
Czechoslovak Mathematical Journal

Zhanmin Zhu
Coherence relative to a weak torsion class

Czechoslovak Mathematical Journal, Vol. 68 (2018), No. 2, 455–474

Persistent URL: http://dml.cz/dmlcz/147229

Terms of use:
© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/147229
http://dml.cz


Czechoslovak Mathematical Journal, 68 (143) (2018), 455–474

COHERENCE RELATIVE TO A WEAK TORSION CLASS

Zhanmin Zhu, Jiaxing

Received September 22, 2016. First published February 10, 2018.

Abstract. Let R be a ring. A subclass T of left R-modules is called a weak torsion class if
it is closed under homomorphic images and extensions. Let T be a weak torsion class of left
R-modules and n a positive integer. Then a left R-module M is called T -finitely generated
if there exists a finitely generated submodule N such that M/N ∈ T ; a left R-module A is
called (T , n)-presented if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ M −→ 0

such that F0, . . . , Fn−1 are finitely generated free and Kn−1 is T -finitely generated; a left
R-module M is called (T , n)-injective, if ExtnR(A,M) = 0 for each (T , n+1)-presented left

R-module A; a right R-moduleM is called (T , n)-flat, if TorRn (M,A) = 0 for each (T , n+1)-
presented left R-module A. A ring R is called (T , n)-coherent, if every (T , n+1)-presented
module is (n + 1)-presented. Some characterizations and properties of these modules and
rings are given.

Keywords: (T , n)-presented module; (T , n)-injective module; (T , n)-flat module; (T , n)-
coherent ring

MSC 2010 : 16D40, 16D50, 16P70

1. Introduction

Recall that a torsion theory, see [14], τ = (T ,F) for the category of all left R-

modules consists of two subclasses T and F such that:

(1) Hom(T, F ) = 0 for all T ∈ T and F ∈ F .

(2) If Hom(T, F ) = 0 for all F ∈ F , then T ∈ T .

(3) If Hom(T, F ) = 0 for all T ∈ T , then F ∈ F .

In this case, T is called a torsion class.
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A torsion theory τ = (T ,F) is called hereditary if T is closed under submodules.

By [14], page 139, Proposition 2.1, a class T of left R-modules is a torsion class for

some torsion theory if and only if T is closed under quotient modules, direct sums

and extensions. Inspired by this result, in this paper we will call a nonempty subclass

T of left R-modules a weak torsion class if T is closed under homomorphic images

and extensions.

Let τ = (T ,F) be a hereditary torsion theory for the category of all left R-modules.

Then according to [8], a left R-module M is called τ-finitely generated (or τ -FG for

short) if there exists a finitely generated submodule N such that M/N ∈ T ; a left

R-module A is called τ-finitely presented (or τ -FP for short) if there exists an exact

sequence of left R-modules 0 −→ K −→ F −→ A −→ 0 with F finitely generated

free and K τ -finitely generated. In Section 2, we will give the concepts of T -finitely

generated modules and T -finitely presented modules by taking T to be a weak torsion

class of left R-modules, which extends the two concepts of Jones’s τ -finitely generated

modules and τ -finitely presented modules respectively. And then we will establish

some properties of T -finitely generated modules and T -finitely presented modules.

Let n be a nonnegative integer. Then according to [4], a left R-module A is

called n-presented in case there exists an exact sequence of left R-modules Fn −→

Fn−1−→ . . . −→F1 −→ F0 −→M −→ 0 in which every Fi is finitely generated free.

Motivated by the concepts of n-presented modules and T -finitely presented modules,

in Section 3 we will define and investigate (T , n)-presented modules.

Recall that a left R-module M is called FP-injective, see [13], or absolutely pure,

see [11], if Ext1R(A,M) = 0 for any finitely presented left R-module A; a right

R-module M is flat if and only if TorR1 (M,A) = 0 for any finitely presented left

R-module A; a ring R is left coherent, see [1], if every finitely generated left ideal

of R is finitely presented, or equivalently, if every finitely generated submodule of

a projective left R-module is finitely presented. The FP-injective modules, flat mod-

ules, coherent rings and their generalizations have been studied extensively by many

authors (see, for example, [1], [3], [4], [8], [10], [13], [18], [17]).

In 1994, Costa introduced the concept of left n-coherent rings in [4]. According

to [4], a ring R is called left n-coherent in case every n-presented left R-module

is (n + 1)-presented. In 1996, Chen and Ding introduced the concepts of n-FP-

injective modules and n-flat modules, see [3]. According to [3], a left R-module M is

called n-FP-injective in case ExtnR(A,M) = 0 for any n-presented left R-module A,

a right R-module M is called n-flat in case TorRn (M,A) = 0 for any n-presented left

R-module A. By using the concepts of n-FP-injective and n-flat modules, they char-

acterized n-coherent rings. In 2012, Mao and Ding introduced the concepts of τ -f -

injective modules, τ-flat modules and τ-coherent rings, see [10]. According to [10], a

left R-module M is called τ -f -injective in case Ext1R(R/I,M) = 0 for any τ -finitely
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presented left ideal I; a right R-module M is called τ -flat in case TorR1 (M,R/I) = 0

for any τ -finitely presented left ideal I; a ring R is called τ -coherent in case every

τ -finitely presented left ideal is finitely presented. By using the concepts of τ -f -

injective and τ -flat modules, they characterized τ -coherent rings.

Motivated by the characterization of n-coherent rings and τ -coherent rings (where

τ is a hereditary torsion theory), in Section 5 we extend the concept of n-coherent

rings and introduce the concept of (T , n)-coherent rings (where T is a weak torsion

class). To characterize (T , n)-coherent rings, (T , n)-injective modules and (T , n)-

flat modules are introduced and studied in Section 4; some elementary properties of

(T , n)-injective modules and (T , n)-flat modules are obtained in that section.

In Section 5, a series of characterizations and properties of (T , n)-coherent rings are

given. For instance, we prove: (1) A ring R is (T , n)-coherent⇔ any direct product

of (T , n)-flat right R-modules is (T , n)-flat⇔ any direct limit of (T , n)-injective left

R-modules is (T , n)-injective ⇔ every right R-module has a (T , n)-flat preenvelope

⇔ if N is a (T , n)-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is (T , n)-injective. (2) If R is a (T , n)-coherent ring, then every left R-

module has a (T , n)-injective cover. (3) Every right R-module has a monic (T , n)-flat

preenvelope⇔ R is (T , n)-coherent and RR is (T , n)-injective⇔ R is (T , n)-coherent

and every left R-module has an epic (T , n)-injective cover⇔ R is (T , n)-coherent and

every injective right R-module is (T , n)-flat⇔ R is (T , n)-coherent and every flat left

R-module is (T , n)-injective. As corollaries, some interesting results on n-coherent

rings are obtained.

