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Abstract. We study graphs whose vertices possess the same value of betweenness central-
ity (which is defined as the sum of relative numbers of shortest paths passing through a given
vertex). Extending previously known results of S. Gago, J. Hurajová, T. Madaras (2013),
we show that, apart of cycles, such graphs cannot contain 2-valent vertices and, moreover,
are 3-connected if their diameter is 2. In addition, we prove that the betweenness uniformity
is satisfied in a wide graph family of semi-symmetric graphs, which enables us to construct
a variety of nontrivial cubic betweenness-uniform graphs.
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1. Introduction

This paper continues the research originated in [9]. We recall here some spe-

cialized notation and definitions. For a graph G with vertex set V (G) and edge

set E(G), ∆(G) and δ(G) denote the maximum and the minimum degree of vertices

of G, respectively. The set of all neighbours of a vertex u is denoted by N(u). For

two vertices u, v of G, d(u, v) denotes their distance (that is, the length of a shortest

(u–v)-path); the diameter diam(G) of G is the maximum of d(u, v) taken over all

pairs u, v of vertices of G, and the average distance l(G) of G is the arithmetic mean

of d(u, v) for all pairs of distinct vertices u, v. An n-vertex cycle is denoted by Cn.

Other terminology not defined here is taken from the book [7].

In both pure and applied graph theory, a great attention is paid to the study of

local graph characteristics, particularly, of real-valued functions on the vertex set

which are isomorphism-invariant (under an additional assumption linking the higher

function values with more centrally perceived positions of vertices within a graph,

they are known as vertex centrality indices); the standard examples are the vertex

degree, the vertex eccentricity (that is, the maximum distance from the given vertex)
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or the total distance (the sum of distances of all vertices from given vertex). One

of typical areas in their study is the investigation of properties of graphs whose

vertices have the same value of the centrality function considered—in the case of

vertex degree, these graphs are precisely regular graphs, for the eccentricity, they are

known as self-centered graphs (see [1], [3], [4]) and, for the total distance, they are

known under the names self-median or farness-selfcentric graphs (see, for example,

[2] or [10]). In [9], we initiated the study of betweenness-uniform graphs whose

vertices have the same value of the betweenness centrality defined as follows (see [8]):

Given a graph G and its distinct vertices u, v, x, let σu,v be the number of all

shortest (u–v)-paths in G, and σu,v(x) the number of all shortest (u–v)-paths which

pass through x. Then the betweenness centrality of x is defined as

B(x) =
∑

u,v∈V (G)

σu,v(x)

σu,v

.

Among the results of [9], it was shown that each betweenness-uniform graph is

2-connected; furthermore, if it contains a universal or sub-universal vertex (that is,

one which is adjacent to all vertices or to all vertices except a single one), then it

is isomorphic to a complete graph or has diameter two, respectively. However, the

computational results of Section 2 on large collections of graphs suggest that the

following stronger conjectures might be true:

Conjecture 1.1. If G is a betweenness-uniform graph which is not a cycle, then

G is 3-connected.

Conjecture 1.2. If G is a betweenness-uniform graph and ∆(G) = n − k, then

diam(G) 6 k.

We prove the latter result for k = 3 with even better upper bound and the former

— with the exception of two short cycles — for graphs of diameter 2, and show that

betweenness-uniform graph which is not a cycle, cannot contain a vertex of degree 2.

In addition, we study sparse cubic betweenness-uniform graphs and are interested

in non-transitive ones. Note that non-transitive cubic graphs cannot be obtained by

constructions used in [9]; nevertheless, we show that there exist infinite families of

such graphs.

2. The results

First, in Figure 1, we present an updated overview of all betweenness-uniform

connected graphs from 4 up to 10 vertices (their list first appeared in [9]) containing
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(2, 2, 2, 1

2
) (3, 1, 3, 0) (2, 2, 2, 1) (4, 1, 4, 0) (2, 3, 2, 2) (3, 2, 3, 1) (3, 2, 3, 1) (4, 2, 3, 2

3
)

(4, 2, 4, 1

2
) (5, 1, 5, 0) (2, 3, 2, 3) (4, 2, 4, 1) (6, 1, 6, 0) (2, 4, 2, 9

2
) (3, 3, 3, 5

2
) (4, 2, 4, 3

2
)

