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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 4 , P A G E S 7 3 0 – 7 4 6

INTERTWINING OF THE WRIGHT–FISHER DIFFUSION

Tobiáš Hudec

It is known that the time until a birth and death process reaches a certain level is dis-
tributed as a sum of independent exponential random variables. Diaconis, Miclo and Swart
gave a probabilistic proof of this fact by coupling the birth and death process with a pure birth
process such that the two processes reach the given level at the same time. Their coupling is
of a special type called intertwining of Markov processes. We apply this technique to couple
the Wright–Fisher diffusion with reflection at 0 and a pure birth process. We show that in our
coupling the time of absorption of the diffusion is a. s. equal to the time of explosion of the pure
birth process. The coupling also allows us to interpret the diffusion as being initially reluctant
to get absorbed, but later getting more and more compelled to get absorbed.

Keywords: intertwining of Markov processes, Wright–Fisher diffusion, pure birth process,
time of absorption, coupling

Classification: 60J60, 60J35, 60J27

1. INTRODUCTION AND THE MAIN RESULT

1.1. Introduction

It is known that the time until a birth and death process Xt started at the origin
reaches a certain level is distributed as a sum of independent exponential variables whose
parameters are the negatives of the non-zero eigenvalues of the generator of the process
stopped at the given level (see Karlin and McGregor [7]). Diaconis and Miclo [2] and
Swart [12] gave a probabilistic proof of this fact by finding a pure birth process Yt which
reaches the given level at the same time as Xt. The technique that Diaconis, Miclo and
Swart employ is called intertwining of Markov processes. This technique was developed
by Rogers and Pitman [11], Diaconis and Fill [1], and Fill [4]. It allows them to add
structure to the process Xt such that it is initially reluctant to be absorbed, but after
each exponential time (which corresponds to jump times of Yt) it changes its behavior
to be more and more compelled to be absorbed. Since one-dimensional diffusions can be
obtained as limits of birth and death processes, it is interesting to investigate whether
this technique can be extended to the case that Xt is a diffusion.

Recently, Fill and Lyzinski [5] have studied intertwining relations between two one-
dimensional diffusion processes. In this paper, we consider something different, namely
an intertwining between a diffusion process and a pure birth process. For technical
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reasons, in this paper we restrict ourself to one particular diffusion, namely the Wright–
Fisher diffusion with reflection at 0, which has state-space [0, 1] and is absorbed at 1.
The generator and the semigroup of this diffusion have the nice property that they map
polynomials to polynomials of the same order, which simplifies our proofs. We need that
the diffusion is reflected at 0 for technical reasons; without it, one of our proofs would
not work (see Remark 8). We construct an explosive pure birth process Yt such that Xt

is absorbed at the same time as Yt explodes.
The idea of Diaconis, Miclo and Swart can be summarized as follows. For a given

transition semigroup Pt of a birth and death process Xt on {0, . . . , n} absorbed at n,
Swart finds a transition semigroup Qt of a pure birth process Yt on {0, . . . , n} and
a probability kernel K which satisfies

PtK = KQt (t ≥ 0). (1)

The algebraic relation (1) is called intertwining, which gives the name to the intertwining
of Markov processes. Swart builds on an earlier work of Diaconis and Miclo, who found
an intertwining of the form KPt = QtK. However, we focus on Swart’s construction,
because our work on the Wright–Fisher diffusion is closer in spirit to his. He uses a result
proved by Fill [4] which says that if Xt and Yt are Markov processes with finite state-
spaces related by (1), then the two processes can be coupled (i. e. defined on the same
probability space) such that1

P (Yt = y|Xu, 0 ≤ u ≤ t) = K (Xt, y) a.s. (t ≥ 0). (2)

Using (2) and the fact that his kernel satisfies

K(x, n) = 1[x=n] :=

{
1, if x = n,

0, otherwise,
(3)

Swart proves that Xt and Yt can be coupled such that the times of absorption of Xt and
Yt are a. s. the same.

In this paper, we derive analogue results for the case that Xt is the Wright–Fisher
diffusion with reflection at zero. We find an explosive pure-birth process Yt on the one-
point compactification N̄:=N ∪ {∞} := {0, 1, . . . ,∞} of N and a probability kernel K
from [0, 1] to N̄ satisfying the intertwining relation (1) and

K (x,∞) = 1[x=1].

We couple the two processes such that they satisfy (2) which allows us to conclude that
the time of absorption of Xt is a. s. equal to the time of explosion of Yt. But since
the time of explosion of the pure birth process is the sum of independent exponential
variables whose intensities are the birth rates of Yt, this gives us a new proof of the
distribution of the time to absorption of Xt.2

1Under certain conditions, Fill showed that this coupling can be extended to countably infinite
state-spaces. Fill built on earlier work of Diaconis and Fill [1], where an analogous result is proved for
processes with discrete time.