Throughout this paper, R is an associative ring with identity and all modules

considered are unitary, n is a positive integer, T is a weak torsion class of left R-

modules. R-Mod denotes the class of all left R-modules. For any R-module M ,

M+ = Hom(M,Q/Z) will be the character module of M . Given a class L of R-

modules, we denote by L⊥ = {M : Ext1R(L,M) = 0, L ∈ L} the right orthogonal

class of L, and by ⊥L = {M : Ext1R(M,L) = 0, L ∈ L} the left orthogonal class

of L.

2. T -finitely generated and T -finitely presented modules

We begin with the following definition.

Definition 2.1. A nonempty subclass T of left R-modules is called a weak tor-

sion class if T is closed under homomorphic images and extensions. If a class T of

left R-modules is a weak torsion class, then a left R-module M is called T -finitely

generated (or T -FG for short) if there exists a finitely generated submodule N such

thatM/N ∈ T . A left R-module A is called T -finitely presented (or T -FP for short)
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if there exists an exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0 with

F finitely generated free and K T -finitely generated.

Example 2.2.

(1) Let R be a non-left noetherian left hereditary ring and T the class of all injective

left R-modules. Then by [16], Section 39.16, T is a weak torsion class. But T

is not a torsion class.

(2) Let T be the class of all finitely generated left R-modules. Then by [16], Sec-

tion 13.9 (1), T is a weak torsion class. But T is not a torsion class.

(3) Let T be the class of all finitely generated semisimple left R-modules. Then T

is a weak torsion class but not a torsion class.

(4) Let T be the class of all finitely generated left R-modules. Then a left R-module

A is T -finitely generated if and only if it is finitely generated.

(5) Let T = R-Mod. Then a left R-module A is T -finitely presented if and only if

it is finitely generated.

(6) Let T = 0. Then a left R-module A is T -finitely presented if and only if it is

finitely presented.

Theorem 2.3. (1) Any homomorphic image of a T -FG module is T -FG.

(2) Any finite direct sum of T -FG modules is T -FG.

(3) Any sum of a finite number of T -FG submodules of a module M is T -FG.

(4) A direct summand of a T -FP module is T -FP.

P r o o f. (1) Let M be a T -FG module and N a submodule of N . Since M is

T -FG, there exists a finitely generated submodule K of M such that M/K ∈ T .

Since T is closed under homomorphic images, we have (M/K)/[(K + N)/K] ∈ T ,

so M/(K +N) ∈ T , and thus (M/N)/(K +N)/N ∈ T . Observing that (K +N)/N

is finitely generated, we have that M/N is T -FG.

(2) Let N1, N2 be two T -FG modules. Then there exists a finitely generated

submodule Ki of Ni such that Ni/Ki ∈ T , i = 1, 2. So, K1⊕K2 is finitely generated

and (N1 ⊕ N2)/(K1 ⊕ K2) ∼= N1/K1 ⊕ N2/K2 ∈ T because T is closed under

extensions. And thus N1 ⊕N2 is T -FG.

(3) Let M1,M2 be two T -FG submodules of M . Then by (2), M1 ⊕M2 is T -FG.

Note that M1+M2 is a homomorphic image of M1 ⊕M2; by (1), M1 +M2 is T -FG.

(4) Suppose that M ∼= F/K where F is finitely generated free and K is T -FG. If

F/K = (A + K)/K ⊕ (B + K)/K, where A,B are finitely generated, then by (3),

B +K is T -FG . But (A+K)/K ∼= F/(B +K), so (A+K)/K is T -FP. �

Corollary 2.4. A direct summand of a T -FG module is T -FG.
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Theorem 2.5. Let 0 −→ A
i

−→ B
p

−→ C −→ 0 be an exact sequence of left

R-modules.

(1) If both A and C are T -FG, then B is T -FG.

(2) If both A and C are T -FP, then B is T -FP.

(3) If B is FG and C is T -FP, then A is T -FG.

(4) If B is T -FP and A is T -FG, then C is T -FP.

P r o o f. (1) Suppose that A and C are T -FG. Then there exist a finitely generated

submodule A′ of A and a finitely generated submodule C′ of C such that A/A′ ∈ T

and C/C′ ∈ T . Choose a finitely generated submodule B′ of B such that p(B′) = C′,

let A′′ = A ∩ (A′ +B′) = A′ + (A ∩B′), and define

α : A/A′′ −→ B/(A′ +B′); a+A′′ 7→ a+ (A′ +B′)

and

p : B/(A′ +B′) −→ C/C′; b + (A′ +B′) 7→ p(b) + C′.

Then we get an exact sequence 0 −→ A/A′′ α
−→ B/(A′ +B′)

p
−→ C/C′ −→ 0. Thus

A/A′′ ∼= (A/A′)/(A′′/A′) ∈ T and C/C′ ∈ T , so B/(A′ + B′) ∈ T , and hence B is

T -FG.

(2) Since A and C are T -FP, we have two exact sequences 0 −→ K ′ ι1−→ F ′ f
−→

A −→ 0 and 0 −→ K ′′ ι2−→ F ′′ g
−→ C −→ 0, where F ′, F ′′ are finitely generated

free, K ′, K ′′ are T -FG, ι1, ι2 are inclusion maps. Since F
′′ is projective, there exists

a homomorphism σ : F ′′ → B such that g = pσ. And so we have the following

commutative diagram with exact rows and columns:

0

��

0

��

0

��

0 // K ′

ι1

��

λι1
// Ker(h)

ι

��

πι
// K ′′

ι2

��

// 0

0 // F ′

f

��

λ
// F ′ ⊕ F ′′ π

//

h

��

F ′′

g

��

// 0

0 // A

��

i
// B

��

p
// C

��

// 0

0 0 0
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where λ is the natural injection, ι is the inclusion map, π is the natural projection,

and

h : F ′ ⊕ F ′′ → B; (x′, x′′) 7→ if(x′) + σ(x′′).

By (1), Ker(h) is T -FG, and hence B is T -FP.

(3) Suppose that B is FG and C is T -FP. Let F
ϕ

−→ B −→ 0 be exact with F FG

free, let K = Ker(pϕ). Then 0 −→ K −→ F −→ C −→ 0 is exact. Since C is T -FP,

there exists an exact sequence 0 −→ K ′ −→ F ′ −→ C −→ 0 with F ′ FG free and

K ′ T -FG. By Schanuel’s lemma, we have K ′ ⊕ F ∼= K ⊕ F ′, and thus K is T -FG

because a finite direct sum and a direct summand of T -FG modules are T -FG. Now

let ψ = ϕ
∣

∣

K
. Observing that ϕ is epic, it is easy to see that ψ is an epimorphism

from K to A. Hence, by Theorem 2.3 (1), A is T -FG.