(3, 2, 3, 2) (5, 2, 4, 5

4
) (4, 2, 4, 3

2
) (4, 2, 4, 3

2
) (5, 2, 4, 1) (5, 2, 5, 1) (6, 2, 4, 3

4
) (6, 2, 6, 1

2
)

(7, 1, 7, 0) (2, 4, 2, 6) (4, 2, 4, 2) (4, 2, 4, 2) (4, 2, 4, 2) (7, 2, 4, 1) (4, 2, 4, 2) (4, 2, 4, 2)

(5, 2, 4, 5

3
) (6, 2, 6, 1) (6, 2, 4, 4

3
) (6, 2, 5, 1) (6, 2, 6, 1) (7, 2, 6, 2

3
) (8, 1, 8, 0) (2, 5, 2, 8)

(3, 3, 3, 4) (4, 3, 4, 3) (5, 2, 5, 2) (3, 3, 3, 4) (6, 2, 5, 9

5
) (4, 2, 4, 5

2
) (3, 2, 3, 3) (6, 2, 5, 8

5
)

(4, 2, 4, 5

2
) (4, 3, 4, 3) (5, 2, 5, 2) (6, 2, 5, 17

10
) (7, 2, 5, 7

5
) (5, 2, 5, 2) (5, 2, 5, 2) (5, 2, 4, 2)

(5, 2, 5, 2) (6, 2, 5, 3

2
) (7, 2, 5, 6

5
) (6, 2, 6, 3

2
) (6, 2, 6, 3

2
) (6, 2, 6, 3

2
) (6, 2, 6, 3

2
) (7, 2, 6, 6

5
)

(7, 2, 6, 1) (6, 2, 6, 3

2
) (7, 2, 7, 1) (7, 2, 6, 6

5
) (7, 2, 7, 1) (8, 2, 5, 4

5
) (8, 2, 8, 1

2
) (9, 1, 9, 0)

Figure 1. Data for connected betweenness-uniform graphs with 4–10 vertices.
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additional information on their maximum degree, diameter, vertex connectivity and

betweenness value; all these values support our conjectures stated in Section 1.

Next, we turn our attention to sparse betweenness-uniform graphs. It follows

from Theorem 2.4 that such graphs — if distinct from cycles — have minimum

degree at least 3, hence, it is natural to consider cubic graphs as candidates for

exploring betweenness-uniformity. We have checked all connected cubic graphs up

to 20 vertices; despite of large numbers of considered cubic graphs, only 34 of them

are betweenness-uniform and, surprisingly, among them, only three are non-transitive

(see Figure 2). The lengthy check for 22-vertex cubic graphs revealed that only three

of them are betweenness-uniform (see Figure 3).

Figure 2. All betweenness-uniform connected cubic graphs up to 20 vertices.

Figure 3. All betweenness-uniform connected cubic graphs on 22 vertices.

Observe that, among these graphs, one can find several generalized Petersen graphs

GP(n, k) (see [13]). This suggests to test for which values n and k the graphGP(n, k)
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is betweenness-uniform. Note that the vertex-non-transitivity of GP(n, k) is easy

to detect: by [13], GP(n, k) is vertex-transitive if and only if k2 ≡ ±1 (mod n)

or [n, k] = [10, 2]. However, testing the betweenness-uniformity for all vertex-non-

transitive GP(n, k) with n 6 500 revealed that only GP(7, 2) (which is isomorphic

to GP(7, 3)), GP(34, 10) and GP(58, 8) are betweenness-uniform. All these findings

might suggest that cubic non-transitive betweenness-uniform graphs are extremely

rare; nevertheless, we show that the betweenness uniformity holds for semi-symmetric

graphs (that is, the graphs which are edge-transitive and regular, but not vertex-

transitive):

Theorem 2.1. Every semi-symmetric graph is betweenness-uniform.

P r o o f. Let G be a semi-symmetric graph of order n. For the purpose of this

proof, we use the notion of the edge betweenness centrality defined, for an edge e = uv

of G, as the sum B(e) =
∑

x,y∈V (G)

σx,y(e)/σx,y where σx,y(e) is the number of shortest

(x–y)-paths containing the edge e; accordingly, the adjusted betweenness centrality

of a vertex u (see [5]) is defined as c(u) =
∑

v∈N(u)

B(uv). Then the standard and the

adjusted betweenness centrality satisfy, by [5], the formula B(u) = (c(u)− n+ 1)/2.