2Just as with the birth and death processes, the distribution of the time of absorption of the Wright–
Fisher diffusion has long been known (see e. g. Kent [8]), but our proof is new.
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1.2. Intertwining of the Wright–Fisher diffusion

Define

D(G) =
{
f ∈ C2[0, 1];

∂

∂x
f(0) = 0

}
and

Gf(x) =
(
1− x2

) ∂2

∂x2
f(x), f ∈ D(G), x ∈ [0, 1]. (4)

In the appendix we show that G is closable and its closure generates a Feller semigroup,
which we denote Pt. We also show that the associated Markov process, which we call
the Wright–Fisher diffusion with reflection at zero, has continuous sample paths. Note
that the generator of the Wright–Fisher diffusion is usually defined as

1
2
x(1− x)

∂2

∂x2
f(x), f ∈ C2[0, 1], x ∈ [0, 1] (5)

(see e. g. Liggett [9, Example 3.48]). However, if X̃t is generated by (5), then Xt =∣∣∣2X̃2t − 1
∣∣∣ is generated by (4).

Define H as the generator of an explosive pure birth process on N̄ which jumps from
y to y + 1 with the rate

λy = (2y + 1) (2y + 2) , y ∈ N.

That is, define H as an operator from RN̄ to RN̄ by

Hf(y) = λy (f(y + 1)− f(y)) , y ∈ N,
Hf(∞) = 0,

where f is in RN̄. It is shown in the Appendix that the restriction of H to a suitable
domain is the generator of a Feller semigroup on C

(
N̄
)
, which we denote by Qt. Define

a probability kernel from [0, 1] to N̄ by

K(x, y) =

{(
1− x2

)
x2y, if 0 ≤ y <∞,

1[x=1], if y =∞.
(6)

It can be shown that K maps C
(
N̄
)

into C[0, 1]. We claim that there is an intertwining
relation:

Theorem 1. We have
PtK = KQt, (t ≥ 0). (7)

Using (7), we are able to couple the two processes in the spirit of [2, 4, 12]. We define
the state-space S of the coupled process as the one-point compactification of [0, 1]×N,
where we denote the point at infinity by (1,∞). Using this notation, we can think of S
as a subset of [0, 1]× N̄, but keep in mind that the topology of S is not the one induced
by [0, 1] × N̄. Note that if the coupled process is to satisfy an analogue of (2), then it
would be natural to construct it on the space{

(x, y) ∈ [0, 1]× N̄; K(x, y) > 0
}
,
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as was done for Markov processes with discrete state-spaces [1, 4]. However, this space
is not compact, so if we want to use the theory of Feller semigroups we must compactify
it (either implicitly or explicitly). It turns out that S is the right compactification.

An analogous result to the following theorem was proved by Fill [4, Theorem 2]
for processes with discrete state-spaces and by Diaconis and Fill [1, Theorem 2.33] for
processes with discrete time and space.

Theorem 2. There exists a Feller process (Xt, Yt) on S such that

E (f (Ys+t) |Xu, Yu, 0 ≤ u ≤ s) = (Qtf) (Ys) a.s. (8)

for all f ∈ C
(
N̄
)

and s, t ≥ 0. Hence, Yt on its own is a pure birth process on N̄ with
birth rates λy. If the initial distribution satisfies

π
(X,Y )
0 (A× {y}) =

∫
A

K(x, y)πX0 (dy), (9)

where πX0 is an arbitrary probability measure on [0, 1], then Xt on its own is the Wright–
Fisher diffusion with reflection at zero with initial distribution πX0 and we have

P (Yt = y|Xs, 0 ≤ s ≤ t) = K (Xt, y) a.s. (10)

for all y ∈ N̄ and t ≥ 0.

Note that if both Xt and Yt start from zero, then (9) is satisfied. Using Theorem 2
we can prove that the time of absorption of the diffusion is a. s. equal to the time of
explosion of the pure birth process. Indeed, from (10) we have

P (Xt ∈ A, Yt ∈ B) = E (1A (Xt)K (Xt, B)) .

But since K(x, ·) is concentrated on N for x < 1 and on {∞} for x = 1, we have

P (Xt < 1, Yt =∞) = P (Xt = 1, Yt <∞) = 0.

1.3. Discussion

In addition to proving the a. s. equality of the time of absorption and the time of explo-
sion of the two processes, Theorem 2 shows more about the underlying structure. By
inspection of the formula for the coupled generator (17) below we see that conditionally
on Yt = y ∈ N we can interpret Xt as the Wright–Fisher diffusion with reflection at zero
and with additional drift, which at the point Xt = x equals

4y
x
− 4(y + 1)x.