(4) Since B is T -FP, there exists an exact sequence of left R-modules 0 −→ K −→

F −→ B −→ 0 such that F is finitely generated free and K is T -FG. Therefore, we

can now from the pullback of A −→ B and F −→ B get the following commutative

diagram:
0

��

0

��

K

��

K

��

0 // P

��

// F

��

// C // 0

0 // A

��

// B

��

// C // 0

0 0

with exact rows and columns. Since both K and A are T -FG, by (1), P is also T -FG,

and so C is T -FP. �

3. (T , n)-presented modules

Definition 3.1. Let T be a weak torsion class and n a positive integer. Then

a left R-module A is said to be (T , n)-presented if there exists an exact sequence of

left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→M −→ 0

such that F0, . . . , Fn−1 are finitely generated free and Kn−1 is T -finitely generated.
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Clearly, a left R-module A is T -finitely presented if and only if it is (T , 1)-

presented. It is easy to see that every (T , n)-presented module is (T , n−1)-presented.

We also call T -finitely generated modules (T , 0)-presented.

Example 3.2. (1) Let T = R-Mod. Then a left R-module A is (T , n)-presented

if and only if it is (n− 1)-presented.

(2) Let T = 0. Then a left R-module A is (T , n)-presented if and only if it is

n-presented.

Lemma 3.3. Let A,B be two left R-modules and n a positive integer. If both A

and B are (T , n)-presented, then A⊕B is also (T , n)-presented.

P r o o f. It is a consequence of Theorem 2.3 (2). �

Proposition 3.4. The following statements are equivalent for a left R-module A:

(1) A is (T , n)-presented.

(2) A is (n− 1)-presented, and if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ A −→ 0

such that F0, . . . , Fn−1 are finitely generated free, then Kn−1 is T -finitely gen-

erated.

(3) There exists an exact sequence of left R-modules

0 −→ K −→ F −→ A −→ 0

such that F is finitely generated free and K is (T , n− 1)-presented.

If n > 2, then the above conditions are also equivalent to:

(4) A is (n− 2)-presented, and if there exists an exact sequence of left R-modules

0 −→ Kn−2 −→ Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0

such that F0, . . . , Fn−2 are finitely generated free, then Kn−2 is T -finitely pre-

sented.

P r o o f. (1) ⇒ (2) Since A is (T , n)-presented, there exists an exact sequence of

left R-modules

0 −→ Ln−1 −→ F ′
n−1 −→ . . . −→ F ′

1 −→ F ′
0 −→ A −→ 0

such that F ′
0, . . . , F

′
n−1 are finitely generated free and Ln−1 is T -finitely generated,

so A is (n− 1)-presented. Now if there exists an exact sequence of left R-modules

0 −→ Kn−1 −→ Fn−1 −→ . . . −→ F1 −→ F0 −→ A −→ 0

461



such that F0, . . . , Fn−1 are finitely generated free, then by the generalization of

Schanuel’s lemma [12], Exercise 3.37, and by Theorem 2.3 (2) and Corollary 2.4,

Kn−1 is T -finitely generated.

(2) ⇒ (1); (1) ⇔ (3); and (2) ⇔ (4) are obvious. �

Proposition 3.5. Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of left

R-modules. Then:

(1) If both A and C are (T , n)-presented, then so is B.

(2) If B is (T , n)-presented and A is (T , n−1)-presented, then C is (T , n)-presented.

P r o o f. (1) Use induction on n. If n = 1, then (1) holds by Theorem 2.5 (2).

Suppose that (1) holds for n − 1. Let A and C be (T , n)-presented. Then by

Proposition 3.4, we have two exact sequences 0 −→ K ′ ι1−→ F ′ f
−→ A −→ 0 and

0 −→ K ′′ ι2−→ F ′′ g
−→ C −→ 0, where F ′, F ′′ are finitely generated free, K ′, K ′′ are

(T , n− 1)-presented, ι1, ι2 are inclusion maps. Using a method similar to the proof

of Theorem 2.5 (2), by induction hypothesis and Proposition 3.4 we can get that B

is also (T , n)-presented.

(2) Since B is (T , n)-presented, by Proposition 3.4 there exists an exact sequence

of left R-modules 0 −→ K −→ F −→ B −→ 0 such that F is finitely generated

free and K is (T , n − 1)-presented. Now, using a method similar to the proof of

Theorem 2.5 (4), by (1) and Proposition 3.4, we can get that C is (T , n)-presented.

�

Corollary 3.6. A direct summand of a (T , n)-presented module is (T , n)-

presented.

P r o o f. Use induction on n. If n = 1, then the conclusion holds by Theo-

rem 2.3 (4). Suppose that the conclusion holds for n− 1. Let B be (T , n)-presented

and B = A⊕ C . Then by hypothesis, A is (T , n − 1)-presented , and so C (T , n)-

presented by Proposition 3.5 (2), as required. �

Corollary 3.7. The following statements are equivalent for a left R-module M :

(1) M is (T , n)-presented.

(2) M is finitely generated and, if the sequence of left R-modules 0 −→ K −→ F −→

M −→ 0 is exact with F finitely generated free, then K is (T , n− 1)-presented.

P r o o f. (1) ⇒ (2). Since M is (T , n)-presented, by Proposition 3.4 (3) there

exists an exact sequence of left R-modules 0 −→ K ′ −→ F ′ −→ M −→ 0 such that

F ′ is finitely generated free and K ′ is (T , n−1)-presented. So, by Schanuel’s lemma,

we have K ′ ⊕ F ∼= K ⊕ F ′, and thus K is (T , n− 1)-presented because finite direct
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sums and direct summands of (T , n− 1)-presented modules are (T , n− 1)-presented

by Lemma 3.3 and Corollary 3.6.

(2) ⇒ (1). It follows from Proposition 3.4 (3). �

Corollary 3.8. Let n > 1 and let 0 −→ A −→ B −→ C −→ 0 be an exact

sequence of left R-modules. If C is (T , n)-presented and B is (T , n − 1)-presented,

then A is (T , n− 1)-presented.

P r o o f. Since n > 1 and B is (T , n − 1)-presented, we have the following com-

mutative diagram:

0

��

0

��

K

��

K

��

0 // P

��

// F

��

// C // 0

0 // A

��

// B

��

// C // 0

0 0

with exact rows and columns, where F is finitely generated free. Moreover, by

Corollary 3.7,K is (T , n−2)-presented. Since C is (T , n)-presented, by Corollary 3.7,

P is (T , n−1)-presented, and so A is (T , n−1)-presented by Proposition 3.5 (2). �

4. (T , n)-injective and (T , n)-flat modules

Definition 4.1. A left R-moduleM is called (T , n)-injective, if ExtnR(A,M) = 0

for each (T , n+1)-presented left R-module A. A right R-moduleM is called (T , n)-

flat, if TorRn (M,A) = 0 for each (T , n+ 1)-presented left R-module A.

