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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 2 , P A G E S 2 2 0 – 2 3 0

ON WEIGHTED U-STATISTICS FOR STATIONARY
RANDOM FIELDS

Jana Klicnarová

The aim of this paper is to introduce a central limit theorem and an invariance principle for
weighted U-statistics based on stationary random fields. Hsing and Wu (2004) in their paper
introduced some asymptotic results for weighted U-statistics based on stationary processes. We
show that it is possible also to extend their results for weighted U -statistics based on stationary
random fields.
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1. INTRODUCTION

The aim of this paper is to present some new results on U-statistics based on weakly
dependent random fields. It is well-known that many important test statistics can be
written as U -statistics. Therefore, it is useful to study asymptotics theorems for U -
statistics.

The theory of U -statistics for i.i.d. random variables comes from Hoeffding [9] and it
is well developed (see [12, 13], references therein and many others). Also, asymptotics
for U-statistics generated from non-independent sample have been studied from the
early fifties of the last century, therefore there also are many asymptotic results for
U -statistics based on weakly dependent random processes. These results are mainly
based on a theory of mixing conditions or on conditions on associated processes, see for
example [3, 5, 6].

The other way to handle weakly dependent processes, is to use the theory of stationary
processes. Recently, some important results for asymptotics of U-statistics based on
stationary processes were introduced, we can mention, for example, Leucht and Neumann
[14] or Hsing and Wu [10].

In a case of multi-dimensional version, best to our knowledge, there are some ap-
plications for i.i.d. random fields, and recently, a result given by Denker and Gordin
was introduced, see [4]. In this paper Denker and Gordin investigated some asymptotic
results for Von Mises statistics based on stationary multi-parameter processes.
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Our aim in this paper is to show that it is possible to extend the results given by Hsing
and Wu [10] for stationary processes to the case of stationary random fields. We show
that techniques of proofs introduced by Hsing and Wu can also be used in the case of
random fields. We can apply results given by Wang and Woodroofe [16] and Volný and
Wang [15] on Central limit theorem and Invariance principle for stationary random fields
to obtain asymptotic results for U-statistics based on stationary random fields.

2. NOTATION

In this section, we introduce a basic notation. To point out that the parameter has a
higher dimension, we write n = (n1, n2, . . . , nd) ∈ Zd. We denote ‖n‖ := |n1|·|n2| · · · |nd|
and n → ∞ we write for min{n1, n2, . . . , nd} → ∞. Operators (≤, ≥, +, −, . . . ) are
used in the coordinate-wise sense, it means that for example we write n1 ≤ n2 if and
only if n1i ≤ n2i for all i = 1, . . . , d and |n| = (|n1|, |n2|, . . . , |nd|).

The operator · is used in the coordinate-wise sense, too. More precisely, we use
n · t = (n1t1, n2t2, . . . , ndtd).

In the paper, we use ‖ · ‖2 for Euclidian norm.
Through the whole paper, we deal with the same dynamical systems as Wang and

Woodroofe in [16] or Volný and Wang in [15]. We consider a probability space (Ω,A, µ)
equipped with a group action Ti, i ∈ Zd, of automorphisms; the σ-algebra A is generated
by independent and identically distributed random variables ei = e0 ◦ Ti, i ∈ Zd with
zero mean and finite second moments. By Fi we denote a σ-field: Fi = σ(ej : j ≤ i).

From the construction of the filtration (Fi)i∈Zd , it is easily seen, that the filtration
is commuting (for more details see [11]), what is a necessary condition for our results,
for more details see [15].

By (Xi)i∈Zd , we denote a stationary random field: Xi = F (ej : j ∈ Zd).
To introduce projection operators, let us follow the notation given by Volný and

Wang [15] and first introduce a marginal filtration (F (q)
l )l∈Z :

F (q)
l =

∨
i∈Zd,iq≤l

Fi, q = 1, . . . , d, l ∈ Z

and write
F∞ =

∨
i∈Zd

Fi.