It can be shown that the scale function u(x) and the speed measure m(dx) of this
diffusion satisfy

u′(x) =
1

x4y (1− x2)2 ,

m(dx) = x4y
(
1− x2

)
dx.
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Hence, by Mandl [10, pp. 24–25], both boundaries are entrance for y > 0 and 0 is a regular
boundary while 1 is an entrance boundary for y = 0. In particular, the coupled process
lives on the set

{
(x, y) ∈ [0, 1]× N̄; K(x, y) > 0

}
as one might expect.

Moreover, we can see that there is an equilibrium point

xy =
√

y

y + 1

such that the drift is positive when x < xy and negative when x > xy. We can interpret
this as, conditionally on Yt = y, Xt is pushed toward the equilibrium point xy. Obviously,
xy is monotonous in y and goes from 0 to 1 as y goes from 0 to∞. Thus, we can think of
Xt as being initially reluctant to be absorbed, but later getting more and more compelled
to get absorbed.

In our paper we construct Markov processes from generators using the Hille-Yosida
theorem. We could also construct them as solutions to martingale problems or stochastic
differential equations. However, we chose the Hille-Yosida theorem for its simplicity.
Theorem 1 extends results of Diaconis and Miclo [2] and Swart [12], who proved similar
theorems for birth and death processes. Theorem 2 extends results of Fill [4], who proved
similar result for Markov processes with continuous time and discrete state-space, and of
Diaconis and Fill [1], who proved it for the case of discrete time and space. It remains an
open problem whether results like Theorems 1 and 2 hold for other diffusions than the
modified version of the Wright–Fisher diffusion we consider in our paper. It seems that
our proof of Theorem 1 does not exploit any peculiarity of the Wright–Fisher diffusion
and we believe it could be extended to other types of diffusions as well. On the other
hand, our proof of Theorem 2 depends strongly on the fact that the generator of the
Wright–Fisher diffusion maps polynomials to polynomials of the same order, and it seems
that entirely different proof techniques would be required for other diffusions.

2. PROOFS

2.1. Intertwining

To prove Theorem 1 we need to show that there is an intertwining between semigroups
Pt and Qt. The following theorem says that we can show this by proving that there is
an intertwining between the generators. An analogous result for Markov processes with
discrete state-spaces was proved by Fill [4, Lemma 3]. Although we use the following
theorem only when Pt and Qt are Feller semigroups and K is a probability kernel, we
are able to prove it more generally.

Theorem 3. Let L1, L2 be Banach spaces. Let Pt and Qt be strongly continuous
contraction semigroups defined on L1, L2 and let G and H be their generators. Let
K : L2 → L1 be a continuous linear operator. Then the following are equivalent:

1. For all t ≥ 0,
PtK = KQt (11)

on L2.
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2. K maps D(H) into D(G) and
GK = KH (12)

on D(H).

3. There exists a core D of H (i. e. D is a dense subspace of D(H) such that the
closure of the restriction of H to D is H) such that K maps D into D(G) and (12)
holds on D.

P r o o f . To prove (1)⇒ (2), fix f ∈ D(H). Then 1
t (Qtf − f) converges to Hf , so by

the continuity of K, 1
t (KQtf −Kf) converges to KHf . By (11), 1

t (PtKf −Kf) is
also convergent, so Kf is in D(G) and GKf = KHf .

In order to prove (2) ⇒ (1), fix f ∈ D(H) and define u(t) = KQtf . Since Qtf is in
D(H) by [3, Proposition 1.1.5], u(t) ∈ D(G) for all t ≥ 0. By the continuity of K

d
dt
u(t) = K

d
dt
Qtf = KHQtf = GKQtf = Gu(t).

Since
d
dt
u(t) = KQtHf,

Gu(t) = d
dtu(t) is continuous as a function of t. By Proposition 1.3.4 in Ethier and

Kurtz [3], u(t) = Ptu(0) = PtKf which proves that (11) holds on D(H). Since all
operators involved in (11) are continuous, the assertion now follows from the density of
D(H) in L2.

The implication (2)⇒ (3) is trivial by taking D = D(H). To prove the converse, let
f be in D(H). Then there exist fn ∈ D such that fn → f and Hfn → Hf . Since K is
continuous, Kfn → Kf and GKfn = KHfn → KHf , where we have used (12) for fn.
Since G is a closed operator, Kf is in D(G) and GKf = KHf . �

Now let us apply the preceding result to the operators G, H and K introduced in
Theorem 1. Theorem 3 shows that it suffices to prove the equality (12) on a core of H.
In the Appendix it is shown that

DH =
{
f ∈ C

(
N̄
)

; ∃y0 ∈ N s. t.∀y > y0 f(y) = f(∞)
}

(13)

is a core of H. The following theorem verifies condition 3 of Theorem 3.