Now, since G is edge-transitive, we get B(e) = B(f) = b, for each pair e, f of

edges of G. Note that G is also k-regular for some k, so, using the above formula,

the betweenness centrality of an arbitrary vertex u ∈ V (G) is equal to B(u) =

(kb− n+ 1)/2. We can see that B(u) does not depend on the choice of u, thus G is

betweenness-uniform. �

By [11], there exist infinitely many cubic semi-symmetric graphs, the smallest one

being the Gray graph.

The following auxiliary lemma establishes an upper bound for the arithmetic

mean B(G) of betweenness centralities of vertices of G:

Lemma 2.2. Let G be a betweenness-uniform graph on n vertices. Then B(G) 6

B(Cn).

P r o o f. From [9], we obtain that G is 2-connected. Then, by a result of

Plesník [12], the sum of all distances in G does not exceed the sum of all distances

in Cn. Hence, for the average distance in G and in Cn, we obtain l(G) 6 l(Cn) which

yields B(G) 6 B(Cn) due to the fact that B(G) = (n− 1)(l(G)− 1), see [6]. �

To better understand the structure of the betweenness-uniform graphs, we look

at some of their properties. The previous lemma together with the list of all

betweenness-uniform graphs up to 10 vertices in [9] indicate that except of the cycles
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every betweenness-uniform graph should be 3-connected. This conjecture is sup-

ported by the following two theorems: we show that if G is a betweenness-uniform

graph and G is not a cycle then it has minimum degree at least 3 and is 3-connected

if the diameter of G is equal to 2.

Theorem 2.3. Let G be a betweenness-uniform graph of diameter 2. Then

G ∼= Ck, k = 4, 5 or G is 3-connected.

P r o o f. By contradiction. Let G be a betweenness-uniform graph of vertex-

connectivity 2 with diam(G) = 2. Then there exist two vertices u, v ∈ V (G) such

that G \ {u, v} =
t⋃

i=1

Gi, t > 2.

Let U = {w ∈ V (G) : d(w, u) < d(w, v)}, V = {w ∈ V (G) : d(w, v) < d(w, u)}

and S = {w ∈ V (G) : d(w, v) = d(w, u)}. Take G1, G2 on n1 and n2 vertices, and

consider three cases based on the cardinality of S.

Case 1 : There are two vertices u1, v1 where u1 ∈ U ∩ V (G1) and v1 ∈ V ∩ V (G1).

As diam(G) = 2, both u and v are adjacent to every vertex in G2. Let x ∈ V (G2).

Then

B(x) =
∑

y,z∈V (G)

σy,z(x)

σy,z

=
∑

y,z∈V (G2)

σy,z(x)

σy,z

+
σu,v(x)

σu,v

6
∑

y,z∈V (G2)

σy,z(x)

σy,z

+ 1.

Now, for every vertex y ∈ V (G2), each (u1−y)-shortest path passes through u, hence

B(u) =
∑

y,z∈V (G)

σy,z(u)

σy,z

>
∑

y,z∈V (G2)

σy,z(u)

σy,z

+
∑

y∈V (G2)

σu1,y(u)

σu1,y

>
∑

y,z∈V (G2)

σy,z(u)

σy,z

+ n2.

The graph G is betweenness-uniform, so B(x) = B(u), which yields

∑

y,z∈V (G2)

σy,z(x)

σy,z

+ 1 >
∑

y,z∈V (G2)

σy,z(u)

σy,z

+ n2 >
∑

y,z∈V (G2)

σy,z(x)

σy,z

+ n2.

Therefore n2 = 1, deg(x) = 2 and B(x) = σu,v(x)/σu,v 6 1. One can see that n1 = 2,

or else B(u) + B(v) > n1 + n2 > 3 > 2B(x) and G is not betweenness-uniform. For

n1 = 2, there is exactly one betweenness-uniform graph, namely C5.

Case 2 : Assume that, for every vertex y in V (G1), d(u, y) 6 d(v, y) and there exists

a vertex u1 ∈ U ∩ V (G1). Again, u is adjacent to every other vertex of V (G) \ {v}
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and

B(u1) =
∑

y,z∈V (G)

σy,z(u1)

σy,z

=
∑

y,z∈V (G1)

σy,z(u1)

σy,z

,

B(u) =
∑

y,z∈V (G)

σy,z(u)

σy,z

>
∑

y,z∈V (G1)

σy,z(u)

σy,z

+
∑

y∈V (G2)

σu1,y(u)

σu1,y

>
∑

y,z∈V (G1)

σy,z(u)

σy,z

+ n2 >
∑

y,z∈V (G1)

σy,z(u1)

σy,z

+ n2.