We will write

Ej(·) = E(·|Fj), j ∈ Zd and E(q)
l (·) = E(·|F (q)

l ), q = 1, . . . , d, l ∈ Z.

Now, we can introduce the projection operators, which are defined by

P
(q)
l (f) = E(q)

l (f)− E(q)
l−1(f), q = 1, . . . , d, l ∈ Z

and
Pj = Πd

q=1P
q
jq
, j ∈ Zd.
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From Wang and Volný [15] we know that if {Fi}i∈Zd is a commuting filtration, then
{Pj}j∈Zd and {P (q)

l }l∈Z, q=1,...,d are commuting operators and

Pj(f) ∈
d⋂
q=1

(
L2(Fqjq )	 L2(Fqjq−1)

)
=: Lj

2, j ∈ Zd.

Now, let us write K for a symmetric measurable function from R2 to R and define
the following statistic:

Un =
∑

0≤i,j≤n−1

wi−jK(Xi, Xj), (1)

where wk are coordinate-wise symmetric constant weights; it means that we suppose
weights to be such that

w(k1,k2,...,kd) = w(|k1|,|k2|,...,|kd|) for all k ∈ Zd.

By the equation (1), we define so-called weighted U-statistic. It is well-known that a
large class of statistics can be written in this form; for example, sample mean, sample
variance and other moments, Kendall’s τ can be written as U-statistics. Applications of
weighted U-statistics based on random fields come from physics, geography, computer
science and many other fields.

Following Hsing and Wu [10] for simplicity of notation, let us put Yi,j = K(Xi, Xj)−
EK(Xi, Xj). Hence, we can see that (Yi,j)i,j∈Zd is a centered stationary process with
finite second moments. The stationarity of this field is here in the sense that (Yi,i−k)i∈Zd

is a stationary random field. Moreover, due to the symmetry of the function K, we have
Yi,j = Yj,i for all i, j ∈ Zd.

3. RESULTS

Now, we can state the first theorem – the invariance principle in case of summable
weights. Let us recall that by D[0,1] we denote the space of cadlag functions on the
space [0,1]. For more details see [1].

Theorem 3.1. Let (Yi,j)i,j∈Zd and (wi,j)i,j∈Zd be as defined above and assume that∑
k∈Zd

∑
i∈Zd

|wk|‖P0(Yi,i−k)‖2 <∞. (2)

Then  1√
‖n‖

∑
0≤i,j≤b(n−1)tc

wi−jYi,j


t∈[0,1]

D→ (σB(t))t∈[0,1] (3)

in D[0,1], where (B(t))t∈[0,1] is a standard Brownian sheet and σ2 <∞.
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P r o o f . The proof follows the idea of the proof given by Hsing and Wu, see [10, Proof
of Th 1]. Let ` ≥ 0, s ∈ Zd, put

ξ`s =
∑
−`≤k≤`

wkYs,s−k.

Then for every ` ∈ Zd+, (ξ`s)s forms a stationary random field.

The condition (2) implies for every ` ∈ Zd:∑
s∈Zd

‖P0(ξ`s)‖2 ≤
∑
s∈Zd

∑
−`≤k≤`

|wk|‖P0(Ys,s−k)‖2 <∞.

Therefore, we can see that the stationary random field (ξ`s)s generated by i.i.d. ran-
dom variables satisfies Hannan’s condition. Hence, we can apply [15, Theorem 5.1] and
obtain for all ` ∈ Zd

+ 1√
‖n‖

∑
0≤k≤b(n−1)tc

ξ`k


t∈[0,1]

D→ (σ`B(t))t∈[0,1] ,

in D[0,1], where (B(t))t∈[0,1] is a standard Brownian sheet and σ2
` <∞. The sequence

of (σ2
` )` is Cauchy due to the condition (2).