Theorem 4. K maps DH into D(G) and

GK = KH

on DH .

P r o o f . Fix f in DH and let y0 ∈ N be such that f(y) = f(∞) for all y ≥ y0. Then
for x ∈ [0, 1),

Kf(x) =
(
1− x2

) y0−1∑
y=0

x2yf(y) + x2y0f (y0)

= f(0) +
y0∑
y=1

x2y (f(y)− f(y − 1)) . (14)
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As x approaches 1, Kf(x) approaches f (y0). Now

Kf (1) = f(∞) = f (y0) .

Hence (14) holds also for x = 1, and therefore Kf is in C∞[0, 1] ⊆ C2[0, 1]. Moreover

∂

∂x
Kf(x) =

y0∑
y=1

2yx2y−1 (f(y)− f(y − 1)) ,

hence
∂

∂x
Kf(0) = 0.

We have shown that Kf is in D(G).
From (14) we have that for x ∈ [0, 1],

GKf(x) =
(
1− x2

) y0∑
y=1

2y(2y − 1)x2y−2 (f(y + 1)− f(y))

=
(
1− x2

) y0−1∑
y=0

λyx
2y (f(y + 1)− f(y)) .

Now for y < y0

Hf(y) = λy (f(y + 1)− f(y)) ,

and for y ≥ y0,

Hf(y) = 0,

hence for x ∈ [−1, 1],

KHf(x) =
(
1− x2

) y0−1∑
y=0

λyx
2y (f(y + 1)− f(y)) .

�

P r o o f . [Proof of Theorem 1.]
We use Theorem 3. In the present context, L1 = C[0, 1] and L2 = C

(
N̄
)
. Thus we need

to show that K maps C
(
N̄
)

to C[0, 1]. This is equivalent to saying that the measures
K(x, ·) are continuous in x with respect to the weak convergence. But this is easy to
prove, since K(x, ·) is geometric distribution with success parameter 1 − x2 if x < 1,
and it is the degenerate distribution δ∞ if x = 1. Theorem 4 verifies condition 3 of
Theorem 3. Theorem 3 shows that this is equivalent to condition 1, and this is what we
had to prove. �
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2.2. Coupling

In order to find a coupling of Theorem 2, recall that S is the one-point compactification
of [0, 1]×N, where (1,∞) denotes the point at infinity. It is easy to see that f : S → R
is continuous if and only if f (·, y) is continuous for all y ∈ N and f(x, y) → f(1,∞) as
y →∞, uniformly in x. It is also easy to see that

{f ∈ C(S); f(x, y) = f(1,∞) for allx ∈ [0, 1] and y > y0 for some y0 ∈ N}

is dense in C(S). Since even polynomials are dense in C[0, 1] by the Stone–Weierstrass
theorem, it follows that

D (G) = {f ∈ C(S);∃y0 ∈ N s. t. f(x, y) = f(1,∞) for allx ∈ [0, 1] and y > y0,

f(·, y) is an even polynomial for all y ≤ y0}
(15)

is dense in C(S).
We now define an operator G with domain D(G) which we later prove generates a

Feller process satisfying Theorem 2. For the motivation of this definition, see section 2.3.
For f ∈ D(G) and (x, y) ∈ (0, 1)× N define

Gf(x, y) = (Hf (x, ·)) (y) +
G (f (·, y)K (·, y)) (x)− f(x, y) (GK (·, y)) (x)

K(x, y)
. (16)

Here G (f (·, y)K (·, y)) denotes the application of the operator G to the product of
f (·, y) and K(·, y), and (GK (·, y)) is the application of the operator G to K(·, y). In
both cases, y is held fixed, so f(·, y) and K(·, y) are viewed as functions of x only.
(Hf (x, ·)) is interpreted similarly, but here x is held fixed. Note that f(·, y)K(·, y)
and K(·, y) are even polynomials, hence they are in D(G). Moreover, f(x, ·) is in DH

of (13), which is a core of H as shown in the Appendix, hence f(x, ·) is in D(H). Finally,
K(x, y) > 0 since x is in (0, 1) and y <∞. Therefore, all the expressions in (16) are well
defined. After plugging in the definitions of H and G, we can get an explicit formula
for G.

Lemma 5. Let f be in D(G) and (x, y) ∈ (0, 1)×N. Let Gf be defined by (16). Then

Gf(x, y) = λy (f(x, y + 1)− f(x, y))+
(
1− x2

) ∂2

∂x2
f(x, y)+4

[y
x
− (y + 1)x

] ∂

∂x
f(x, y).

