
Czechoslovak Mathematical Journal

Mehri Nasehi; Mansour Aghasi
On the geometry of some solvable extensions of the Heisenberg group

Czechoslovak Mathematical Journal, Vol. 68 (2018), No. 3, 723–740

Persistent URL: http://dml.cz/dmlcz/147364

Terms of use:
© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147364
http://dml.cz


Czechoslovak Mathematical Journal, 68 (143) (2018), 723–740

ON THE GEOMETRY OF SOME SOLVABLE EXTENSIONS

OF THE HEISENBERG GROUP

Mehri Nasehi, Mansour Aghasi, Isfahan

Received December 14, 2016. Published online March 2, 2018.

Abstract. In this paper we first classify left-invariant generalized Ricci solitons on some
solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then
we obtain the exact form of all left-invariant unit time-like vector fields which are spatially
harmonic. We also calculate the energy of an arbitrary left-invariant vector field X on
these spaces and obtain all vector fields which are critical points for the energy functional
restricted to vector fields of the same length. Furthermore, we determine all homogeneous
Lorentzian structures and their types on these spaces and give a complete and explicit
description of all parallel and totally geodesic hypersurfaces of these spaces. The non-
existence of harmonic maps in the non-abelian case is proved and it is shown that the
existence of Einstein, Einstein-like metrics and some equations in the Riemannian case can
not be extended to their Lorentzian analogues.

Keywords: generalized Ricci soliton; harmonicity of vector field; homogeneous Lorentzian
structure; parallel hypersurfaces
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1. Introduction

Heisenberg groups play an important role in geometric analysis, physics and

quantum mechanics. Among Heisenberg groups, the three-dimensional Heisenberg

group H3 has attracted a special attention of geometers. For example, in the Rie-

mannian case we refer to [19], [4] and in the Lorentzian case we refer to [17], [3].

Also recently the existence of major differences on the three-dimensional Heisenberg

group in Riemannian and Lorentzian cases has been shown in [18]. These differences

motivate us to obtain a comparison between Riemannian results and their Lorentz-

ian analogues on some solvable extensions of the Heisenberg group, developing our

understanding of which properties are strictly related to the metric signature and

which ones are more general. We prove that among five geometric properties, i.e.,
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parallel and totally geodesic hypersurfaces, harmonicity of invariant vector fields,

left-invariant generalized Ricci solitons, Einstein-like metrics and homogeneous Lo-

rentzian structures, which we shall investigate on these spaces, four of them have

different behaviours in Riemannian and Lorentzian cases. Moreover, we show that

the existence of Einstein, Einstein-like metrics, the special Einstein-Weyl equation

(E-W) and the vacuum near-horizon geometry equation (VN-H) on these spaces in

the Riemannian case cannot be extended to the Lorentzian case.

The structure of the paper is as follows. In Section 2 we report Riemannian

curvature properties of some solvable extensions of the Heisenberg group which are

given in [2]. We also obtain the Levi-Civita connection and the Ricci tensor in the

Lorentzian case on these spaces. In Section 3 we classify the left-invariant generalized

Ricci solitons on these spaces in both Riemannian and Lorentzian cases. These

were recently introduced in [16] and left-invariant examples in dimension three were

classified in [7]. We also show that these spaces cannot even admit a nontrivial left-

invariant Ricci soliton, although in the Riemannian case by putting some additional

conditions they are Einstein manifolds. Besides, we investigate Einstein-like metrics

on these spaces and show that the existence of some results in the Riemannian case

cannot extend to their Lorentzian analogues. In Section 4, following the method

developed in [5] and [6], we calculate the energy of an arbitrary left-invariant vector

field X on these spaces and obtain all the vector fields which are critical points for the

energy functional restricted to vector fields of the same length. We also determine all

left-invariant unit time-like vector fields which are spatially harmonic and show that

critical points for the space-like energy are never harmonic maps. In Section 5 we

obtain all of the descriptions of homogeneous Lorentzian structures on these spaces

and determine their types, obtaining the Lorentzian result corresponding to the

classification of Riemannian structures proved in [2]. Totally geodesic and parallel

hypersurfaces of a given manifold enrich our knowledge and understanding of its

geometry (see for example [9]). In Section 6 we obtain the complete classification of

parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and

Lorentzian cases. Throughout this paper we use Maple software for checking the

computations.

2. Curvature of some solvable extensions of the Heisenberg group

In this section, we provide the information needed for the study of the geometry of

some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian

cases.

One-dimensional extensions of the Heisenberg group: These spaces are

four-dimensional and denoted by A4(λ, µ), where λ and µ are positive real numbers.
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In [2], the left-invariant Riemannian metric gλ,µ on A4(λ, µ) is given by

gλ,µ = e−4µx4

{(
e2µx4 +

λ2

4
x2
2

)
dx2

1 +
(
e2µx4 +

λ2

4
x2
1

)
dx2

2 + dx2
3

− λ2

2
x1x2 dx1 dx2 + λ(x2 dx1 dx3 − x1 dx2 dx3)

}
+ dx2

4.

Thus the Lie algebra a4(λ, µ) of the Lie group A4(λ, µ) with respect to the Rieman-

nian metric gλ,µ has an orthonormal basis

e1 = eµx4

(
∂x1

− λ

2
x2∂x3

)
, e2 = eµx4

(
∂x2

+
λ

2
x1∂x3

)
,(2.1)

e3 = e2µx4∂x3
, e4 = ∂x4

.

Considering the above left-invariant vector fields, we can equip these spaces with the

following left-invariant Lorentzian metric:

ĝλ,µ = e−4µx4

{(
e2µx4 +

λ2

4
x2
2

)
dx2

1 +
(
e2µx4 +

λ2

4
x2
1

)
dx2

2 + dx2
3

− λ2

2
x1x2 dx1 dx2 + λ(x2 dx1 dx3 − x1 dx2 dx3)

}
− dx2

4,

where e1, e2, e3 are space-like and e4 is time-like. Also, by using (2.1), the nonzero Lie

brackets are given by [e1, e2] = λe3, [e4, e1] = µe1, [e4, e2] = µe2 and [e4, e3] = 2µe3.