Clearly, n-FP-injective left R-modules are (T , n)-injective, n-flat right R-modules

are (T , n)-flat. By Proposition 3.4 (3), it is easy to see that a (T , n)-injective module

is (T , n + 1)-injective, a (T , n)-flat module is (T , n + 1)-flat. We denote by TnI

the class of all (T , n)-injective left R-modules, and denote by TnF the class of all

(T , n)-flat right R-modules. We recall that if n, d are nonnegative integers, then

according to [18], a right R-module M is called (n, d)-injective if Extd+1

R (A,M)=0

for every n-presented right R-module A; a left R-module M is called (n, d)-flat if

TorRd+1
(A,M)=0 for every n-presented right R-module A.
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Example 4.2. (1) Let T = R-Mod. Then a left R-module M is (T , n)-injective

if and only if M is n-FP-injective, a right R-module M is (T , n)-flat if and only if

M is n-flat. In particular, a left R-module M is (T , 1)-injective if and only if M is

FP-injective, a right R-module M is (T , 1)-flat if and only if M is flat.

(2) Let T = {0}. Then a left R-module M is (T , n)-injective if and only if M

is (n + 1, n − 1)-injective, a right R-module M is (T , n)-flat if and only if M is

(n+ 1, n− 1)-flat. In particular, a left R-module M is (T , 1)-injective if and only if

M is (2, 0)-injective, a right R-module M is (T , 1)-flat if and only if M is (2, 0)-flat.

Recall that an exact sequence of left R-modules 0 −→ M −→ M ′ −→ M ′′ −→ 0

is said to be pure if every finitely presented left R-module is projective with respect

to this exact sequence.

Definition 4.3. Let 0 −→ M −→ M ′ −→ M ′′ −→ 0 be an exact sequence of

left R-modules. Then it is said to be T -pure if every (T , 2)-presented left R-module

is projective with respect to it.

Example 4.4. (1) Let T = R-Mod. Then it is easy to see that an exact sequence

of left R-modules 0 −→M −→M ′ −→M ′′ −→ 0 is pure if and only if it is T -pure.

(2) Let T = {0}. Then it is easy to see that an exact sequence of left R-modules

0 −→ M −→ M ′ −→ M ′′ −→ 0 is T -pure if and only if every 2-presented left

R-module is projective with respect to it.

Let . . . −→ P1

d1−→ P0

d0−→ A −→ 0 be a projective resolution of a module A.

As usual, we will denote Ker(di) by Ki, and we will call Ki an i-syzygy of A. If

n > 2, then it is easy to see that a left R-module A is (T , n+1)-presented if and only

if it is (n − 2)-presented; and if the sequence of right R-modules 0 −→ Kn−2 −→

Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0 is exact, where F0, . . . , Fn−2 are finitely

generated free, then Kn−2 is (T , 2)-presented.

Theorem 4.5. Let M be a left R-module and n > 2. Then the following state-

ments are equivalent:

(1) M is (T , n)-injective.

(2) If the sequence 0 −→ Kn−2 −→ Fn−2 −→ . . . −→ F1 −→ F0 −→ A −→ 0

is exact, where F0, . . . , Fn−2 are finitely generated free and Kn−2 is (T , 2)-

presented, then Ext1R(Kn−2,M) = 0.

(3) For every (n− 1)-presentation Fn−1 −→ . . . −→ F0 −→ A −→ 0 of a (T , n+1)-

presented module A with F0, . . . , Fn−2, Fn−1 finitely generated free, every ho-

momorphism from the (n− 1)-syzygy Kn−1 to M can be extended to a homo-

morphism from Fn−1 to M .

(4) There exists a T -pure exact sequence 0 −→ M −→ M ′ −→ M ′′ −→ 0 of left

R-modules with M ′ (T , n)-injective.
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P r o o f. (1) ⇔ (2). By the isomorphism ExtnR(A,M) ∼= Ext1R(Kn−2,M).

(2) ⇔ (3). By the exact sequence

Hom(Fn−1,M) −→ Hom(Kn−1,M) −→ Ext1R(Kn−2,M) −→ Ext1R(Fn−1,M) = 0.

(1) ⇒ (4). It is obvious.

(4) ⇒ (2). Since 0 −→ M −→ M ′ −→ M ′′ −→ 0 is T -pure and Kn−2 is (T , 2)-

presented, we have that the map Hom(Kn−2,M
′) −→ Hom(Kn−2,M

′′) is epic. So

from the exact sequence

Hom(Kn−2,M
′) −→ Hom(Kn−2,M

′′) −→ Ext1R(Kn−2,M) −→ 0

we have Ext1R(Kn−2,M) = 0. �

Proposition 4.6. Let {Mi : i ∈ I} be a family of left R-modules. Then the

following statements are equivalent:

(1) Each Mi is (T , n)-injective.

(2)
∏

i∈I

Mi is (T , n)-injective.

(3)
⊕

i∈I

Mi is (T , n)-injective.

P r o o f. (1) ⇔ (2). By the isomorphism ExtnR

(

A,
∏

i∈I

Mi

)

∼=
∏

i∈I

ExtnR(A,Mi).

(2) ⇒ (3). For every (n − 1)-presentation Fn−1 −→ . . . −→ F0 −→ A −→ 0 of

a (T , n+ 1)-presented module A with F0, . . . , Fn−2, Fn−1 finitely generated free, by

Proposition 3.4 (4), the (n−1)-syzygyKn−1 is T -finitely presented and hence finitely

generated. Let f be any homomorphism from Kn−1 to
⊕

i∈I

Mi. Then there exists

a finite subset I0 of I such that Im(f) ⊆
⊕

i∈I0

Mi. By (2),
⊕

i∈I0

Mi is (T , n)-injective.

So, by Theorem 4.5 (3), f can be extended to a homomorphism from Fn−1 to
⊕

i∈I0

Mi,

and then f can be extended to a homomorphism from Fn−1 to
⊕

i∈I

Mi. Therefore
⊕

i∈I

Mi is (T , n)-injective by Theorem 4.5 (3) again.

(3) ⇒ (1). It is trivial. �

Proposition 4.7. Let {Mi : i ∈ I} be a family of right R-modules. Then the

following conditions are equivalent:

(1) Every Mi is (T , n)-flat.

(2)
⊕

i∈I

Mi is (T , n)-flat.

P r o o f. By the isomorphism TorRn

(

⊕

i∈I

Mi, A
)

∼=
⊕

i∈I

TorRn (Mi, A). �
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Theorem 4.8. Let M be a right R-module. Then M is (T , n)-flat if and only if

M+ is (T , n)-injective.

P r o o f. It follows from the isomorphism TorRn (M,A)+ ∼= ExtnR(A,M
+). �

Proposition 4.9.

(1) Pure submodules of (T , n)-injective modules are (T , n)-injective.