(17)

P r o o f . Observe that for (x, y) ∈ (0, 1)× N,

G (f (·, y)K (·, y)) (x) =
(
1− x2

)( ∂2

∂x2
f(x, y)

)
K(x, y)

+2
(
1− x2

) ∂

∂x
f(x, y)

∂

∂x
K(x, y)

+
(
1− x2

)
f(x, y)

∂2

∂x2
K(x, y).
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Hence

G (f (·, y)K (·, y)) (x)− f(x, y) (GK (·, y)) (x)
K(x, k)

=
(
1− x2

) ∂2

∂x2
f(x, y) + 2

(
1− x2

) ∂
∂xK(x, y)
K(x, y)

∂

∂x
f(x, y).

Noting that

2
(
1− x2

) ∂
∂xK(x, y)
K(x, y)

= 2
2yx2y−1 − (2y + 2)x2y+1

x2y

=
4y
x
− 4(y + 1)x,

we get

G (f (·, y)K (·, y)) (x)− f(x, y) (GK (·, y)) (x)
K(x, k)

=
(
1− x2

) ∂2

∂x2
f(x, y) + 4

[y
x
− (y + 1)x

] ∂

∂x
f(x, y). (18)

Plugging (18) and the definition of H into (16), we get (17). �

Formula (17) is well defined even for x = 1. Moreover, since f(x, y) is an even
polynomial in x, it follows that

lim
x↓0

y

x

∂

∂x
f(x, y)

exists, hence we can define Gf on [0, 1]×N by taking the limit. Observe that for y > y0

(where y0 is as in (15)), Gf(x, y) = 0. Therefore, if we define Gf(1,∞) = 0, then Gf
is in D (G) ⊆ C(S) and we can view G : D(G)→ C(S) as a linear operator.

Theorem 6. Operator G is closable and its closure generates a Feller semigroup.

In order to prove Theorem 6, we use the following corollary to the Hille-Yosida the-
orem.

Proposition 7. Let E be a compact metric space, D(G) a subspace of C(E), and G :
D(G)→ C(E) a linear operator. Suppose that 1 is in D(G) and G1 = 0, G satisfies the
positive maximum principle, and there exist a sequence (Ln)n∈N of finite-dimensional
subspaces of D(G) such that

⋃
n∈N Ln is dense in C(E) and G : Ln → Ln. Then G is

closable and its closure generates a Feller semigroup.

P r o o f . Lemma 4.2.1 in Ethier and Kurtz [3] shows that G is dissipative, and Propo-
sition 1.3.5 in [3] then proves that G is closable and its closure generates a strongly
continuous contraction semigroup. Finally, the fact that G1 = 0 proves that G is con-
servative. �
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P r o o f . [Proof of Theorem 6]
Let us first prove that G satisfies the positive maximum principle. Let f ∈ D(G) and
(x0, y0) ∈ S be such that

sup
(x,y)∈S

f(x, y) = f (x0, y0) ≥ 0.

First if y0 =∞, then Gf (x0, y0) = 0 by definition. Second, let us assume that (x0, y0) ∈
[0, 1]×N. Then we have f (x0, y0 + 1)−f (x0, y0) ≤ 0. If x0 ∈ (0, 1), then ∂

∂xf (x0, y0) =
0 and ∂2

∂x2 f (x0, y0) ≤ 0, hence Gf (x0, y0) ≤ 0. If x0 = 1, then

4
[
y0

x0
− (y0 + 1)x0

]
∂

∂x
f(x0, y0) ≤ 0

and (
1− x2

0

) ∂2

∂x2
f (x0, y0) = 0,

so Gf (x0, y0) ≤ 0. And if x0 = 0, then the second-order term of the polynomial f (·, y0)
must be non-positive, for otherwise (0, y0) could not be a point of maximum. Hence

lim
x↓0

y0

x

∂

∂x
f (x, y0) ≤ 0

and (
1− x2

0

) ∂2

∂x2
f (x0, y0) ≤ 0,

so we again get that Gf (x0, y0) ≤ 0. We have shown that G satisfies the positive
maximum principle.

Define

Ln = {f ∈ C(S); f(·, y) is an even polynomial of degree at most 2n for all y ≤ n,
f(·, y) = f(1,∞) for all y > n} .