Riemannian case: By [2], the nonzero components of the Levi-Civita connection

are given by

∇e1e1 = ∇e2e2 =
1

2
∇e3e3 = µe4, ∇e1e4 = −µe1,(2.2)

∇e1e2 = −∇e2e1 =
1

2
λe3, ∇e3e2 = ∇e2e3 =

λ

2
e1,

∇e3e1 = ∇e1e3 = −λ

2
e2, ∇e3e4 = −2µe3, ∇e2e4 = −µe2,

and the nonzero components of the Ricci tensor are given by

̺11 = ̺22 = −
(1
2
λ2 + 4µ2

)
, ̺33 =

1

2
λ2 − 8µ2 and ̺44 = −6µ2.

Lorentzian case: Using Koszul’s formula

2〈∇eiej, ek〉 = 〈[ei, ej ], ek〉 − 〈[ej , ek], ei〉+ 〈[ek, ei], ej〉
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for all ei, ej , ek in the Lie algebra a4(λ, µ) of A4(λ, µ), the nonzero components of

the Levi-Civita connection are given by

∇e1e1 = ∇e2e2 =
1

2
∇e3e3 = −µe4, ∇e1e4 = −µe1,(2.3)

∇e1e2 = −∇e2e1 =
1

2
λe3, ∇e3e2 = ∇e2e3 =

1

2
λe1,

∇e3e1 = ∇e1e3 = −1

2
λe2, ∇e3e4 = −2µe3, ∇e2e4 = −µe2.

Also, by using the Ricci tensor formula ̺ij =
4∑

t=1
εtg(R(ei, et)ej , et), where εt =

〈et, et〉 = ±1 and R(ei, ej) = ∇[ei,ej ] − [∇ei ,∇ej ], the nonzero components of the

Ricci tensor are given by ̺11 = ̺22 = −λ2/2+4µ2, ̺33 = 8µ2+λ2/2 and ̺44 = −6µ2.

Two-dimensional extensions of the Heisenberg group. These spaces are

five-dimensional and denoted by A5(λ, µ, ν), where λ, µ, ν ∈ R and λ, µ > 0. In [2],

the left-invariant Riemannian metric gλ,µ,ν on A5(λ, µ, ν) is given by

gλ,µ,ν = e−4µx4

{(
e2µx4 +

λ2

4
x2
2

)
dx2

1 +
(
e2µx4 +

λ2

4
x2
1

)
dx2

2

+ dx2
3 −

λ2

2
x1x2 dx1 dx2 + λ(x2 dx1 dx3 − x1 dx2 dx3)

}

+ dx2
4 + e−2νx4 dx2

5.

Thus the Lie algebra a5(λ, µ, ν) of A5(λ, µ, ν) with respect to the Riemannian met-

ric gλ,µ,ν has an orthonormal basis

e1 = eµx4

(
∂x1

− λ

2
x2∂x3

)
, e2 = eµx4

(
∂x2

+
λ

2
x1∂x3

)
,(2.4)

e3 = eµx4∂x3
, e4 = ∂x4

, e5 = eνx4∂x5
.

Now we can equip these spaces with the following left-invariant Lorentzian metric:

ĝλ,µ,ν = e−4µx4

{(
e2µx4 +

λ2

4
x2
2

)
dx2

1 +
(
e2µx4 +

λ2

4
x2
1

)
dx2

2

+ dx2
3 −

λ2

2
x1x2 dx1 dx2 + λ(x2 dx1 dx3 − x1 dx2 dx3)

}

− dx2
4 + e−2νx4 dx2

5,

where e1, e2, e3, e5 are space-like and e4 is time-like. Also, by using (2.4), the nonzero

brackets are given by [e1, e2] = λe3, [e4, e1] = µe1, [e4, e2] = µe2, [e4, e3] = 2µe3 and

[e4, e5] = νe5.
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Riemannian case: By [2], the nonzero components of the Levi-Civita connection

are given by equations (2.2) and ∇e5e4 = −νe5, ∇e5e5 = νe4. Also, the nonzero

components of the Ricci tensor can be described by ̺11 = ̺22 = −(λ2/2+4µ2+µν),

̺33 = λ2/2− 8µ2 − 2µν, ̺44 = −6µ2 − ν2 and ̺55 = −4µν − ν2.

Lorentzian case: The nonzero components of the Levi-Civita connection are

given by equations (2.3) and ∇e5e4 = −νe5, ∇e5e5 = −νe4. Also, the nonzero

components of the Ricci tensor are given by ̺11 = ̺22 = −λ2/2 + 4µ2 + µν, ̺33 =

8µ2 + λ2/2 + 2µν, ̺44 = −6µ2 − ν2 and ̺55 = 4µν + ν2.

3. Left-invariant generalized Ricci solitons and Einstein-like metrics

on some solvable extensions of the Heisenberg group

As it is introduced in [16], a generalized Ricci soliton is a pseudo-Riemannian

manifold (M, g) admitting a smooth vector field X such that

(3.1) LXg + 2αXb ⊙Xb − 2β̺ = 2δg,

where α, β, δ are real constants, LX is the Lie derivative in the direction of X , X
b

is a 1-form which is defined by Xb(Y ) = g(X,Y ) and ̺ is the Ricci tensor. In the

special case that M = G is a Lie group, g is a left-invariant metric on G and the

equation (3.1) holds with respect to a left-invariant vector field X , we say that (G, g)

is a left-invariant generalized Ricci soliton. Recently, left-invariant generalized Ricci

solitons in two- and three-dimensional Lie groups have been determined, respectively,

in [16] and [7]. These are helpful to obtain the following result.