Hence, we need to verify that

lim sup
`→∞

lim sup
n→∞

P

 1√
‖n‖

sup
0≤k≤n−1

∣∣∣∣∣∣
∑

0≤i,j≤k

wi−jYi,j −
∑

0≤i≤k

∑
i−`≤j≤i+`

wi−jYi,j

∣∣∣∣∣∣ > ε

 = 0

(4)
for all ε > 0. It is easily seen that the condition (4) is equivalent to the following
condition:

lim sup
`→∞

lim sup
n→∞

P

 1√
‖n‖

max
0≤k≤n−1

∑
0≤i≤k

∣∣∣∣∣∣
∑

j∈[0,k]:|i−j|6≤`

wi−jYi,j

∣∣∣∣∣∣ > ε

 = 0. (5)

Let us prove this relation (5). First, we can observe:

P

 1√
‖n‖

max
0≤k≤n−1

∑
0≤i≤k

∣∣∣∣∣∣
∑

j∈[0,k]:|i−j|6≤`

wi−jYi,j

∣∣∣∣∣∣ > ε


≤ P

 1√
‖n‖

∑
0≤i≤n−1

∑
j∈[0,n−1]:|i−j|6≤`

|wi−jYi,j| > ε

 .
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Then, we can write:∥∥∥∥∥∥
∑

−n+1≤k≤n−1, |k|6≤`

∑
0≤i≤n−1

|wkYi,i−k|

∥∥∥∥∥∥
2

2

=
∑
j∈Zd

∥∥∥∥∥∥P0

 ∑
−n+1≤k≤n−1, |k|6≤`

∑
0≤i≤n−1

|wkYi−j,i−j−k|

∥∥∥∥∥∥
2

2

≤
∑
j∈Zd

 ∑
−n+1≤k≤n−1, |k|6≤`

|wk|
∑

0≤i≤n−1

‖P0(Yi−j,i−j−k)‖2

2

≤ C
∑
j∈Zd

∑
−n+1≤k≤n−1, |k|6≤`

|wk|
∑

0≤i≤n−1

‖P0 (Yi−j,i−j−k)‖2

≤ C‖n‖
∑
j∈Zd

∑
−n+1≤k≤n−1, |k|6≤`

|wk| ‖P0 (Yj,j−k)‖2 .

We could use the estimation by the constant C due to the condition (2). Hence, we
derived that the left-hand side of (5) is less than or equal to

lim sup
|`|→∞

lim sup
n→∞

C‖n‖
∑

j∈Zd

∑
k∈Zd, |k|6≤` |wk| ‖P0(Yj,j−k)‖2
‖n‖ε2

.

From (2) we derive that this limit is equal to 0 for all ε > 0 and the proof is finished.
�

Now, let us consider a more general case – the case of non-summable weights. To
prove a result in this case, we will follow the idea given by Hsing and Wu [10]again. This
idea of the proof is close to the idea which is used by Wang and Woodroofe, see [16], to
prove their invariance principle – to use the approximation by m-dependent processes.

We show that we can approximate the sum of wkYi,i−k by the sum of wkŶi,i−k, where
Ŷi,j is some type of projection of Yi,j.

Let us denote
X̂i

m
:= E(Xi|σ(ej : i−m + 1 ≤ j ≤ i + m)),

where m = (m,m, . . . ,m). Then, by Ŷ mi,j we denote K(X̂m
i , X̂

m
j )− EK(X̂m

i , X̂
m
j ).

For simplicity of notation, let us denote:

Wn(i) =
∑

0≤j≤n−1

wi−j and Wn =

 ∑
0≤i≤n−1

W 2
n(i)/‖n‖

1/2

.

Now, we can formulate a theorem, which is a multi-dimensional version of Hsing–Wu’s
theorem [10, Theorem 2].
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Theorem 3.2. Assume that limm→∞ supj∈Zd ‖Y0,j − Ŷ m0,j‖2 = 0,

lim inf
n→∞

Wn∑
0≤i≤n−1 |wi|

> 0

and

lim
ε→0

sup
k∈Zd

∑
i∈Zd

min
(

sup
m≥1
‖P0Ŷ

m
i,i−k‖2, ε

)
= 0.