It is easy to see that G : Ln → Ln and
⋃
n∈N Ln = D(G) is dense in C[0, 1]. Finally,

G1 = 0, so by Proposition 7, G is closable and its closure generates a Feller semigroup.
�

Remark 8. The proof of Theorem 6 is the only place where our argument fails for the
Wright–Fisher diffusion without reflection at zero. Indeed, we could take Pt to be the
semigroup of the diffusion on the whole interval [−1, 1], that is, Pt would be generated
by

Gf(x) =
(
1− x2

) ∂2

∂x2
f(x), f ∈ C2[−1, 1], x ∈ [−1, 1]. (19)

We could now extend kernel K to be from [−1, 1] to N̄ using the same formula (6).
Our proof of Theorem 1 would still work. We could define G by (16) where G would
now be defined by (19). But now we could not take D(G) to be functions such that
f(·, y) are even polynomials, because they are not dense in C[−1, 1]. But if we allowed
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all polynomials, then for y > 0 we could not extend (Gf) (·, y) to a continuous function
on [−1, 1] because of the term y

x
∂
∂xf(x, y) in (17). The deeper reason for this problem is

that K(0, y) = 0 for y > 0, so if the process (Xt, Yt) satisfies (10), then after Yt departs
from zero, Xt is no longer allowed to cross zero, so the behavior of the diffusion on
[−1, 0] and [0, 1] are independent. To overcome this problem, we could define

S = [−1, 1]× {0} ∪
[
−1, 0−

]
× {1, 2, . . . } ∪

[
0+, 1

]
× {1, 2 . . . } ∪ {−1, 1} × {∞},

where we think of 0− and 0+ as two different points. Now we could take D(G) to be
functions such that f(·, 0) is a polynomial, f(·, y) is an even polynomial with possibly
different coefficients on [−1, 0−] and on [0+, 1] and from some y0, f(x, y) equals either
f(−1,∞) or f(1,∞) depending on whether x is in [−1, 0−] or [0+, 1]. This set is dense
in C(S). Then, however, (Gf) (·, 0) could be discontinuous at x = 0 because of the term
λy (f(x, y + 1)− f(x, y)) in (17). To get around this problem, we decided to work with
the Wright–Fisher diffusion with reflection at zero.

In order to prove Theorem 2, we need the following theorem due to Rogers and
Pittman [11].

Theorem 9. Let (S,SSS ) and (S,S ) be measurable spaces and let φ : S → S be a
measurable transformation. Let Λ be a probability kernel from S to S and define a
probability kernel from S to S by

Φf = f ◦ φ.

Let Xt be a continuous-time Markov process with state space (S,SSS ), transition semi-
group P t and initial distribution π0 = π0Λ, for some distribution π0 on S. Suppose
further:

1. ΛΦ = I, the identity kernel on S,

2. for each t ≥ 0 the probability kernel P t := ΛP tΦ from S to S satisfies

ΛP t = P tΛ. (20)

Then P t is a transition semigroup on S, φ ◦Xt is Markov with transition semigroup Pt
and the initial distribution π0 and

P (Xt ∈ A|φ ◦Xs, 0 ≤ s ≤ t) = Λ (φ ◦Xt, A)

a. s. for all t ≥ 0 and A ∈SSS .

P r o o f . Rogers and Pittman [11, Theorem 2] proved this for the case that π0 = δy for
some y ∈ S. The general case follows by integration with respect to π0. �
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P r o o f . [Proof of Theorem 2.]
It is a standard result that there exists a process X = (X,Y ) generated by G and it

is intuitively clear from the form of G that Yt on its own is generated by H, but here
we give a short formal proof. Note that for f ∈ C

(
N̄
)

and s, t ≥ 0,

E (f (Ys+t) |Xu, Yu, 0 ≤ u ≤ s) = (P tΨf) (Xs, Ys) ,

where P t is the semigroup generated by G and Ψ is a kernel given by Ψf = f ◦ψ where
ψ(x, y) = y. Hence, in order to prove (8) we need to show that

P tΨf = ΨQtf (21)

for all f ∈ C
(
N̄
)
. By Theorem 3 it suffices to prove that there exists a core DH of H

such that Ψ maps DH into D(G) and

GΨ = ΨH (22)

on DH . It is shown in Lemma 12 that

DH =
{
f ∈ C

(
N̄
)

; ∃y0 s.t. f(y) = f(∞) for all y > y0

}
is a core of H and it is easy to see that for f ∈ DH , Ψf is in D(G). Moreover, for
f ∈ DH we have (Gf(y)K(·, y)) (x) = f(y) (GK(·, y)) (x), so from (16) it is easy to see
that (22) holds.