Therefore n2 = 0, a contradiction. The situation where, for each vertex y ∈ V (G1),

d(v, y) 6 d(u, y) holds, leads to the same conclusion.

Case 3 : Finally, assume that, for every vertex x in V (G1)∪V (G2), x ∈ S. Without

loss of generality, let x ∈ V (G1). Then

B(x) =
∑

y,z∈V (G)

σy,z(x)

σy,z

=
∑

y,z∈V (G1)

σy,z(x)

σy,z

+
σu,v(x)

σu,v

<
∑

y,z∈V (G1)

σy,z(x)

σy,z

+ 1

and

B(u) =
∑

y,z∈V (G)

σy,z(u)

σy,z

>
∑

y,z∈V (G1)

σy,z(u)

σy,z

+
n1n2

2
>

∑

y,z∈V (G1)

σy,z(x)

σy,z

+
n1n2

2
.

From the above two inequalities it follows that 1 > n1n2/2, therefore n1 = n2 = 1

and G is a cycle on 4 vertices. �

Theorem 2.4. Let G be a betweenness-uniform graph on n > 4 vertices. Then

G ∼= Cn or δ(G) > 3.

P r o o f. By contradiction. The statement clearly holds for graphs up to 10 ver-

tices, see Figure 1. LetG be a betweenness-uniform graph of order n having a vertex x

such that deg(x) = 2 and N(x) = {u, v} (let us recall that G is 2-connected). It is

easy to see that uv /∈ E(G), otherwise B(x) = 0 and G ∼= K3.

Let U =
p⋃

i=1

Ui, V =
p⋃

i=1

Vi and S =
p⋃

i=1

Si where p = diam(G) and

Ui = {w ∈ V (G) : i = d(w, u) < d(w, v)}, i = 1, 2, . . . , p,

Vi = {w ∈ V (G) : i = d(w, v) < d(w, u)}, i = 1, 2, . . . , p,

Si = {w ∈ V (G), w 6= x : d(w, u) = d(w, v) = i}, i = 1, 2, . . . , p.
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In the following we use the following three relations:

B(x) = B(u) = B(v),

2B(x) = B(u) +B(v),

B(x) +B(y) = B(u) +B(v) >
∑

z∈V (G)
z 6=x,u,v

σx,z(u)

σx,z

+
∑

z∈V (G)
z 6=x,u,v

σx,z(v)

σx,z

=
∑

z∈V (G)
z 6=x,u,v

σx,z(u) + σx,z(v)

σx,z

=
∑

z∈V (G)
z 6=x,u,v

σx,z

σx,z

= n− 3, y ∈ V (G).

Further,

B(x) =
∑

y,z∈V (G)

σy,z(x)

σy,z

=
∑

y,z∈V (G)
y,z 6=u,v

σy,z(u, x, v)

σy,z

+
∑

y∈V (G)
y 6=v

σy,v(u, x)

σy,v

+
∑

y∈V (G)
y 6=u

σu,y(x, v)

σu,y

+
σu,v(x)

σu,v

= A+B + C +
σu,v(x)

σu,v

6 A+B + C + 1,

B(u) =
∑

y,z∈V (G)

σy,z(u)

σy,z

=
∑

y,z∈V (G)
y,z 6=u,v

σy,z(u, x, v)

σy,z

+
∑

y∈V (G)
y 6=u

σy,v(u, x)

σy,v

+
∑

y∈V (G)
y 6=u

σx,y(u)

σx,y

+
∑

y,z∈V (G)\x

σy,z(u)

σy,z

= A+B +D + F,

B(v) =
∑

y,z∈V (G)

σy,z(v)

σy,z

=
∑

y,z∈V (G)
y,z 6=u,v

σy,z(u, x, v)

σy,z

+
∑

y∈V (G)
y 6=v

σu,y(x, v)

σu,y

+
∑

y∈V (G)
y 6=v

σx,y(v)

σx,y

+
∑

y,z∈V (G)\x

σy,z(v)

σy,z

= A+ C +H + J,

where σy,z(w1, w2, . . . , wk) denotes the number of shortest (y–z)-paths that pass

through all of the vertices w1, w2, . . . , wk and the shortest paths included in the

sums F and J of B(u) and B(v) do not pass through x. Moreover, each geodesic

(y–v)-path that goes through u, x is also a geodesic (y–x)-path and each geodesic

(y–u)-path that passes through v, x is also a geodesic (y–x)-path. Therefore D > B

and H > C, and it is easy to see that if D +H > B + C + 2 then B(u) + B(v) =

2A+B+C+D+H+F +J > 2A+2B+2C+F +J+2 > 2(A+B+C+1) > 2B(x).