(2) Pure submodules of (T , n)-flat modules are (T , n)-flat.

P r o o f. (1) Let N be a pure submodule of a (T , n)-injective module M . Then

N is T -pure in M , and so, by Theorem 4.5 (4), N is (T , n)-injective.

(2) Let M be a (T , n)-flat module and N a pure submodule of M . Then the

pure exact sequence 0 −→ N −→ M −→M/N −→ 0 induces a split exact sequence

0 −→ (M/N)+ −→ M+ −→ N+ −→ 0. By Theorem 4.8, M+ is (T , n)-injective, so

N+ is (T , n)-injective by Proposition 4.6, and hence N is (T , n)-flat by Theorem 4.8

again. �

Remark 4.10. From Theorem 4.8, the (T , n)-flatness of MR can be character-

ized by the (T , n)-injectivity of M+. On the other hand, by [3], Lemma 2.7 (1),

the sequence TorRn (M
+, A) −→ ExtnR(A,M)+ −→ 0 is exact for any n-presented

left R-module A and any left R-module M . So, for any left R-module M , if M+ is

(T , n)-flat, then M is (T , n)-injective.

Let F be a class of R-modules and M an R-module. Following [6], we say that

a homomorphism ϕ : M −→ F where F ∈ F is an F -preenvelope of M if for any

morphism f : M −→ F ′ with F ′ ∈ F there is a g : F −→ F ′ such that gϕ = f .

An F -preenvelope ϕ : M −→ F is said to be an F -envelope if every endomorphism

g : F −→ F such that gϕ = ϕ is an isomorphism. Dually, we have the definitions of

an F -precover and an F -cover. The F -envelopes (F -covers) may not exist in general,

but if they exist, they are unique up to isomorphism.

A pair (A,B) of classes of R-modules is called a cotorsion theory, see [6], if A⊥ = B

and ⊥B = A. A cotorsion theory (A,B) is called perfect, see [7], if every R-module

has a B-envelope and an A-cover. A cotorsion theory (A,B) is called complete

(see [6], Definition 7.1.6, and [15], Lemma 1.13) if for any R-module M there are

exact sequences 0 −→ M −→ B −→ A −→ 0 with A ∈ A and B ∈ B, and

0 −→ B′ −→ A′ −→M −→ 0 with A′ ∈ A and B′ ∈ B.

For a class F of R-modules, we put F+ = {F+ : F ∈ F}. We recall that a left

R-module M is said to be pure injective if it is injective with respect to all pure

exact sequences of left R-modules. Following [15], we denote by PI the class of pure

injective left R-modules.

Theorem 4.11. Let R be a ring. Then:
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(1) (⊥(TnI), TnI) is a complete cotorsion theory.

(2) (TnF , (TnF)⊥) is a perfect cotorsion theory.

P r o o f. (1) Let X be the set of representatives of all Kn−2’s in Theorem 4.5 (2).

Then by Theorem 4.5, TnI = X⊥, and so (⊥(TnI), TnI) = (⊥(X⊥), X⊥) is a com-

plete cotorsion theory by [15], Theorem 2.2 (2).

(2) Write A = TnF and let X be the class of all Kn−2’s in Theorem 4.5 (2). Then

by dimension shifting one shows that A ∈ TnF if and only if Tor
R
1 (A,X) = 0 for

each X ∈ X . Thus, by the isomorphism TorR1 (A,B)+ ∼= Ext1R(A,B
+), we have A =

⊥(X+), and so (TnF , (TnF)⊥) = (⊥(X+), (⊥(X+))⊥) is a cotorsion theory generated

by X+. Since every character module is pure injective by [6], Proposition 5.3.7, we

have X+ ⊆ PI, and so it is a perfect cotorsion theory by [15], Theorem 2.8. �

Following [6], Definition 5.3.22, a right R-module M is said to be cotorsion if

Ext1R(F, M) = 0 for all flat right R-modules F . We call a right R-moduleM (T , n)-

cotorsion if Ext1R(F, M) = 0 for all (T , n)-flat right R-modules F . By Theorem 4.11,

we have the following results.

Corollary 4.12. Let R be a ring. Then:

(1) Every right R-module has a (T , n)-flat cover.

(2) Every right R-module has a (T , n)-cotorsion envelope.

5. (T , n)-coherent rings

We begin this section with the concepts of (T , n)-coherent rings and T -coherent

rings.

Definition 5.1. A ring R is called (T , n)-coherent, if every (T , n+1)-presented

module is (n+ 1)-presented. A ring R is called T -coherent if it is (T , 1)-coherent.

It is easy to see that a ring R is (T , n)-coherent if and only if every (T , n)-presented

submodule of a finitely generated free left R-module is n-presented, and a ring R is

T -coherent if and only if every T -finite presented submodule of a finitely generated

free left R-module is finitely presented.

Example 5.2. (1) Let T = R-Mod. Then R is (T , n)-coherent if and only if R

is left n-coherent. In particular, R is (T , 1)-coherent if and only if R is left coherent.

(2) Let T = {0}. Then R is (T , n)-coherent for any positive integer n.

Next we will characterize (T , n)-coherent rings in terms of, among others, (T , n)-

injective modules and (T , n)-flat modules. These results extend the theory of coher-

ence of rings.
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Theorem 5.3. The following statements are equivalent for the ring R:

(1) R is (T , n)-coherent.

(2) lim
−→

ExtnR(A,Mi) ∼= ExtnR(A, lim−→
Mi) for any (T , n+1)-presented module A and

direct system (Mi)i∈I of left R-modules.

(3) TorRn (
∏

Ni, A) ∼=
∏

TorRn (Ni, A) for any family {Ni} of right R-modules and

any (T , n+ 1)-presented module A.

(4) Any direct product of copies of RR is (T , n)-flat.

(5) Any direct product of (T , n)-flat right R-modules is (T , n)-flat.

(6) Any direct limit of (T , n)-injective left R-modules is (T , n)-injective.

(7) Any direct limit of injective left R-modules is (T , n)-injective.

(8) A left R-module M is (T , n)-injective if and only if M+ is (T , n)-flat.

(9) A left R-module M is (T , n)-injective if and only if M++ is (T , n)-injective.

(10) A right R-module M is (T , n)-flat if and only if M++ is (T , n)-flat.

(11) For any ring S, TorRn (HomS(B,E), A) ∼= HomS(Ext
n
R(A,B), E) for the situation

(RA,RBS , ES) with A (T , n+ 1)-presented and ES injective.

(12) Every right R-module has a (T , n)-flat preenvelope.

P r o o f. (1) ⇒ (2). follows from [3], Lemma 2.9 (2).

(1) ⇒ (3). follows from [3], Lemma 2.10 (2).

(2) ⇒ (6) ⇒ (7) and (3) ⇒ (5) ⇒ (4) are trivial.