In order to prove the claims about Xt, we will use Theorem 9. In the present setting,
S = [0, 1] and φ(x, y) = x. Define a probability kernel from [0, 1] to S by

Λ(x,A× {y}) = δx(A)K(x, y)
Λ(x, (1,∞)) = K(x,∞)

where x is in [0, 1], A is in B[0, 1] and y ∈ N. In other words,

Λf(x) =
∑

0≤y≤∞

K(x, y)f(x, y) (23)

for f ∈ C(S) and x ∈ [0, 1]. Observe that πX0 Λ = π
(X,Y )
0 . Also observe that for

f ∈ C[0, 1] and x ∈ [0, 1] we have

ΛΦf(x) =
∑

0≤y≤∞

K(x, y)f(x) = f(x),

hence
ΛΦ = I. (24)

Let us now prove that
ΛP t = PtΛ. (25)

By Theorem 3, it suffices to prove that Λ maps D(G) into C2[0, 1] and

ΛG = GΛ (26)
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on D(G). Let f be in D(G). Then there is y0 such that f(x, y) = f(1,∞) for y > y0.
Since we know that ΛG1 = GΛ1 = 0, we may without loss of generality assume that
f(∞) = 0. Then

Λf(x) =
y0∑
y=0

K(x, y)f(x, y),

which is a polynomial, hence in C2[0, 1].
By (16) we have for x ∈ (0, 1) and y ≤ y0 that

K(x, y) (Gf) (x, y) = K(x, y) (Hf (·, x)) (y) +G (f (·, y)K (·, y)) (x)
−f(x, y) (GK (·, y)) (x). (27)

Since both sides of the equality are continuous in x, the equality also holds for all
x ∈ [0, 1]. Using (23), (27) and noting that (Gf) (x, y) = 0 for y > y0 by (16) and
Gf(1,∞) = 0 by definition, we get

ΛGf(x) =
y0∑
y=0

K(x, y) (Hf (x, ·)) (y) +
y0∑
y=0

G (f (·, y)K (·, y)) (x)

−
y0∑
y=0

f(x, y) (GK (·, y)) (x). (28)

The second term is just GΛf , since f(x, y) = 0 for y > y0. The first term can be
rewritten as

y0∑
y=0

K(x, y)
y0∑
z=0

H(y, z)f(x, z),

where we have again used that f(x, z) = 0 for z > y0. The last term can be written as

y0∑
y=0

f(x, y)
(
GK1{y}

)
(x) =

y0∑
y=0

f(x, y)
(
KH1{y}

)
(x)

=
y0∑
y=0

f(x, y)
y0∑
z=0

K(x, z)H(z, y)

where in the first equality we have used Theorem 4 and in the second equality we have
used that H is an upper triangular matrix. Therefore, ΛGf = GΛf .

Finally, from (24) and (25) we get that Pt = ΛP tΦ. Thus, we have verified all
requirements of Theorem 9. It follows that Xt is the Wright–Fisher diffusion with
reflection at zero with the initial distribution πX0 and

P (Yt = y|Xs, 0 ≤ s ≤ t) = P (Xt ∈ [0, 1]× {y}|Xs, 0 ≤ s ≤ t)
= Λ (Xt, [0, 1]× {y})
= K (Xt, y) a.s.

for y ∈ N̄. �
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2.3. Derivation of the generator for the coupled process

In this section we show how formula (16) for the generator of the coupled process can
be derived. Strictly speaking, this derivation is not necessary since (16) can be taken
as a definition (and we therefore choose to make this derivation informal for the sake of
brevity). However, we believe that this derivation can provide insight into the problem.
We use the technique of Diaconis and Fill [1] who derived an analogous result for Markov
processes with discrete space and time. Fill [4] then extended the result to Markov
processes with continuous time and discrete space. In Fill’s setting, Pt and Qt are
transition semigroups of Markov processes with discrete state-spaces S1 and S2. For a
fixed t > 0, he defines a probability kernel on

S = {(x, y) ∈ S1 × S2; K(x, y) > 0}

by

P (t)f = Qt1[PtK 6=0]
PtfK

PtK
, (29)

where f is a function on S. In (29), PtfK denotes the application of semigroup Pt to
the product of functions f and K (here, K is not viewed as a kernel but simply as a
function of x and y). Although Pt normally acts on functions of x, we make it act on
functions of x and y by fixing y. Similarly, PtK denotes the application of Pt to K (this
can alternatively be interpreted as the composition of the two kernels). Then we take
the pointwise division of PtfK and PtK, which we define to be zero if the denominator
is zero. We then get P (t)f as the application of Qt to this function. This time, x is
considered fixed when we apply Qt.

The probability kernel P (t) could be used to construct an intertwining of discrete-
time processes where time is measures in steps of t. However, as a function of t, it turns
out that P (t) does not satisfy the Chapman-Kolmogorov equations and hence cannot be
used to construct the coupled continuous-time process directly. Nevertheless, for small
t, one can expect P (t) to be “almost right”. Indeed, Fill proves that there exists a
generator G on S (for which he gives an explicit formula) such that

P (t) − I
t

→ G (30)

as t ↓ 0. He then shows the bivariate Markov process associated with G (with suitable
initial distribution) has the desired properties, i. e. its margins on their own are processes
with transition semigroups Pt and Qt and satisfy (2).