Similarly, if F > 0 or J > 0 and D+H > B +C + 2 then B(u) +B(v) > 2B(x). In

both these cases, G is not betweenness-uniform.
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First we show that |S| < 3. The pairs of vertices where at least one vertex is

from S do not contribute to B(x) but if one vertex is from S and the other is x, then

such a pair adds 1 to B(u) + B(v). So, for |S| > 3, we have D + H > B + C + 3,

a contradiction.

In the following, we take |S| 6 2 and consider two cases based on the eccentric-

ity e(x).

Case 1 : Let e(x) = 2.

(a) There exists a vertex w ∈ S1.We calculate the betweenness centrality of B(w)

and compare B(x) +B(w) and B(u) +B(v):

B(w) =
∑

y,z∈V (G)

σy,z(w)

σy,z

=
∑

y,z∈V (G)
y,z 6=u,v

σy,z(u,w, v)

σy,z

+
∑

y∈V (G)
y 6=u

σy,v(u,w)

σy,v

+
∑

y∈V (G)
y 6=v

σu,y(w, v)

σu,y

+
∑

y,z∈V (G)\{u,v}

σy,z(w)

σy,z

+
σu,v(w)

σu,v

= A+B + C +
σu,v(w)

σu,v

.

Both the vertices x,w have the same value of betweenness centrality, hence

∑

y,z∈V (G)\{u,v}

σy,z(w)

σy,z

= 0,
σu,v(w)

σu,v

=
σu,v(x)

σu,v

6
1

2

and

B(w) = B(x) 6 A+B + C +
1

2
.

Now D +H > n− 3 > 1 and

B(u) +B(v) > 2A+ 2B +D + 2A+ 2C +H > 4A+ 2B + 2C + n− 3

> 2A+ 2B + 2C + 1 > B(x) +B(w) > n− 3.

The equality B(x) +B(w) = B(u) + B(v) is achieved if and only if A = B = C = 0

and n 6 4, a contradiction.

(b) The set S is empty. In this case we get N(u) ∪ N(v) ∪ {u, v} = V (G) and

N(u) ∩ N(v) = {x}. Since e(x) = 2 and G is 2-connected on greater than or equal

to 11 vertices, there exist, without loss of generality, vertices w1, w2, w3 such that

w1 ∈ N(u), w2, w3 ∈ N(v) and w1w2, w2w3 are the edges in G (if w3 ∈ N(u) then,

instead of w2w3, we consider the edge w1w3). Such vertex w3 surely exists, otherwise

σw2,w3(v)/σw2,w3 > 0, i.e., J > 0 and D+H > B+C+2. Now d(w1, x) = d(w2, x) =

d(w1, u) + 1 = d(w2, v) + 1. If d(w3, u) = 2, then one can see that the pairs (w3, u),
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(w3, v) do not contribute to B(x) but the pair (w3, x) gives 1 toD+H which results in

D +H > B + C + 3. For d(w3, u) = 3, there are at least two shortest (w3–u)-paths,

namely w3vxu and w3w2w1u; thus the contribution of (w3, u) to C is less than 1 while

(w3, x) contributes 1 to D+H . Taking into account that (w1, x), (w2, x) contribute 2

to D +H , we obtain D +H > B + C + 2, a contradiction (which yields G ∼= C5).

Case 2 : Let e(x) > 3.

(a) There are exactly two vertices w1, w2 ∈ S where pairs (w1, x), (w2, x) con-

tribute to D +H together by 2 and D +H > B + C + 2. Now it is enough to show

that another pair of vertices (y, z) contributes to B(u) +B(v) more than to 2B(x).

Note that neither of these two vertices w1, w2 is in S1 otherwise it is a similar situa-

tion as in Case 1 (a).