(7) ⇒ (1). Let A be (T , n + 1)-presented with a finite n-presentation Fn
dn−→

Fn−1

dn−1

−→ . . . −→ F2

d2−→ F1

d1−→ F0

d0−→ A −→ 0. Write Kn−1 = Ker(dn−1) and

Kn−2 = Ker(dn−2). Then Kn−1 is finitely generated, and we get an exact sequence

of left R-modules 0 −→ Kn−1 −→ Fn−1 −→ Kn−2 −→ 0. Let (Ei)i∈I be any direct

system of injective left R-modules (with I directed). Then lim
−→

Ei is (T , n)-injective

by (7), so ExtnR(A, lim−→
Ei) = 0 and then Ext1R(Kn−2, lim−→

Ei) = 0. Thus, we have

a commutative diagram

lim
−→

Hom(Kn−2, Ei) //

f

��

lim
−→

Hom(Fn−1, Ei) //

g

��

lim
−→

Hom(Kn−1, Ei) //

h

��

0

Hom(Kn−2, lim−→
Ei) // Hom(Fn−1, lim−→

Ei) // Hom(Kn−1, lim−→
Ei) // 0

with exact rows. Since f and g are isomorphisms by [16], 25.4(d), h is an isomorphism

by the Five lemma. Now, let (Mi)i∈I be any direct system of left R-modules (with
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I directed). Then we have a commutative diagram with exact rows

0 // lim
−→

Hom(Kn−1,Mi) //

φ
1

��

lim
−→

Hom(Kn−1, E(Mi)) //

φ
2

��

lim
−→

Hom(Kn−1, E(Mi)/Mi)

φ
3

��

0 // Hom(Kn−1, lim−→
Mi) // Hom(Kn−1, lim−→

E(Mi)) // Hom(Kn−1, lim−→
E(Mi)/Mi)

where E(Mi) is the injective hull ofMi. SinceKn−1 is finitely generated, by [16], Sec-

tion 24.9, the maps φ
1
, φ

2
and φ

3
are monic. By the above proof, φ

2
is an isomor-

phism. Hence φ
1
is also an isomorphism by the Five lemma again, so Kn−1 is finitely

presented by [16], Section 25.4 (d), again, and thus A is (n+1)-presented. Therefore

R is (T , n)-coherent.

(4) ⇒ (1). It follows similarly to (7) ⇒ (1).

(5) ⇒ (12). Let N be any left R-module. By [6], Lemma 5.3.12, there is a cardinal

number ℵα dependent on Card(N) and Card(R) such that for any homomorphism

f : N −→ F with F (T , n)-flat, there is a pure submodule S of F such that f(N) ⊆ S

and Card S 6 ℵα. Thus f has a factorization N −→ S −→ F with S (T , n)-flat

by Proposition 4.9 (2). Now let (ϕβ)β∈B be all such homomorphisms ϕβ : N −→

Sβ with Card Sβ 6 ℵα and Sβ (T , n)-flat. Then any homomorphism N −→ F

with F (T , n)-flat has a factorization N −→ Si −→ F for some i ∈ B. Thus the

homomorphism N −→
∏

β∈B

Sβ induced by all ϕβ is a (T , n)-flat preenvelope since
∏

β∈B

Sβ is (T , n)-flat by (5).

(12) ⇒ (5). For any family {Fi}i∈I of (T , n)-flat left R-modules, by hypothesis,
∏

i∈I

Fi has a (T , n)-flat preenvelope ϕ :
∏

i∈I

Fi −→ F . Let pi :
∏

i∈I

Fi −→ Fi be the

projection. Then there exists fi : F −→ Fi such that pi = fiϕ. Define ψ : F −→
∏

i∈I

Fi by ψ(x) = (fi(x)) for every x ∈ F , then it is easy to check that ψϕ = 1. Hence
∏

i∈I

Fi is isomorphic to a direct summand of F , and so
∏

i∈I

Fi is (T , n)-flat.

(1) ⇒ (11). For any (T , n + 1)-presented module A, since R is (T , n)-coherent,

A is (n+ 1)-presented. And so (11) follows from [3], Lemma 2.7 (2).

(11) ⇒ (8). Let S = Z, E = Q/Z and B = M . Then TorRn (M
+, A) ∼=

ExtnR(A,M)+ for any (T , n+ 1)-presented module A by (11), and hence (8) holds.

(8) ⇒ (9). Let M be a left R-module. If M is (T , n)-injective, then M+ is (T , n)-

flat by (8), and so M++ is (T , n)-injective by Theorem 4.8. Conversely, if M++

is (T , n)-injective, then M , being a pure submodule of M++ (see [14], Exercise 41,

page 48), is (T , n)-injective by Proposition 4.9 (1).

(9) ⇒ (10). If M is a (T , n)-flat right R-module, then M+ is a (T , n)-injective

left R-module by Theorem 4.8, and so M+++ is (T , n)-injective by (9). Thus M++
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is (T , n)-flat by Theorem 4.8 again. Conversely, if M++ is (T , n)-flat, then M is

(T , n)-flat by Proposition 4.9 (2) as M is a pure submodule of M++.

(10) ⇒ (5). Let {Ni}i∈I be a family of (T , n)-flat right R-modules. Then by

Proposition 4.7,
⊕

i∈I

Ni is (T , n)-flat, and so
(

∏

i∈I

N+

i

)+
∼=

(

⊕

i∈I

Ni

)++

is (T , n)-

flat by (10). Since
⊕

i∈I

N+

i is a pure submodule of
∏

i∈I

N+

i by [2], Lemma 1 (1),

(

∏

i∈I

N+

i

)+

−→
(

⊕

i∈I

N+

i

)+

−→ 0 splits, and hence
(

⊕

i∈I

N+

i

)+

is (T , n)-flat. Thus

∏

i∈I

N++

i
∼=

(

⊕

i∈I

N+

i

)+

is (T , n)-flat. Since
∏

i∈I

Ni is a pure submodule of
∏

i∈I

N++

i

by [2], Lemma 1 (2),
∏

i∈I

Ni is (T , n)-flat by Proposition 4.9 (2). �

Corollary 5.4. The following statements are equivalent for a ring R:

(1) R is left n-coherent.

(2) lim
−→

ExtnR(C,Mα) ∼= ExtnR(C, lim−→
Mα) for any n-presented left R-module C and

direct system (Mα)α∈A of left R-modules.

(3) TorRn (
∏

Nα, C) ∼=
∏

TorRn (Nα, C) for any family {Nα} of right R-modules and

any n-presented left R-module C.

(4) Any direct product of copies of RR is n-flat.

(5) Any direct product of n-flat right R-modules is n-flat.

(6) Any direct limit of n-FP-injective left R-modules is n-FP-injective.

(7) Any direct limit of injective left R-modules is n-FP-injective.