Theorem 3.1.

(I) Consider the Lie algebra a4(λ, µ) of A4(λ, µ) with respect to the orthonormal

basis {e1, . . . , e4}. Then the nontrivial left-invariant generalized Ricci solitons
on a4(λ, µ) are the following:

β 6= 0, δ = 6βµ2, λ = 2µ, X = 0 for all α,(1)

β 6= 0, α =
3µ2

2β(λ2 − 4µ2)
6= 0, δ =

3

2
βλ2, λ 6= 2µ, X = −β(λ2 − 4µ2)

µ
e4.(2)

(II) Consider the Lie algebra a4(λ, µ) of A4(λ, µ) with respect to the pseudo-

orthonormal basis {e1, . . . , e4}, with e4 time-like. Then the nontrivial left-

invariant generalized Ricci solitons on a4(λ, µ) are the following:

α 6= 0 = β, δ = −µ2

α
, X =

µ

α
(e4 ± e3),(1)

β 6= 0 6= α = − 3µ2

2β(4µ2 + λ2)
, δ =

3

2
βλ2, X = −β(4µ2 + λ2)

µ
e4.(2)
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(III) Consider the Lie algebra a5(λ, µ, ν) of A5(λ, µ, ν) with respect to the orthonor-

mal basis {e1, . . . , e5}. Then the nontrivial left-invariant generalized Ricci soli-
tons on a5(λ, µ, ν) are the following:

α = β = δ = ν = 0, X = k5e5,(1)

β 6= 0, λ =

√
22

2
µ, ν =

3

2
µ, δ =

33

4
βµ2, X = 0 for all α,(2)

β 6= 0 6= α =
3µ2

β(2λ2 − 11µ2)
, ν =

3

2
µ, λ 6=

√
22

2
µ, δ =

3

2
βλ2,(3)

X = −β(λ2 − 11µ2/2)

µ
e4,

0 6= β 6= − 1

2α
, 0 6= α =

6βµ2

k25
, δ = 6βµ2, λ = 2µ, ν = 0, X = k5e5,(4)

0 6= β 6= − 1

2α
,− 1

4α
, δ =

3(20βα+ 44β2α2 + 3)µ2

4(4βα+ 1)α
, ν =

3µ(1 + 2βα)

(4βα+ 1)
,(5)

λ = tδ, t2 =
8α(4αβ + 1)

9(20αβ + 44α2β2 + 3)µ2β
, X =

5∑

i=4

kiei,

k24 =
9(1 + 2βα)2µ2

4(4βα+ 1)2α2
, k25 = −3µ2(20αβ + 44α2β2 + 3)

4α2(4αβ + 1)2
.

(IV) Consider the Lie algebra a5(λ, µ, ν) of A5(λ, µ, ν) with respect to the pseudo-

orthonormal basis {e1, . . . , e5}, with e4 time-like. Then the nontrivial left-

invariant generalized Ricci solitons on a5(λ, µ, ν) are the following:

α = β = δ = ν = 0, X = k5e5,(1)

β 6= 0 6= α = − 3µ2

β(11µ2 + 2λ2)
, ν =

3

2
µ, δ =

3

2
βλ2, X = −β(112 µ2 + λ2)

µ
e4,(2)

α 6= 0 = β, δ = −µ2

α
, ν = µ, X =

µ

α
(e4 ± e3).(3)

P r o o f. Assume that X = k1e1 + . . .+ k5e5 is an arbitrary left-invariant vector

field on A5(λ, µ, ν). Then with respect to the pseudo-Riemannian basis {e1, . . . , e5}
with e4 time-like we have

LX ĝλ,µ,ν =




−2µk4 0 λk2 µk1 0

0 −2µk4 −λk1 µk2 0

λk2 −λk1 −4µk4 2µk3 0

µk1 µk2 2µk3 0 νk5
0 0 0 νk5 −2νk4



.
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Therefore, by equation (3.1), where Xb ⊙Xb(ei, ej) = εiεjkikj we obtain





−2µk4 + 2αk21 − 2β
(
− 1

2
λ2 + 4µ2 + µν

)
= 2δ, 2µk3 − 2αk3k4 = 0,

2αk1k2 = 0, λk2 + 2αk1k3 = 0, µk1 − 2αk1k4 = 0, 2αk1k5 = 0,

−2µk4 + 2αk22 − 2β
(
− 1

2
λ2 + 4µ2 + µν

)
= 2δ, 2αk3k5 = 0,





−λk1 + 2αk2k3 = 0, µk2 − 2αk2k4 = 0, 2αk2k5 = 0, νk5 − 2αk4k5 = 0,

2αk24 − 2β(−6µ2 − ν2) = −2δ, −2νk4 + 2αk25 − 2β(4µν + ν2) = 2δ,

−4µk4 + 2αk23 − 2β
(
8µ2 +

1

2
λ2 + 2µν

)
= 2δ.

Solving the above system of equations we obtain case (IV) of the theorem. The

remaining cases have similar proofs. �

Recall that equation (3.1) has a general form of several important equations. In

fact by considering special values of α, β, δ in equation (3.1) we obtain one of the

following cases: (K) the Killing vector field equation, if α = β = δ = 0; (H) the

homothetic vector field equation, if α = β = 0; (RS) the Ricci soliton equation, if

α = 0 and β = 1; (E-W) a special case of the Einstein-Weyl equation in conformal

geometry, if α = 1 and β = −1/(n− 2), n > 2; (PS) the equation for a metric

projective structure with a skew-symmetric Ricci tensor representative in the pro-

jective class, if α = 1, β = −1/(n− 1) and δ = 0; (VN-H) the vacuum near-horizon

geometry equation of a space-time, if α = 1, β = 1/2 and δ plays the role of the

cosmological constant (see [7], [16]). Thus we obtain the following result.