Then

lim
m→∞

lim sup
n→∞

1
‖n‖W 2

n

∥∥∥∥∥∥
∑

0≤i,j≤n−1

(
wi−jYi,j − wi−jŶ

m
i,j

)∥∥∥∥∥∥
2

2

= 0.

P r o o f . We follow again the proof given by Hsing and Wu, see [10, Proof of Theorem 2].
By Cauchy inequality and the triangle inequality we have:

‖P0(wkYi,i−k − wkŶ
m
i,i−k)‖2 ≤ |wk| sup

j∈Zd

‖Y0,j − Ŷ m0,j‖2,

‖P0(wkYi,i−k − wkŶ
m
i,i−k)‖2 ≤ C|wk| sup

m≥1
‖P0Ŷ

m
i,i−k‖2.

Thus, there exists a C > 0 such that for all i, j,m:

‖P0(wi−jYi,j − wi−jŶ
m
i,j )‖2 ≤ C|wi−j|min

(
sup
j∈Zd

‖Y0,j − Ŷ m0,j‖2, sup
m≥1
‖P0Ŷ

m
i,j ‖2

)
.

For short notation, we put

θ̂i,j = sup
m≥1
‖P0Ŷ

m
i,j ‖2,

δm = sup
j∈Zd

‖Y0,j − Ŷ m0,j‖2.

In the following, the constant C depends on d and it can vary from line to line. Thus,
we can write

lim
m→∞

lim sup
n→∞

1
‖n‖W 2

n

∥∥∥∥∥∥
∑

0≤i,j≤n−1

(
wi−jYi,j − wi−jŶ

m
i,j

)∥∥∥∥∥∥
2

2

(6)

= lim
m→∞

lim sup
n→∞

1
‖n‖W 2

n

∑
s∈Zd

∥∥∥∥∥∥
∑

0≤i,j≤n−1

Ps

(
wi−jYi,j − wi−jŶ

m
i,j

)∥∥∥∥∥∥
2

2

≤ lim
m→∞

lim sup
n→∞

C

‖n‖W 2
n

∑
s∈Zd

 ∑
0≤i≤n−1

∑
−n+1+i≤k≤i

|wk|min(θ̂i−s,i−k−s, δm)

2

≤ lim
m→∞

lim sup
n→∞

C

‖n‖W 2
n

sup
`∈Zd

∑
s∈Zd

 ∑
0≤i≤n−1

min(θ̂i−s,i−`−s, δm)
∑

−n+1+i≤k≤i

|wk|

2

.
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Due to the condition on symmetric weights, we can see that for i ∈ [0,n− 1]:∑
−n+1+i≤k≤i

|wk| ≤ C
∑

0≤k≤n−1

|wk|,

where the constant C depends only on d again. Therefore, left-hand side of (6) is less
than or equal to

lim
m→∞

lim sup
n→∞

C

‖n‖
sup
`∈Zd

∑
i∈Zd

min(θ̂i,i−`, δm)

∑
s∈Zd

 ∑
0≤i≤n−1

min(θ̂i−s,i−`−s, δm)


≤ lim

m→∞
C sup
`∈Zd

∑
s∈Zd

min(θ̂s,s−`, δm)

2

→ 0.

�

Theorem 3.3. Assume that
∑

i∈Zd |wi| =∞ and
∑

0≤k≤n−1 ‖n− k‖w2
k = o(‖n‖W 2

n).
Then under the conditions of Theorem 3.2,

1√
‖n‖W 2

n

∑
0≤i,j≤n−1

wi−jYi,j
D→N(0, σ2),

for some σ positive.

P r o o f . To prove this theorem, we can again follow the proof given by Hsing and Wu
see [10, Proof of Th 3] and we adapt it for the multi-dimensional case.

Following the proof given by Hsing and Wu, we observe that it is enough to prove:

1√
‖n‖W 2

n

∑
0≤i,j≤n−1

wi−jŶ
l
i,j
D→N(0, (σ̂l)

2
), (7)

for all l ∈N as n→∞. It follows from Theorem 3.2 that (σ̂l)2 is Cauchy in l, thus the
sequence converges to a finite constant σ2 as l→∞.