(8) A left R-module M is n-FP-injective if and only if M+ is n-flat.

(9) A left R-module M is n-FP-injective if and only if M++ is n-FP-injective.

(10) A right R-module M is n-flat if and only if M++ is n-flat.

(11) For any ring S, TorRn (HomS(B,E), C) ∼= HomS(Ext
n
R(C,B), E) for the situation

(RC,RBS , ES) with C n-presented and ES injective.

(12) Every right R-module has an n-flat preenvelope.

We note that the equivalences of (1)–(6), (8)–(11) in Corollary 5.4 appeared in [3],

Theorem 3.1.

Lemma 5.5. Let A be an (n−1)-presented left R-module. Then A is n-presented

if and only if ExtnR(A,M) = 0 for any FP-injective module M .

P r o o f. Let A have a finite (n−1)-presentation Fn−1

dn−1

−→ . . . −→ F2

d2−→ F1

d1−→

F0

ε
−→ A −→ 0. Write Kn−2 = Ker(dn−2). Then Kn−2 is finitely generated. By

the isomorphism ExtnR(A,M) ∼= Ext1R(Kn−2,M), we have that ExtnR(A,M) = 0 for

any FP-injective module M if and only if Ext1R(Kn−2,M) = 0 for any FP-injective

moduleM . So, by [5], we have that ExtnR(A,M) = 0 for any FP-injective module M

if and only if Kn−2 is finitely presented, that is, A is n-presented. �
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Theorem 5.6. The following statements are equivalent for a ring R.

(1) R is (T , n)-coherent.

(2) Extn+1

R (A,N) = 0 for any (T , n + 1)-presented left R-module A and any FP-

injective left R-module N .

(3) If N is a (T , n)-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is (T , n)-injective.

(4) For any FP-injective left R-module N , E(N)/N is (T , n)-injective, where E(N)

is the injective hull of N .

P r o o f. (1) ⇒ (2). For any (T , n + 1)-presented left R-module A, there exists

an exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0, where F is

finitely generated free and K is (T , n)-presented. Since R is (T , n)-coherent, K is

n-presented, and so from the exact sequence

0 = ExtnR(F,N) −→ ExtnR(K,N) −→ Extn+1

R (A,N) −→ Extn+1

R (F,N) = 0

we have Extn+1

R (A,N) ∼= ExtnR(K,N) = 0 by Lemma 5.5 since N is FP-injective.

(2) ⇒ (3). For any (T , n + 1)-presented left R-module A, the exact sequence

0 −→ N1 −→ N −→ N/N1 −→ 0 induces the exactness of the sequence

0 = ExtnR(A,N) −→ ExtnR(A,N/N1) −→ Extn+1

R (A,N1) = 0.

Therefore ExtnR(A,N/N1) = 0, as required.

(3) ⇒ (4) is obvious.

(4) ⇒ (1). Let A be a (T , n + 1)-presented left R-module. Then there exists an

exact sequence of left R-modules 0 −→ K −→ F −→ A −→ 0, where F is finitely

generated free and K is (n−1)-presented. For any FP-injective module N , E(N)/N

is (T , n)-injective by (4). From the exactness of the two sequences

0 = ExtnR(F,N) −→ ExtnR(K,N) −→ Extn+1

R (A,N) −→ Extn+1

R (F,N) = 0

and

0 = ExtnR(A,E(N))→ ExtnR(A,E(N)/N)→ Extn+1

R (A,N)→ Extn+1

R (A,E(N)) = 0

we have ExtnR(K,N) ∼= Extn+1

R (A,N) ∼= ExtnR(A,E(N)/N) = 0. Thus, K is n-

presented by Lemma 5.5, and so A is (n + 1)-presented. Therefore, R is (T , n)-

coherent. �
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Corollary 5.7. The following statements are equivalent for a ring R:

(1) R is left n-coherent.

(2) Extn+1

R (A,N) = 0 for any n-presented left R-module A and any FP-injective

left R-module N .

(3) If N is an n-FP-injective left R-module, N1 is an FP-injective submodule of N ,

then N/N1 is n-FP-injective.

(4) For any FP-injective left R-module N , E(N)/N is n-FP-injective.

Corollary 5.8. Let R be a (T , n)-coherent ring. Then every left R-module has

a (T , n)-injective cover.

P r o o f. Let 0 −→ A −→ B −→ C −→ 0 be a pure exact sequence of left R-

modules with B (T , n)-injective. Then 0 −→ C+ −→ B+ −→ A+ −→ 0 is split

exact. Since R is (T , n)-coherent, B+ is (T , n)-flat by Theorem 5.3 (8), so C+

is (T , n)-flat, and hence C is (T , n)-injective by Remark 4.10. Thus, the class of

(T , n)-injective modules is closed under pure quotients. By [9], Theorem 2.5, and

Proposition 4.6, every left R-module has a (T , n)-injective cover. �

Corollary 5.9. Let R be a left n-coherent ring. Then every left R-module has

an n-FP-injective cover.

Corollary 5.10. The following statements are equivalent for a (T , n)-coherent

ring R:

(1) Every (T , n)-flat right R-module is n-flat.

(2) Every (T , n)-injective left R-module is n-FP-injective.

In this case, R is left n-coherent.

P r o o f. (1) ⇒ (2). Let M be any (T , n)-injective left R-module. Then M+ is

a (T , n)-flat right R-module by Theorem 5.3 (8) since R is (T , n)-coherent, and so

M+ is n-flat by (1). Thus M++ is n-FP-injective. Since M is a pure submodule of

M++ , and a pure submodule of an n-FP-injective module is n-FP-injective, so M

is n-FP-injective.

(2) ⇒ (1). Let M be any (T , n)-flat right R-module. Then M+ is a (T , n)-

injective left R-module by Theorem 4.8, and so M+ is n-FP-injective by (2). Thus

M is n-flat.

In this case, any direct product of n-flat right R-modules is n-flat by Theo-

rem 5.3 (5), and so R is left n-coherent by Corollary 5.4 (5). �

Proposition 5.11. The following statements are equivalent for a ring R:

(1) Every right R-module has a monic (T , n)-flat preenvelope.
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(2) R is (T , n)-coherent and RR is (T , n)-injective.

(3) R is (T , n)-coherent and every left R-module has an epic (T , n)-injective cover.

(4) R is (T , n)-coherent and every injective right R-module is (T , n)-flat.

(5) R is (T , n)-coherent and every flat left R-module is (T , n)-injective.

P r o o f. (1) ⇒ (4). Assume (1). Then it is clear that R is a (T , n)-coherent

ring by Theorem 5.3 (12). Let E be any injective right R-module. E has a monic

(T , n)-flat preenvelope F , so E is isomorphic to a direct summand of F , and thus E

is (T , n)-flat.