Theorem 3.2.

(i) The Riemannian Lie group (A4(λ, µ), gλ,µ) gives left-invariant solutions to the

special Einstein-Weyl equation (E-W) and to the vacuum near-horizon geometry

equation (VN-H). However, the Lorentzian Lie group (A4(λ, µ), ĝλ,µ) never gives

any left-invariant solution to these equations.

(ii) The Riemannian Lie group (A5(λ, µ, ν), gλ,µ,ν) gives left-invariant solutions to

the Killing vector field equation (K), to the homothetic vector field equation (H),

to the special Einstein-Weyl equation (E-W) and to the vacuum near-horizon ge-

ometry equation (VN-H). However, the Lorentzian Lie group (A5(λ, µ, ν), ĝλ,µ,ν)

only gives left-invariant solutions to the Killing and homothetic vector field

equations (K) and (H).

P r o o f. To prove (i) we notice that by Theorem 3.1 part (I) for the Riemannian

Lie group (A4(λ, µ), gλ,µ) we have two cases. The first case gives us the trivial

solution X = 0. Thus we consider the second case which implies that for α = 1,
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β = 1/2 and α = 1, β = −1/2 we have λ2 = 7µ2 and λ2 = µ2, respectively. Thus

λ 6= 2µ and the left-invariant solutions are compatible with (E-W) and (VN-H). Now

we consider the Lorentzian Lie group (A4(λ, µ), ĝλ,µ). Thus by Theorem 3.1 part (II)

we obtain the following result. Since we have α 6= 0, the solutions are not compatible

with (K), (H) and (RS). Also, since α = 1 and β 6= 0 give us −3µ2 = 2β(4µ2+λ2), the

solutions are not compatible with (E-W) and (VN-H). Also, since α = 1, β = −1/3

and δ = 0 give us the contradiction λ = 0 or µ = 0, the solutions are never compatible

with (PS). These complete case (i) of theorem. Case (ii) can be proved by a similar

argument. �

Thus by Theorem 3.2 we have the following result.

Corollary 3.3. The Riemannian and the Lorentzian Lie groups (A4(λ, µ), gλ,µ),

(A4(λ, µ), ĝλ,µ), (A5(λ, µ, ν), gλ,µ,ν) and (A5(λ, µ, ν), ĝλ,µ,ν) do not admit any non-

trivial left-invariant Ricci soliton.

Ricci solitons are natural generalizations of Einstein manifolds. In the Rie-

mannian case it is proved in [2] that the metric Lie groups (A4(λ, µ), gλ,µ) and

(A5(λ, µ, ν), gλ,µ,ν) by putting some additional conditions are Einstein. In the Lo-

rentzian case by using the Einstein equation ̺ = λg and the nonzero Ricci tensor

components, which are given in Section 2, on these spaces we obtain a contradiction

and hence the following result.

Theorem 3.4. The Riemannian Lie groups (A5(
√
22µ/2, µ, 3µ/2), gµ

√
22/2,µ,3µ/2)

and (A4(2µ, µ), g2µ,µ) are Einstein while the Lorentzian Lie groups (A4(λ, µ), ĝλ,µ)

and (A5(λ, µ, ν), ĝλ,µ,ν) are never Einstein manifolds.

Einstein-like metrics, which were introduced by Gray in [13], are generaliza-

tions of Einstein metrics. Thus the above result makes it interesting to investi-

gate Einstein-like metrics on these spaces. Recall that Einstein-like metrics on

a pseudo-Riemannian manifold (M, g) are defined through conditions on the Ricci

tensor. In fact a pseudo-Riemannian manifold (M, g) belongs to the classes A, B,
and P = A ∩ B, respectively, if and only if its Ricci tensor is cyclic-parallel, i.e.,
∇i̺jk+∇j̺ki+∇k̺ij = 0, is Codazzi tensor, that is, ∇i̺jk = ∇j̺ik, and is parallel,

which means ∇i̺jk = 0, where ∇i̺jk = −∑
t
(εjBijt̺tk + εkBikt̺tj), such that the

components Bijk can be obtained by the relation ∇eiej =
∑
k

εjBijkek (for more

details see [15]). Thus we can obtain the following result.

Theorem 3.5. Among all four- or five-dimensional solvable Riemannian and

Lorentzian Lie groups (A4(λ, µ), gλ,µ), (A5(λ, µ, ν), gλ,µ,ν), (A5(λ, µ, ν), ĝλ,µ,ν) and
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(A4(λ, µ), ĝλ,µ), Lie groups which are equipped with Einstein-like metrics are

(A5(2µ, µ, 0), g2µ,µ,0), (A4(2µ, µ), g2µ,µ) and (A5(
√
22µ/2, µ, 3µ/2), g√22µ/2,µ,3µ/2),

whose Ricci tensors are parallel.

Theorems 3.2, 3.4 and 3.5 give us the following result.

Corollary 3.6. Einstein, Einstein-like metrics, the special Einstein-Weyl equa-

tion (E-W) and the vacuum near-horizon geometry equation (VN-H) exist on

the Riemannian Lie groups (A4(λ, µ), gλ,µ,ν) and (A5(λ, µ, ν), gλ,µ,ν). However,

none of these properties exist on Lorentzian Lie groups (A4(λ, µ), ĝλ,µ,ν) and

(A5(λ, µ, ν), ĝλ,µ,ν).

4. Harmonicity of invariant vector fields on some solvable extensions

of the Heisenberg group

Let (M, g) be a compact connected and oriented n-dimensional pseudo-Riemannian

manifold and (TM, gs) be its tangent bundle with the Sasakian metric gs. Then the

energy of the smooth vector field X : (M, g) → (TM, gs) is defined by

(4.1) E(X) =
n

2
vol(M, g) +

1

2

∫

M

‖∇X‖2 dv.

