk. The last two inequalities
lead to the following estimation,∣∣∣V (ti, xi)− V (ti, ui)

∣∣∣ ≤ L(ti)‖xi − x‖+ L(ti)N(ti)(f0 + Lρ‖x‖), i = 1, 2.

Moreover, it is not difficult to show that

lim
ti→τ

+
k

L(ti) = L(τ+k ), lim
ti→τ

+
k

N(ti) = 0,

for i = 1, 2 and we have the following inequality∣∣∣V (τ+k , x1)− V (τ+k , x2)
∣∣∣ ≤ L(τ+k )

(
‖x1 − x‖+ ‖x2 − x‖

)
.

The last inequality is satisfied for all x1, x2 ∈ Bnr , in particular if x2 = x, we obtain∣∣∣V (τ+k , x1)− V (τ+k , x)
∣∣∣ ≤ L(τ+k )‖x1 − x‖.

It follows that, the mapping x 7→ V (τ+k , x) is continuous on the compact set Bnr . Then,
we conclude that V (τ+k , x) exists. Similarly, the existence of the limit V (τ−k , x) can be
proved and since the equality V (τ−k , x) = V (τk, x) holds by definition, then V (t, x) ∈ V2.
This finishes the proof of Theorem 3.2.
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