(4) ⇒ (5). Let M be a flat left R-module. Then M+ is injective, and so M+ is

(T , n)-flat by (4). Hence M is (T , n)-injective by Theorem 5.3 (8).

(5) ⇒ (2). It is obvious.

(2) ⇒ (1). Let M be any right R-module. Then M has a (T , n)-flat preenvelope

f : M → F by Theorem 5.3 (12). Since (RR)
+ is a cogenerator, there exists an

exact sequence 0 −→M
g

−→
∏

(RR)
+. Since RR is (T , n)-injective, by Theorem 5.3,

∏

(RR)
+ is (T , n)-flat, and so there exists a rightR-homomorphism h : F →

∏

(RR)
+

such that g = hf , which shows that f is monic.

(2) ⇒ (3). Let M be a left R-module. Then M has a (T , n)-injective cover

ϕ : C → M by Corollary 5.8. On the other hand, there is an exact sequence F
α

−→

M −→ 0 with F free. Since F is (T , n)-injective by (2) and Proposition 4.6, there

exists a homomorphism β : F → C such that α = ϕβ. It follows that ϕ is epic.

(3) ⇒ (2). Let f : N −→ RR be an epic (T , n)-injective cover. Then the projec-

tivity of RR implies that RR is isomorphic to a direct summand of N , and so RR is

(T , n)-injective. �

Corollary 5.12. The following statements are equivalent for a ring R:

(1) Every right R-module has a monic n-flat preenvelope.

(2) R is left n-coherent and RR is n-FP-injective.

(3) R is left n-coherent and every left R-module has an epic n-FP-injective cover.

(4) R is left n-coherent and every injective right R-module is n-flat.

(5) R is left n-coherent and every flat left R-module is n-FP-injective.

Acknowledgment. The author wishes to thank the referee for careful reading

of the paper and giving a detailed and helpful report.

473



References

[1] S.U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1960), 457–473. zbl MR doi
[2] T. J. Cheatham, D.R. Stone: Flat and projective character modules. Proc. Am. Math.
Soc. 81 (1981), 175–177. zbl MR doi

[3] J.Chen, N.Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211–3216. zbl MR doi
[4] D.L. Costa: Parameterizing families of non-Noetherian rings. Commun. Algebra 22
(1994), 3997–4011. zbl MR doi

[5] E.Enochs: A note on absolutely pure modules. Canad. Math. Bull. 19 (1976), 361–362. zbl MR doi
[6] E.E. Enochs, O.M.G. Jenda: Relative Homological Algebra. De Gruyter Expositions in
Mathematics 30, Walter de Gruyter, Berlin, 2000. zbl MR doi

[7] E.E. Enochs, O.M.G. Jenda, J. A. Lopez-Ramos: The existence of Gorenstein flat cov-
ers. Math. Scand. 94 (2004), 46–62. zbl MR doi

[8] M.Finkel Jones: Coherence relative to an hereditary torsion theory. Commun. Algebra
10 (1982), 719–739. zbl MR doi

[9] H.Holm, P. Jørgensen: Covers, precovers, and purity. Illinois J. Math. 52 (2008),
691–703. zbl MR

[10] L.Mao, N.Ding: Relative coherence of rings. J. Algebra Appl. 11 (2012), 1250047,
16 pages. zbl MR doi

[11] C.Megibben: Absolutely pure modules. Proc. Am. Math. Soc. 26 (1970), 561–566. zbl MR doi
[12] J. J. Rotman: An Introduction to Homological Algebra. Pure and Applied Mathemat-

ics 85, Academic Press, Harcourt Brace Jovanovich Publishers, New York-London, 1979. zbl MR
[13] B. Stenström: Coherent rings and FP-injective modules. J. Lond. Math. Soc., II. Ser. 2

(1970), 323–329. zbl MR doi
[14] B. Stenström: Rings of Quotients. An Introduction to Methods of Ring Theory. Die

Grundlehren der mathematischen Wissenschaften, Band 217, Springer, New York, 1975. zbl MR doi
[15] J.Trlifaj: Cover, Envelopes, and Cotorsion Theories. Lecture notes for the workshop.

Homological Methods in Module Theory, Cortona, 2000.
[16] R.Wisbauer: Foundations of Module and Ring Theory. A Handbook for Study and

Research. Algebra, Logic and Applications 3, Gordon and Breach Science Publishers,
Philadelphia, 1991. zbl MR

[17] X.Yang, Z. Liu: n-flat and n-FP-injective modules. Czech. Math. J. 61 (2011), 359–369. zbl MR doi
[18] D.Zhou: On n-coherent rings and (n, d)-rings. Commun. Algebra 32 (2004), 2425–2441. zbl MR doi

Author’s address: Z h a nm i n Z hu, Department of Mathematics, Jiaxing University,
118 Jiahang Rd, Nanhu, 314001 Jiaxing, Zhejiang, P.R. China e-mail: zhuzhanminzjxu@
hotmail.com.

474

https://zbmath.org/?q=an:0100.26602
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0120260
http://dx.doi.org/10.1090/S0002-9947-1960-0120260-3
https://zbmath.org/?q=an:0458.16014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0593450
http://dx.doi.org/10.1090/S0002-9939-1981-0593450-2
https://zbmath.org/?q=an:0877.16010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1402554
http://dx.doi.org/10.1080/00927879608825742
https://zbmath.org/?q=an:0814.13010
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1280104
http://dx.doi.org/10.1080/00927879408825061
https://zbmath.org/?q=an:0346.16020
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0429988
http://dx.doi.org/10.4153/CMB-1976-054-5
https://zbmath.org/?q=an:0952.13001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1753146
http://dx.doi.org/10.1515/9783110803662
https://zbmath.org/?q=an:1061.16003
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2032335
http://dx.doi.org/10.7146/math.scand.a-14429
https://zbmath.org/?q=an:0483.16027
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0650869
http://dx.doi.org/10.1080/00927878208822745
https://zbmath.org/?q=an:1189.16007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2524661
https://zbmath.org/?q=an:1252.16018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2928115
http://dx.doi.org/10.1142/S0219498811005749
https://zbmath.org/?q=an:0216.33803
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0294409
http://dx.doi.org/10.1090/S0002-9939-1970-0294409-8
https://zbmath.org/?q=an:0441.18018
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0538169
https://zbmath.org/?q=an:0194.06602
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0271145
http://dx.doi.org/10.1112/jlms/s2-2.2.323
https://zbmath.org/?q=an:0296.16001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0389953
http://dx.doi.org/10.1007/978-3-642-66066-5
https://zbmath.org/?q=an:0746.16001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1144522
https://zbmath.org/?q=an:1249.13011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2905409
http://dx.doi.org/10.1007/s10587-011-0080-4
https://zbmath.org/?q=an:1089.16001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2100480
http://dx.doi.org/10.1081/AGB-120037230

		webmaster@dml.cz
	2020-07-03T23:08:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