In the non-compact case, one works over relatively compact domains (for more details

see [1], [6]). Thus we obtain the following result.

Proposition 4.1. Let (G, g) be one of two families of four- or five-dimensional

solvable Lie groups A4(λ, µ) and A5(λ, µ, ν) and X =
∑
i

kiei be a left-invariant

vector field on G. Also let D be a relatively compact domain of G and ED(X) be

the energy of X |D.

(i) If (G, g) is (A4(λ, µ), gλ,µ), then ED(X) =
{
2+ 1

2µ
2‖X‖2+ 1

4λ
2

3∑
i=1

k2i+
1
2 (3µ

2k23+

5µ2k24)
}
vol(D).

(ii) If (G, g) is (A4(λ, µ), ĝλ,µ), then ED(X) =
{
2− 1

2µ
2‖X‖2+ 1

4λ
2

3∑
i=1

k2i+
1
2 (5µ

2k24−

3µ2k23)
}
vol(D).

(iii) If (G, g) is (A5(λ, µ, ν), gλ,µ,ν), then ED(X) =
{

5
2 + 1

2µ
2‖X‖2 + 1

4λ
2

3∑
i=1

k2i +

3
2µ

2k23 +
1
2 (5µ

2 + ν2)k24 +
1
2 (ν

2 − µ2)k25

}
vol(D).
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(iv) If (G, g) is (A5(λ, µ, ν), ĝλ,µ,ν), then ED(X) =
{

5
2 − 1

2µ
2‖X‖2 + 1

4λ
2

3∑
i=1

k2i −
3
2µ

2k23 +
1
2 (5µ

2 + ν2)k24 − 1
2 (ν

2 − µ2)k25

}
vol(D).

P r o o f. For (A5(λ, µ, ν), ĝλ,µ,ν) we have

‖∇X‖2 =
5∑

i=1

εi〈∇eiX,∇eiX〉

= − 3µ2k23 − µ2‖X‖2 + 1

2
λ2

3∑

i=1

k2i + (5µ2 + ν2)k24 + (µ2 − ν2)k25 ,

where ‖X‖2 = k21 + k22 + k23 − k24 + k25 . Considering (4.1) gives us case (iv) of the

proposition. The remaining cases can be obtained by similar calculations. �

The critical points for the energy functional are harmonic maps. These vector

fields are characterized by Euler-Lagrange equations. In fact, a vector field X

defines a nonzero harmonic map from a pseudo-Riemannian manifold (M, g) to

its tangent bundle (TM, gs) if and only if X satisfies conditions ∇∗∇X = 0 and

tr[R(∇.X,X).] = 0, where ∇∗∇X =
∑
i

εi(∇ei∇eiX − ∇∇ei
eiX), tr[R(∇.X,X).] =

∑
i

εiR(∇eiX,X)ei and εi = 〈ei, ei〉 = ±1. Moreover by denoting χ̺(M) = {W ∈

χ(M) : ‖W‖2 = ̺2}, where ̺ 6= 0 is a real constant, one can consider vector fields

X ∈ χ̺(M) which are critical points for the energy functional restricted to vector

fields of the same length E|χ̺(M). The Euler-Lagrange equations of this variational

condition given by ∇∗∇X is collinear to X (see [6]). Thus we can prove the following

result.

Theorem 4.2.

(a) A left-invariant vector field X =
4∑

i=1

kiei on the Riemannian and Lorentzian

Lie groups (A4(λ, µ), gλ,µ) and (A4(λ, µ), ĝλ,µ) is a critical point for the energy

functional restricted to vector fields of the same length if and only if X =
2∑

i=1

kiei, X = k3e3 or X = k4e4. However, no vector field is a harmonic map.

(b) A left-invariant vector field X =
5∑

i=1

kiei on the Riemannian and Lorentzian

Lie groups (A5(λ, µ, ν), gλ,µ,ν) and (A5(λ, µ, ν), ĝλ,µ,ν) is a critical point for the

energy functional restricted to vector fields of the same length if and only if

X = k4e4, X = k1e1 + k2e2 + k5e5 or X = k3e3 + k5e5. However, the only

nontrivial harmonic map is X = k5e5, where ν = 0 (i.e., when A5(λ, µ, ν) is

abelian).
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P r o o f. For the Lorentzian Lie group (A5(λ, µ, ν), ĝλ,µ,ν) we obtain ∇∗∇X =

(µ2−λ2/2)
2∑

i=1

kiei+(4µ2−λ2/2)k3e3+(6µ2+ν2)k4e4+ν2k5e5. Thus ∇∗∇X = δX

if and only if we have (µ2 −λ2/2)ki = δki, (4µ
2−λ2/2)k3 = δk3, (6µ

2+ ν2)k4 = k4δ

and ν2k5 = k5δ, where i = 1, 2. Solutions of these equations give us the first part

of (b). To prove the second part we notice that ∇∗∇X = 0 if and only if we have

one of the cases

(i) X = k3e3 + k5e5, where λ = 2
√
2µ, ν = 0 and k3 6= 0;

(ii) X = k1e1 + k2e2 + k5e5, where λ =
√
2µ, ν = 0 and k1, k2 6= 0;

(iii) X = k5e5, where k5 6= 0 and ν = 0.

Checking whether vector fields listed in the cases (i)–(iii) satisfy the condition

tr[R(∇.X,X).] = 0, we obtain the result. The case (a) can be obtained in a similar

manner. �

Suppose that (M, g) is a Lorentzian manifold and X is a unit time-like vector

field on M (i.e., ‖X‖ = −1). Then by the Euler-Lagrange equations X is spatially

harmonic if and only if X̂X = δX , where δ ∈ R and for divX =
∑
i

εig(∇eiX, ei) and

(∇X)t∇XX =
∑
i

εig(∇XX,∇eiX)ei, X̂X is defined by X̂X = −∇∗∇X−∇X∇XX−

divX · ∇XX + (∇X)t∇XX . Thus we can obtain the exact form of all left-invariant

unit-time like vector fields as follows.