Without loss of generality, choose w1 ∈ Si such that the index i is the smallest

possible. Then there are vertices u1 ∈ Ui−1, v1 ∈ Vi−1 such that w1 is adjacent to

both of them. Consider two vertices uj ∈ Uj, vk ∈ Vk. If there is an edge ujvk, j = k

in G then D+H > B+C+2 because neither (uj, y) nor (vj , y), y ∈ U ∪V contribute

to B(x) but, for y = x, both pairs contribute 1 to D+H. If ujvk ∈ E(G), k = j − 1

or j = k − 1 then uj ∈ S ∩ Uj and vk ∈ S ∩ Vk, respectively, but this cannot occur.

Also, there is no edge ujvk ∈ E(G), k 6 j − 2 or j 6 k − 2 because of the definition

of Uj, Vk. Thus, we obtain that w1 is adjacent to u1, v1 and there exist at least two

shortest (u1–v)-paths where at least one of them does not pass through x; hence

σu1,x(u)

σu1,x

= 1 >
σu1,v(x)

σu1,v

=
σu1,v(u)

σu1,v

which implies that D +H > B + C + 2.

(b) There is exactly one vertex w ∈ Si and u1 ∈ Ui−1, v1 ∈ Vi−1 such that

(u1, w), (v1, w) ∈ E(G). It is easy to see that i > 2 otherwise we obtain Case 1 (a).

Moreover, there is no edge e = (uj, vk), where uj ∈ Uj and vk ∈ Vj . The reason

is the same as in the former Case 2 (a), because the endvertices of such an edge

contribute 2 to B(u) +B(v) but B(x) gets 0 from this pair.

Now, there are k + l geodesic (u1–v)-paths, k of them pass through x and the

remaining l paths go through w. Let a be a real number (not necessarily positive).

We have

σu1,v(x)

σu1,v

=
k

k + l
=

1

2
+ a and

σu1,v(w)

σu1,v

=
l

k + l
=

1

2
− a.

For (v1, u), we have t + s shortest (v1–u)-paths, t of them go through w and the

other s paths pass through x. If Pxv is the shortest (u1–v)-path going through x then

v1wP is also a geodesic (v1–u)-path passing through w, and so t > k; conversely,
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if u1wQ is the shortest (u1–v)-path going through v1 then Qxu is also geodesic

(v1–u)-path passing through x which gives s 6 l and

σv1,u(x)

σv1,u

=
s

s+ t
and

σv1,u(w)

σv1,u

=
t

t+ s
.

Now, we discuss the following possibilities:

⊲ For
1

k + l
6

1

s+ t
,

1

2
+ a =

k

k + l
6

k

s+ t
6

t

s+ t
and

s

s+ t
= 1−

t

s+ t
6

1

2
− a,

⊲ for
1

k + l
>

1

s+ t
,

1

2
− a =

l

k + l
>

l

s+ t
>

s

s+ t
.

As we can see the contribution of the pairs (u1, v), (v1, u) to B + C is k/(k + l) +

s/(s+ t) 6 1/2 + a + 1/2 − a = 1 but each of the pairs (u1, x), (v1, x) and (w, x)

contribute 1 to D + H . Consequently, D + H > B + C + 2. This implies that,

for F + J > 0, G is not betweenness uniform, hence the induced subgraphs G[U1]

and G[V1] are complete graphs. Further, there is no other vertex y, y ∈ U \ {u1}

or y ∈ V \ {v1} such that the pair (y, v) or (u, y) contributes to B(x) or to B(w),

respectively, at the same time (any pair with y contributes h < 1 to B +C but 1 to

D+H ; it means 2B(x) increases by 2h but B(u) +B(v) by 1 + h). Hence {x,w} is

a cutset. If we consider that |U | = |V | to satisfy B(u) = B(v), we get

B(x) +B(w) =
n− 2

2

n− 2

2
=

n2 − 4n+ 4

4
= 2B(Cn).

This shows that if there is a unique vertex at the same distance from u and v then G

is isomorphic to a cycle on n vertices.

(c) S is empty. G is 2-connected, therefore there exists an edge u1v1 ∈ E(G),

where u1 ∈ Ui and v1 ∈ Vj . It is easy to check that i = j. The pairs (u1, x), (v1, x)

contribute 2 to B(u) +B(v) and zero to B(x). Further, one can see that there is no

other edge utvs, ut ∈ Ut, vs ∈ Vt, (ut, vs) 6= (u1, v1), otherwise D +H > B + C + 3.