Since (Ŷi,j) is a stationary random field with finite second moments, from the con-
struction of this process, we can observe that:∥∥∥∥∥∥

∑
0≤i≤n−1

∑
0≤j≤n−1:|i−j|≤2`

wi−jŶ
l
i,j

∥∥∥∥∥∥
2

= O

√‖n‖ ∑
0≤m≤2`

|wm|

 .

Hence, from the condition on non-summable weights, we derive that∥∥∥∥∥∥
∑

0≤i≤n−1

∑
0≤j≤n−1:|i−j|≤2`

wi−jŶ
l
i,j

∥∥∥∥∥∥
2

= o
(

(‖n‖W 2
n)1/2

)
.
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We suppose Wn →∞, thus to finish the proof of the theorem it suffices to show that

1√
‖n‖W 2

n

∑
0≤i≤n−1

∑
0≤j≤n−1, maxk |ik−jk|>2l

wi−jŶ
l
i,j
D→N(0, (σ̂l)

2
) as m→∞,

for some finite (σ̂l)2.
Following the proof given by Hsing and Wu, let us denote

Ĵ l,ii,j = E(Ŷ li,j|(ek : i− `+ 1 ≤ k ≤ i + `)), where ` ∈ Zd is such that ` = (l, l, . . . , l);
similarly
Ĵ l,ji,j = E(Ŷ li,j|(ek : j− `+ 1 ≤ k ≤ j + `)) and put

R̂li,j = wi−j

(
Ŷ li,j − Ĵ

l,i
i,j − Ĵ

l,j
i,j

)
.

Let i1 = r1+q1 ·2l and i2 = r2+q2 ·2l, where −`+1 ≤ r1, r2 ≤ ` and −q = −bn/2lc ≤
q1,q2 ≤ q = bn/2lc, q1 6= q2. (We write bn/2lc for (bn1/2lc, bn2/2lc, . . . , bnd/2lc).

Let us remark, that Rli1,j1 and Rli2,j2 are uncorrelated whenever |i1 − i2| 6≤ 2` and
|j1 − j2| 6≤ 2`:∥∥∥∥∥∥

∑
q1,q2:−q≤q1,q2≤q:q1 6=q2

R̂lr1+q1·2l,r2+q2·2l

∥∥∥∥∥∥
2

2

≤ C
∑

q1,q2:−q≤q1,q2≤q:q1 6=q2

w2
r1+q1·2l−r2−q2·2l.

Using the same arguments as Hsing and Wu, we obtain (we suppose symmetric
weights and the constant C can vary from line to line)∥∥∥∥∥∥

∑
0≤i1,i2≤n−1,maxk |i1k−i2k|>2l

R̂li1,i2

∥∥∥∥∥∥
2

2

≤ C
∑

−`+1≤r1,r2≤`

∑
−q≤q1,q2≤q:q1 6=q2

w2
r1+q1·2l−r2−q2·2l

≤ C
∑

0≤i1,i2≤n−1

w2
i1−i2

≤ C
∑

0≤k≤n−1

‖n− k‖w2
k = o(‖n‖W 2

n).

So (7) follows from

1√
‖n‖Wn

∑
0≤i,j≤n−1,maxk |ik−jk|>2l

wi−j(Ĵ
l,i
i,j + Ĵ l,ji,j ) D→N(0, (σ̂l)2), (8)

for some finite (σ̂l)2. To show (8), we can apply a central limit theorem for m-dependent
random fields given by Heinrich, see [8, Th 2]. (It is also possible to find it in [7].)