Proposition 4.3.

(a) A left-invariant unit time-like vector field X =
4∑

i=1

kiei on the Lorentzian Lie

group (A4(λ, µ), ĝλ,µ) is spatially harmonic if and only if X has one of the

following forms:

X = ±e4.(a1)

X = k3e3 + k4e4, with k23 =
4µ2 − λ2

16µ2
, k24 = k23 + 1.(a2)

X = kiei + k3e3 + k4e4, with k23 = − λ4 + 3λ2µ2 + 12µ4

2(10λ2µ2 − 7µ4 + λ4)
,(a3)

k24 =
µ2(10λ2 + 21µ2)

10λ2µ2 − 7µ4 + λ4
, k2i = k24 − k23 − 1, i = 1, 2.

(b) A left-invariant unit time-like vector field X =
5∑

i=1

kiei on the Lorentzian

Lie group (A5(λ, µ, ν), ĝλ,µ,ν) is spatially harmonic if and only if X has one
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of the following forms:

X = k3e3 + k4e4 + k5e5,(b1)

with k23 =
−24µ4 + 28µ3ν + 8µ2ν2 − 4µν3 − 2ν4 − λ2ν2

4(ν + 3µ)(−ν + 2µ)2µ
,

k24 =
−8µ2 + λ2 + 2ν2

4µ(2µ− ν)
, k25 = k24 − k23 − 1.

X = ±e4.(b2)

X = k3e3 + k4e4, with k24 = k23 + 1, k23 =
−λ2 + 4µ2 + 4µν − 2ν2

16µ2
.(b3)

X = k4e4 + k5e5, with k25 =
µ(2ν − 3µ)

ν2
, k24 = k25 + 1.(b4)

X =
2∑

i=1

kiei +
5∑

i=4

kiei,(b5)

with
2∑

i=1

k2i =
λν2 + 6µν3 − 30µ3ν + 4µ2ν2 + 2ν4 + 18µ4

−6µν3 − 3µ2ν2 + 24µ3ν − 15µ4
,

k24 =
2ν2 + λ2 − 2µ2

6µ(µ− ν)
, k25 = k24 − (1 + k21 + k22).

X = k1e1 + k2e2 + k4e4, with k21 + k22 =
−4µ2 + 2µν − λ2 − 2ν2

4µ2
,(b6)

k24 = 1 + k21 + k22 .

X =

5∑

i=1

kiei, with k21 + k22 =
123µ2 + 8λ2

4(45µ2 − 4λ2)
, k24 =

7λ2 + 720µ2

16(45µ2 − 4λ2)
,(b7)

k25 =
7(−171µ2 + λ2)

16(45µ2 − 4λ2)
, k23 = k24 − (1 + k21 + k22 + k25).

X =
4∑

i=1

kiei, with k24 =
µ2(9µ2 − 34λ2)

9µ4 + 10λ2µ2 + λ4
,(b8)

k21 + k22 = − λ4 − 132µ4 + 41µ2λ2

2(9µ4 + 10µ2λ2 + λ4)
, k23 = −1− k21 − k22 + k24 .

X =

2∑

i=1

kiei +

5∑

i=4

kiei, with k22 + k21 =
16λ2 + 330µ2

225µ2
,(b9)

k24 =
30λ2 + 900µ2

900µ2
, k25 = k34 − 1− k21 − k22 .

X = k1e1 + k2e2 + k4e4, with k21 + k22 = −4λ2 + 44µ2

µ2
(b10)

and k24 = 1 + k21 + k22 .
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In cases (b5), . . . , (b10) we have either k1 6= 0 and k2 6= 0 or k1 = 0 6= k2 or

k2 = 0 6= k1.

P r o o f. To prove case (b) we notice that since X is a unit time-like vector field,

we have k21 +k22 +k23−k24 +k25 = −1, and hence k4 6= 0. Thus, by using the condition

X̂X = δX and doing some calculations we obtain that X is spatially harmonic if and

only if there is a real constant δ such that




(i) λ2k1k
2
3 + (4λµ+ λν)k2k3k4 − (3µ2 + µν)k1k

2
4 + (12λ

2 − µ2)k1 = δk1,

(ii) λ2k2k
2
3 − (4λµ+ λν)k1k3k4 − (3µ2 + µν)k2k

2
4 + (12λ

2 − µ2)k2 = δk2,

(iii) 1
2 (2λ

2k21 + 2λ2k22 − 8µ2k24 − 4µνk24 + λ2 − 8µ2)k3 = δk3,

(iv)
2∑

i=1

k2i (5µ
2 + µν) + 2(6µ2 + µν)k23 + 2(2µν + µ2)k25 + 6µ2 + ν2 = −δ,

(v) (4µk24 + ν)νk5 = −δk5.

To solve the above system of equations, we consider four cases:

(a) k1 = k2 = 0,

(b) k1 and k2 are nonzero,

(c) 0 = k1, k2 6= 0 and

(d) 0 6= k1, k2 = 0.

Thus we obtain the result. Conversely, assume that X has one of the forms given

in case (b) of the theorem. Then we get X̂X = δbiX , where

δb1 =
ν(−8µ2 + 2µν + λ2 + ν2)

ν − 2µ
, δb2 = −6µ2 − ν2,

δb3 =
−72µ3 − 28νµ2 + 6µλ2 + 2ν3 + νλ2

8µ
, δb4 =

12µ3 − 8µ2ν − 4µν2 − ν3

ν
,

δb5 =
−ν(3µν + ν2 + 2λ2 − 4µ2)

3(µ− ν)
, δb6 =

−6νµ2 + 5µλ2 + 4µν2 + νλ2 + 2ν3 − 4µ3

4µ
,

δb7 =
71λ2µ2

45µ2 − 4λ2
, δb8 = − (39λ2 + 211µ2)λ2µ2

2(10λ2µ2 + 9µ4 + λ4)
, δb9 =

8λ2

15
, δb10 =

λ2

4
− 11µ2.