If there is a vertex y ∈ U ∪ V such that d(u, y) = d(v, y) + 1 or d(v, y) = d(u, y) + 1,

then the contribution of any pair containing y to B(x) is zero and again D + H

gets 1 yielding D+H > B+C+3. Therefore the sets Uj , Vj are empty for all j > i.

Further, all neighbours of u1 are in Ui−1 and all neighbours of v1 are in Vi−1. (If
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not, then there exists a vertex y ∈ Ui \ {u1} such that (y, v) contributes 1 to D but

less than 1 to B due to the fact that there are at least two shortest (y–v)-paths and

at least one of them passes through w and not through x. The same holds if there

is another vertex y ∈ Vi \ {v1}. Hence the inequality D + H > B + C + 2 is not

preserved.) Moreover, F = J = 0, so G[U1] and G[V1] are again complete graphs.

Now all pairs (s, x), (s, v) with s ∈ U \ {u1} contribute 2 to B +D, and all pairs

(t, x), (t, v) t ∈ V \ {v1} contribute 2 to C +H. If |U | 6= |V | then B +D 6= C +H ,

hence B(u) 6= B(v) and G is not betweenness-uniform.

If we consider the above findings, we see that {x, u1} as well as {x, v1} are cutsets

and B(x) + B(y) > (n− 3)(n− 1)/4 = 2B(Cn) for y ∈ {u, v} and n odd. So

B(x) = B(Cn) for each vertex x; this gives, according to Lemma 2.2, that G is an

n-vertex cycle. �

In [9] it is shown that every n-vertex betweenness-uniform graph G with ∆(G) =

n− 2 has diam(G) = 2. We prove a similar theorem for ∆(G) = n− 3.

Theorem 2.5. Let G be a betweenness-uniform graph of order n > 4. If ∆(G) =

n− 3 then diam(G) = 2.

P r o o f. Let G be an n-vertex betweenness-uniform graph with three vertices

u, x, y ∈ V (G) such that deg(u) = n− 3, N(u) = {v1, v2, . . . , vn−3} and x, y /∈ N(u).

For the distances of vertices in G, we have

⊲ d(u, x) = 2, d(u, y) = 2, else δ(G) = 1,

⊲ d(x, vi) 6 3, d(y, vi) 6 3, d(x, y) 6 4 and d(vi, vj) 6 2, for each i, j = 1, 2, . . . , n−3.

We discuss several cases:

Case 1 : Let diam(G) = 4. It means that d(x, y) = 4 and at least one shortest

(x–y)-path contains u. We show that, in this case, B(u) > B(x):

B(u) =
∑

z,w∈V (G)

σz,w(u)

σz,w

=
∑

z,w∈N(u)

σz,w(u)

σz,w

+
∑

z∈N(u)

σx,z(u)

σx,z

+
∑

z∈N(u)

σy,z(u)

σy,z

+
σx,y(u)

σx,y

>
∑

z,w∈N(u)

σz,w(x)

σz,w

+
σx,y(u)

σx,y

>
∑

z,w∈V (G)

σz,w(x)

σz,w

= B(x).

Case 2 : Let d(x, y) = 3. In this case x, y do not have a common neighbour, so

N(x) ∩ N(y) = ∅ and N(x) ∪ N(y) ⊆ N(u). If B(u) = 0 then G is a complete

graph, which contradicts the assumption ∆(G) = n − 3. So B(u) > 0 and neither
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the pair (y, u) contributes to B(x) nor does (x, u) contribute to B(y); therefore

B(u) =
∑

z,w∈V (G)

σz,w(u)

σz,w

>
∑

z,w∈N(u)

σz,w(u)

σz,w

>
∑

z,w∈N(x)

σz,w(x)

σz,w

+
∑

z,w∈N(y)

σz,w(y)

σz,w

= B(x) +B(y),

so

B(u) > B(x).

Case 3 : There exists a vertex v ∈ N(u) such that d(x, v) = 3, d(x, y) = 2,

d(x, z) 6 3 and d(y, z) 6 3 where z ∈ N(u) \ {v}. Since N(x) ⊂ N(u) we get

σwz(u) > σwz(x) for all z, w ∈ N(x). Further, when summing the contributions of

pairs of vertices to B(x), we can omit the pair (u, v) because its contribution to B(x)

is 0. Hence

B(x) =
∑

z,w∈V (G)

σz,w(x)

σz,w

=
∑

z,w∈N(x)

σz,w(x)

σz,w

+
∑

z∈N(x)

σz,y(x)

σz,y

<
∑

z,w∈N(u)

σz,w(u)

σz,w

+
∑

z∈N(u)

σz,y(u)

σz,y

+
σx,v(u)

σx,v

6 B(u),

which yields B(x) < B(u).