Let us recall this theorem.
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Theorem (Heinrich (1988)] Let (Γn)n≥1 be a sequence of finite subsets
of Zd with |Γn| → ∞ as n → ∞ and let (mn)n≥1 be a sequence of positive
integers. For each n ≥ 1, let (Un(j), j ∈ Zd) be an mn-dependent random

field with EUn(j) = 0 for all j ∈ Zd. Assume that E
(∑

j∈Γn
Un(j)

)2

→ σ2

as n→∞ with σ2 <∞.

Then
∑

j∈Γn
Un(j) converges in distribution to a Gaussian random variable

with mean zero and variance σ2 if there exists a finite constant c > 0 such
that for any n ≥ 1, ∑

j∈Γn

EU2
n(j) ≤ c

and for any ε > 0 it holds that

lim
n→∞

Ln(ε) = lim
n→∞

m2d
n

∑
j∈Γn

E(U2
n(j)I{|Un(j)|≥εm−2d

n }) = 0.

To apply Heindrich’s theorem, we can put

U ln(j) =
1√
‖n‖Wn

∑
i: 0≤i≤n−1,maxk |ik−jk|>2l

wi−j(Ĵ
l,i
i,j + Ĵ l,ji,j ).

Then conditions of Heinrich’s theorem are fulfilled and the proof of Theorem 3.3 is
finished. �

Example (Linear random field): Let (ξi)i∈Zd be a random field of independent,
identically distributed random variables with zero mean and finite second moment. Let
us define a linear random field:

Xk =
∑
j∈Zd

ajξk−j.

Let us assume that
∑

j∈Zd |aj| < ∞, in such a case we have so-called short-memory
linear random field.

Now, let us define some common test statistics for this random field which can be
expressed as U-statistics and discuss whether they satisfy our limit theorems.

First, the sample mean. Let K(Xi, Xj) = Xi + Xj and wi−j = 1
2I{i−j=0}. Then

Theorem 1 is satisfied. More generally, to fulfill conditions of Theorem 1, it is enough
to suppose that the weights (wk)k∈Zd are absolutely summable:

∑
k∈Zd |wk| <∞.

Second, let us put K(Xi, Xj) = Xi ·Xj, choose a k ≥ 0 and define weights: wi−j =
I{|i−j|=k}. In such a case our U-statistic is a sample covariance and Theorem 1 takes
place, too.

Last, if we put K(Xi, Xj) = I{Xi+Xj>0} and wi−j = I{i−j 6=0} then we get a 1-sample
Wilcoxon statistic and it is easy to verify that conditions of Theorem 3 are satisfied.



U-statistics for random fields 229

ACKNOWLEDGEMENT

The author would like to thank referees for their useful comments, which helped improve the
paper.

The research was partly supported by Czech Science Foundation (project n. P201/11/P164).

(Received April 6, 2016)

R E F E R E N C E S

[1] P. J. Bickel and M. J. Wichura: Convergence criteria for multiparameter stochas-
tic processes and some applications. Ann. Math. Statist. 42 (1971), 5, 1656–1670.
DOI:10.1214/aoms/1177693164

[2] E. Bolthausen: On the central limit theorem for stationary mixing random fields. Ann.
Probab. 10 (1982), 4, 1047–1050. DOI:10.1214/aop/1176993726

[3] S. Borovkova, R. Burton and H. Dehling: Limit theorems for functionals of mixing
processes with applications to U-statistics and dimension estimation. Trans. Amer. Math.
Soc. 353) (2001), 11, 4261–4318. DOI:10.1090/s0002-9947-01-02819-7

[4] M. Denker and M. Gordin: Limit theorems for von Mises statistics of a measure
preserving transformation. Probab. Theory Related Fields, 160 (2014), 1–2, 1–45.
DOI:10.1007/s00440-013-0522-z

[5] M. Denker and G. Keller: On U-statistics and von Mises statistics for weakly dependent
processes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 64 (1983), 4,
505–522. DOI:10.1007/bf00534953

[6] I. Dewan and B. P. Rao: Asymptotic normality for U-statistics of associated random
variables. J. Statist. Planning Inference 97 (2001), 2, 201–225. DOI:10.1016/s0378-
3758(00)00226-3
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