Thus each X which is given in case (b) of the theorem is a spatially harmonic vector

field. Case (a) can be proved in a similar manner. �

The space-like energy of a unit time-like vector field X on a Lorentzian manifold

(M, g) is the integral of the square norm of the restriction of ∇X to the space-like

distribution X⊥. By [12], a unit time-like vector field X is said to be spatially

harmonic if it is a critical point of the space-like energy. Thus as an immediate

consequence of Theorems 4.2 and 4.3 we obtain the following result.

Corollary 4.4. A critical point of the space-like energy for the Lorentzian Lie

groups (A4(λ, µ), ĝλ,µ) and (A5(λ, µ, ν), ĝλ,µ,ν) is never a harmonic map.
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5. Homogeneous Lorentzian structures on some solvable extensions

of the Heisenberg group

A homogeneous pseudo-Riemannian structure on a pseudo-Riemannian manifold

(M, g) is a tensor field S of type (1, 2) such that the connection ∇̃ = ∇− S satisfies

∇̃g = 0, ∇̃R = 0 and ∇̃S = 0, where the condition ∇̃R = 0 is equivalent to

(∇TR)(X,Y, Z,W ) = − R(STX,Y, Z,W )−R(X,STY, Z,W )(5.1)

− R(X,Y, STZ,W )−R(X,Y, Z, STW ).

If g is a Lorentzian metric, then we say that S is a homogeneous Lorentzian structure.

Here we obtain the following result which extends the study of all homogeneous

Riemannian structures on these spaces in [2].

Theorem 5.1.

(i) All homogeneous Lorentzian structures on the Lorentzian Lie group (A4(λ, µ), ĝλ,µ)

are given by

(5.2) S = θ ⊗ (e1 ∧ e2) +
λ

2
(e1 ⊗ (e2 ∧ e3)− e2 ⊗ (e1 ∧ e3)) + µ((e1 ⊗ (e1 ∧ e4)

+ e2 ⊗ (e2 ∧ e4)) + 2µe3 ⊗ (e3 ∧ e4),

where θ = ae3+be4, with a, b ∈ R and {e1, . . . , e4} is dual to the basis {e1, . . . , e4}.
(ii) If ν 6= 0, all homogeneous Lorentzian structures on the Lorentzian Lie group

(A5(λ, µ, ν), ĝλ,µ,ν) are given by

S = θ ⊗ (e1 ∧ e2)− νe5 ⊗ (e4 ∧ e5) +
λ

2
(e1 ⊗ (e2 ∧ e3)− e2 ⊗ (e1 ∧ e3)(5.3)

+ µ(e1 ⊗ (e1 ∧ e4) + e2 ⊗ (e2 ∧ e4)) + 2µe3 ⊗ (e3 ∧ e4),

where θ = ae3+ be4+ ce5, such that a, b, c ∈ R and {e1, . . . , e5} is dual to the basis
{e1, . . . , e5}. If ν = 0, all the homogeneous Lorentzian structures on the Lorentzian

Lie group (A5(λ, µ, ν), ĝλ,µ,ν ) are given by (5.2), where θ = ae3 + be4 + ce5, with

a, b, c ∈ R.

P r o o f. To prove (i) we replace (X,Y, Z,W ) in (5.1) by (e1, e2, e1, e3),

(e1, e2, e2, e4), (e1, e2, e1, e4), (e1, e2, e2, e3) and (e1, e3, e1, e4). Then by some

computations we get SZe2e4 = µe2(Z), SZe1e3 = −λe2(Z)/2, SZe1e4 = µe1(Z),

SZe2e3 = λe1(Z)/2 and SZe3e4 = 2µe3(Z). Thus by using ∇̃S = 0 we obtain case (i)

of the theorem. Case (ii) can be proved by a similar argument. �
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In [11], a classification for the homogeneous pseudo-Riemannian structures is

given and it is proved that if V is a real vector space of dimension n endowed

with an inner product 〈 , 〉 of signature (k, n − k), S(V ) = {S ∈ ⊗3
V ∗ : SXY Z =

−SXZY , X, Y, Z ∈ V } and dimV > 3, then

S(V ) = S1(V )⊕ S2(V )⊕ S3(V ),

where for SXY Z = 〈SXY, Z〉, c12(S)(Z) =
n∑

i=1

εiSeieiZ , 〈ei, ei〉 = εi and the cyclic

sum S
XY Z

we have

S1(V ) = {S ∈ S(V ) : SXY Z = 〈X,Y 〉ω(Z)− 〈X,Z〉ω(Y ), ω ∈ V ∗},
S2(V ) = {S ∈ S(V ) : S

XY Z
SXY Z = 0, c12(S) = 0},

S3(V ) = {S ∈ S(V ) : SXY Z + SYXZ = 0},
S1(V )⊕ S2(V ) = {S ∈ S(V ) : S

XY Z
SXY Z = 0},

S2(V )⊕ S3(V ) = {S ∈ S(V ) : c12(S) = 0},
S1(V )⊕ S3(V ) = {S ∈ S(V ) : SXY Z + SYXZ = 2〈X,Y 〉ω(Z)− 〈X,Z〉ω(Y )

− 〈Y, Z〉ω(X), ω ∈ V ∗}.

Homogeneous structures belonging to S1 ⊕ S2 are as different as possible from the

naturally reductive ones. The study of this kind of structures was recently undertaken

in [10] and [8].

Corollary 5.2.