Now we return back to our setting where Pt is the semigroup of the Wright–Fisher
diffusion with reflection at zero and Qt is the semigroup of an explosive pure birth
process. Note that (29) is not a suitable definition in this case, since Pt operates on
continuous functions, but the indicator in (29) can introduce discontinuity. To get
around this problem, it can be proved that PtfK

PtK
can be extended to a continuous

function (Hudec [6, Theorem 3.10] proves this for a slightly different kernel K, but his
proof can easily be adapted to our setting). Now we can define P (t) by

P (t)f = Qt
PtfK

PtK
. (31)
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Observe that PtfK → fK, PtK → K and PtfK
PtK

→ fK
K = f as t ↓ 0 (provided we choose

(x, y) such that K(x, y) > 0). Hence,

1
t

(
P (t)f − f

)
=

1
t

(Qt − 1)
PtfK

PtK
+

1
t ((Pt − 1) fK)

PtK
− f

1
t ((Pt − 1)K)

PtK

is expected to converge to

Hf +
GfK

K
− f GK

K
.

A. WRIGHT–FISHER DIFFUSION AND AN EXPLOSIVE PURE BIRTH
PROCESS

Recall that G is defined by

Gf(x) =
(
1− x2

) ∂2

∂x2
f(x)

where x is in [0, 1] and f is in C2[0, 1] such that ∂
∂xf(0) = 0.

Theorem 10. Operator G is closable and its closure generates a Feller semigroup.
Moreover, the associated Markov process has continuous sample paths.

P r o o f . In order to prove that G is closable and generates a Feller semigroup, we will
use Proposition 7. It is obvious that G1 = 0. Moreover, if we define Ln as the set
of all even polynomials of order at most 2n, then

⋃
n∈N Ln is dense in C[0, 1] by the

Stone–Weierstrass theorem and G maps Ln into Ln. Finally we prove that G satis-
fies the positive maximum principle. Let f be in D (G) and x0 ∈ [0, 1] be such that
supx∈[0,1] f(x) = f (x0). If x0 ∈ (0, 1) then ∂2f

∂x2 (x0) ≤ 0. If x0 = 0, then ∂2f
∂x2 (x0) ≤ 0,

since ∂
∂xf (x0) = 0. If x0 = 1 then 1− x2

0 = 0. In all cases, Gf (x0) ≤ 0.
To prove that almost all sample paths are continuous, it suffices to show that for each

x0 ∈ [0, 1] and ε > 0 there exists f ∈ D(G) such that

f (x0) = ‖f‖, sup
x∈[0,1]\(x0−ε,x0+ε)

f(x) < ‖f‖ and Gf (x0) = 0

(Ethier and Kurtz [3, Proposition 4.2.9 and Remark 4.2.10]). Let x0 ∈ [0, 1] and ε > 0
be given. Define

f(x) = 1−
(
x2 − x2

0

)4
.

Then f ≥ 0 on [0, 1] and it attains its unique maximum at x0. Hence

sup
x∈[0,1]\(x0−ε,x0+ε)

f(x) < f (x0) = ‖f‖.

Moreover,
∂2

∂x2
f (x0) = 0,
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so Gf (x0) = 0. �

Recall that H : RN̄ → RN̄ is an operator defined by

Hf(y) = λy (f(y + 1)− f(y)) , y ∈ N,
Hf(∞) = 0,

where
λy = (2y + 1) (2y + 2) , y ∈ N.

Proposition 11. Define D =
{
f ∈ C

(
N̄
)

; Hf ∈ C
(
N̄
)}

. Then the restriction of H to
D is the generator of a Feller semigroup on C

(
N̄
)
.

P r o o f . We verify the conditions of Proposition 7. First note that H1 = 0 ∈ C
(
N̄
)
,

hence 1 is in D. Second, if we define Ln as the set of all functions f ∈ C
(
N̄
)

such that
f(y) = f(∞) for all y > n, then

⋃
n∈N Ln is dense in C

(
N̄
)

and H maps Ln to Ln.
Finally, we verify the positive maximum principle. Let f be in D and y in N̄ such that

sup
y∈N̄

f(y) = f (y0) .

If y0 <∞, then
Hf (y0) = λy0 (f (y0 + 1)− f (y0)) ≤ 0,

and if y0 =∞, then Hf (y0) = 0, so H satisfies the positive maximum principle. �

Lemma 12. The set

DH =
{
f ∈ C

(
N̄
)

; ∃y0 s.t. f(y) = f(∞)∀y > y0

}
is a core of H.

P r o o f . It is easy to see that DH is dense in C
(
N̄
)
. Moreover, since the process

associated with H can only jump upward, the semigroup maps DH into itself. The
statement of the lemma now follows from Proposition 1.3.3 in Ethier and Kurtz [3]. �
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