Case 4 : Similarly, let diam(G) = d(x, v) = 3 and d(x, y) = 1 for some v ∈ N(u).

Then d(y, v) > 2 and at least one shortest (v–x)-path passes through u. According

to this, we obtain

B(v) =
∑

z,w∈V (G)

σz,w(v)

σz,w

=
∑

z,w∈N(v)

σz,w(v)

σz,w

+
∑

z∈N(v)

σz,y(v)

σz,y

<
∑

z,w∈N(u)

σz,w(u)

σz,w

+
∑

z∈N(u)

σz,y(u)

σz,y

+
σx,v(u)

σx,v

6
∑

z,w∈V (G)

σz,w(u)

σz,w

= B(u)

and

B(v) < B(u).

�
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[5] G.Caporossi, M.Paiva, D.Vukičević, M. Segatto: Centrality and betweenness: vertex
and edge decomposition of the Wiener index. MATCH Commun. Math. Comput. Chem.
68 (2012), 293–302. zbl MR

[6] F.Comellas, S. Gago: Spectral bounds for the betweenness of a graph. Linear Algebra
Appl. 423 (2007), 74–80. zbl MR doi

[7] R.Diestel: Graph Theory. Graduate Texts in Mathematics 173, Springer, Berlin, 2010. zbl MR doi
[8] L.C. Freeman: A set of measures of centrality based on betweenness. Sociometry 40
(1977), 35–41. doi

[9] S.Gago, J. Coroničová Hurajová, T.Madaras: On betweenness-uniform graphs. Czech.
Math. J. 63 (2013), 629–642. zbl MR doi

[10] M.Knor, T.Madaras: On farness- and reciprocally-selfcentric antisymmetric graphs.
Congr. Numerantium 171 (2004), 173–178. zbl MR

[11] A.Malnič, D.Marušič, P. Potočnik, C.Wang: An infinite family of cubic edge- but not
vertex-transitive graphs. Discrete Math. 280 (2004), 133–148. zbl MR doi

[12] J.Plesník: On the sum of all distances in a graph or digraph. J. Graph Theory 8 (1984),
1–21. zbl MR doi

[13] E.W.Weisstein: Generalized Petersen Graph. From MathWorld—A Wolfram Web Re-
source, available at http://mathworld.wolfram.com/GeneralizedPetersenGraph.html.

Authors’ addresses: J a n a C o r o n i č o v á H u r a j o v á, Faculty of Business Economics
with seat in Košice, University of Economics in Bratislava, Tajovského 13, 041 30 Košice, Slo-
vak Republic, e-mail: jana.coronicova.hurajova@euke.sk; Tom á š Ma d a r a s, Institute
of Mathematics, Faculty of Sciences, University of P. J. Šafárik, Jesenná 5, 040 01 Košice,
Slovak Republic, e-mail: tomas.madaras@upjs.sk.

306

https://zbmath.org/?q=an:0566.05053
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0791008
http://dx.doi.org/10.1016/S0304-0208(08)72802-0
https://zbmath.org/?q=an:1185.05052
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2513907
http://dx.doi.org/10.1016/j.ejc.2008.09.018
https://zbmath.org/?q=an:0426.05034
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0561047
https://zbmath.org/?q=an:0792.05050
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1110802
http://dx.doi.org/10.1111/j.1749-6632.1989.tb16384.x
https://zbmath.org/?q=an:1289.05057
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2986488
https://zbmath.org/?q=an:1114.05058
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2312324
http://dx.doi.org/10.1016/j.laa.2006.08.027
https://zbmath.org/?q=an:1204.05001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2744811
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.2307/3033543
https://zbmath.org/?q=an:1299.05085
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3125646
http://dx.doi.org/10.1007/s10587-013-0044-y
https://zbmath.org/?q=an:1064.05052
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2122106
https://zbmath.org/?q=an:1041.05039
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2043804
http://dx.doi.org/10.1016/j.disc.2003.07.004
https://zbmath.org/?q=an:0552.05048
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0732013
http://dx.doi.org/10.1002/jgt.3190080102

		webmaster@dml.cz
	2020-07-03T23:05:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