(i) The homogeneous Lorentzian structures on (A4(λ, µ), ĝλ,µ) given in (5.2) are of

the type S1 ⊕ S2 if for them we have a = −λ and b = 0. Also they are not of

the types S2 ⊕ S3 or S1 ⊕ S3.

(ii) The homogeneous Lorentzian structures on (A5(λ, µ, ν), ĝλ,µ,ν ) given in (5.3)

are of the type S2 ⊕ S3, but not of the type S1 ⊕ S3. Also they are of the type

S1 ⊕ S2 if for them we have a = −λ and b = c = 0.

P r o o f. To prove part (ii), by equation (5.3) in Theorem 5.1 we have c12(S)(e4) =

4µ+ ν = 0, which implies that for ν = −4µ the homogeneous Lorentzian structures

are of type S2⊕S3. Also if a = −λ and b = c = 0, then we have S
eiejek

Seiejek = 0 which

implies that they are of types S1 ⊕ S2 and S2. Moreover, they are not of types S1

and S1 ⊕ S3 (if they were, then Se1e1e4 = 〈e1, e1〉ω(e4) and Se3e3e4 = 〈e3, e3〉ω(e4)
give us the contradiction µ = 0). Also the relation Se2e2e4 + Se2e2e4 = 2µ 6= 0 shows

that they are not of type S3. A similar proof will be used for case (i). �
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6. Parallel and totally geodesic hypersurfaces of some

solvable extensions of the Heisenberg group

In this section we show that Riemannian and Lorentzian left-invariant metrics of

our examples have a similar behaviour with regard to totally geodesic and parallel

hypersurfaces. The study of these hypersurfaces is a natural problem and enriches

our understanding of the geometry of a given manifold (see for example [9]). We

use a similar argument as the one given in Lemma 3.1 in [14]. Thus we obtain the

following result

Lemma 6.1.

(i) Let F : M → (A4(λ, µ), gλ,µ) (F : M → (A4(λ, µ), ĝλ,µ)) be a non-degenerate

hypersurface of the Riemannian (or Lorentzian) Lie group (A4(λ, µ), gλ,µ)

(or (A4(λ, µ), ĝλ,µ), respectively). Then the second fundamental form of this

immersion is not a Codazzi tensor.

(ii) Let F : M → (A5(λ, µ, ν), gλ,µ,ν) (F : M → (A5(λ, µ, ν), ĝλ,µ,ν)), be a parallel

hypersurface of the Riemannian (Lorentzian) Lie group (A5(λ, µ, ν), gλ,µ,ν)

((A5(λ, µ, ν), ĝλ,µ,ν)). If ξ is a ε-unit normal vector field on M , then ξ =

±e5, where {e1, . . . , e5} is a (pseudo-)orthonormal basis of the Lie algebra

a5(λ, µ, ν).

Using Lemma 6.1, we can prove the following classification result.

Theorem 6.2.

(i) There are no non-degenerate parallel hypersurfaces in the Riemannian (or

Lorentzian) Lie group (A4(λ, µ), gλ,µ) (or (A4(λ, µ), ĝλ,µ), respectively).

(ii) Let F : M → (A5(λ, µ, ν), gλ,µ,ν) (F : M → (A5(λ, µ, ν), ĝλ,µ,ν)), be a parallel

hypersurface of the Riemannian (Lorentzian) Lie group (A5(λ, µ, ν), gλ,µ,ν)

((A5(λ, µ, ν), ĝλ,µ,ν)). Then there exist local coordinates (w1, w2, w3, w4) onM

such that this immersion with respect to these coordinates, up to isometries,

is given by

(6.1) F (w1, . . . , w4) = (eµw4w1, e
µw4w2, e

2µw4w3, w4, 0).

Conversely, this hypersurface is parallel.

P r o o f. Case (i) is an immediate consequence of Lemma 6.1. For case (ii) we

assume thatM is a parallel hypersurface of (A5(λ, µ, ν), ĝλ,µ,ν). Then by Lemma 6.1

we have ξ = ±e5. Thus the vectors Y1 = e1, Y2 = e2, Y3 = e3, Y4 = e4 span the tan-

gent space toM at each point. Using the formula of Gauss∇XY = ∇M
X Y +h(X,Y )ξ,
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we find out that the Levi-Civita connection of M and the second fundamental

form of the immersion are determined by ∇M
Yi
Yj = 0 and h(Yi, Yj) = 0, respec-

tively (where i, j ∈ {1, . . . , 4}). Now we put ∂w1
= Y1, . . ., ∂w4

= Y4 and denote

F : M → (A5(λ, µ, ν), ĝλ,µ,ν) : (w1, . . . , w4) 7→ (F1(w1, . . . , w4), . . . , F5(w1, . . . , w4))

as the immersion of the hypersurface. Then by using (2.4), we obtain

(∂w1
F1, . . . , ∂w1

F5) =
(
eµF4 , 0,−λeµF4F2/2, 0, 0

)
,

(∂w2
F1, . . . , ∂w2

F5) =
(
0, eµF4 , λeµF4F1/2, 0, 0

)
,

(∂w3
F1, . . . , ∂w3

F5) = (0, 0, e2µF4 , 0, 0),

(∂w4
F1, . . . , ∂w4

F5) = (0, 0, 0, 1, 0).

These equations give us the immersion which is isometric to the immersion given in

the theorem. We can verify the converse by a straightforward computation. �

Considering the proof of Theorem 6.2 we obtain the following result.

Corollary 6.3.

(i) There are no totally geodesic hypersurfaces in the Riemannian (Lorentzian) Lie

group (A4(λ, µ), gλ,µ) ((A4(λ, µ), ĝλ,µ)).

(ii) The only totally geodesic hypersurface of the Riemannian (Lorentzian) Lie

group (A5(λ, µ, ν), gλ,µ,ν) ((A5(λ, µ, ν), ĝλ,µ,ν)) is given by (6.1) and conversely

this hypersurface is totally geodesic.
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