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Several quantitative characterizations

of some specific groups

A. Mohammadzadeh, A.R. Moghaddamfar

Abstract. Let G be a finite group and let π(G) = {p1, p2, . . . , pk} be the set
of prime divisors of |G| for which p1 < p2 < · · · < pk. The Gruenberg-Kegel
graph of G, denoted GK(G), is defined as follows: its vertex set is π(G) and two
different vertices pi and pj are adjacent by an edge if and only if G contains an
element of order pipj . The degree of a vertex pi in GK(G) is denoted by dG(pi)
and the k-tuple D(G) = (dG(p1), dG(p2), . . . , dG(pk)) is said to be the degree
pattern of G. Moreover, if ω ⊆ π(G) is the vertex set of a connected component
of GK(G), then the largest ω-number which divides |G|, is said to be an order
component of GK(G). We will say that the problem of OD-characterization is
solved for a finite group if we find the number of pairwise non-isomorphic finite
groups with the same order and degree pattern as the group under study. The
purpose of this article is twofold. First, we completely solve the problem of OD-
characterization for every finite non-abelian simple group with orders having
prime divisors at most 29. In particular, we show that there are exactly two
non-isomorphic finite groups with the same order and degree pattern as U4(2).
Second, we prove that there are exactly two non-isomorphic finite groups with
the same order components as U5(2).

Keywords: OD-characterization of finite group; prime graph; degree pattern;
simple group; 2-Frobenius group

Classification: 20D05, 20D06, 20D08

1. Introduction

Throughout this article, all the groups under consideration are finite, and
simple groups are non-abelian. Given a group G, the spectrum ω(G) of G is the
set of orders of elements in G. Clearly, the spectrum ω(G) is closed and partially
ordered by the divisibility relation, and hence is uniquely determined by the set
µ(G) of its elements which are maximal under the divisibility relation. If n is a
natural number, then π(n) denotes the set of all prime divisors of n, in particular,
we set π(G) = π(|G|).

One of the most well-known graphs associated with G is the Gruenberg-Kegel

graph (or prime graph) denoted by GK(G). The vertex set of this graph is π(G)
and two distinct vertices p and q are joined by an edge (abbreviated p ∼ q) if and
only if pq ∈ ω(G). The number of connected components of GK(G) is denoted

DOI 10.14712/1213-7243.2015.194



20 Mohammadzadeh A., Moghaddamfar A.R.

by s(G) and the sets of vertices of connected components of GK(G) are denoted
as πi = πi(G)(i = 1, 2, . . . , s(G)). If G is a group of even order, then we put
2 ∈ π1(G). The vertex sets of connected components of all finite simple groups
are obtained in [16] and [36].

Given a group G, suppose that π(G) = {p1, p2, . . . , pk} in which p1 < p2 <
· · · < pk. The degree dG(pi) of a vertex pi in the prime graph GK(G) is the
number of edges incident on pi. We define D(G) = (dG(p1), dG(p2), . . . , dG(pk)),
and we call this k-tuple the degree pattern of G. In addition, we denote by OD(G)
the set of pairwise non-isomorphic finite groups with the same order and degree
pattern as G, and we put hOD(G) = |OD(G)|. Clearly, there are only finitely
many isomorphism types of groups of order |G|, because there are just finitely
many ways that an |G|× |G| multiplication table can be filled in. Finally, for each
group G, it is clear that 1 ≤ hOD(G) < ∞.

Definition 1.1. A group G is called k-fold OD-characterizable if hOD(G) = k.
Usually, a 1-fold OD-characterizable group is simply called OD-characterizable,
and it is called quasi OD-characterizable if it is k-fold OD-characterizable for some
k > 1.

We will say that the OD-characterization problem is solved for a group G if
the value of hOD(G) is known. Studies in recent years by several researchers have
shown that many simple groups are OD-characterizable. Some of these results
are summarized in Table 1.

In connection with the simple groups which are quasi OD-characterizable, it
was shown in [4], [29] and [30] that:

OD(A10) = {A10, Z3 × J2},

OD(S6(5)) = {S6(5), O7(5)},

OD(S2m(q)) = {S2m(q), O2m+1(q)}, m = 2f ≥ 2,

∣

∣

∣

∣

π

(

qm + 1

2

)∣

∣

∣

∣

= 1,

q odd prime power,

OD(S2p(3)) = {S2p(3), O2p+1(3)},

∣

∣

∣

∣

π

(

3p − 1

2

)
∣

∣

∣

∣

= 1, p odd prime.

In addition to the above results, it has been shown that in [22] there exist many
infinite families of alternating and symmetric groups, {An} and {Sn}, which are
quasi OD-characterizable, with hOD(G) ≥ 3.

Here we consider the simple groups S such that π(S) ⊆ π(29!), and we denote
the set of all these simple groups by S≤29. Using the classification of finite simple
groups it is not hard to obtain a full list of all groups in S≤29. Actually, there are
110 such groups (see [24, Table 4] or [40, Table 1]). For convenience, the groups
S in S≤29 and their orders are listed in Table 2. The comparison between simple
groups listed in Table 1 and the simple groups in S≤29, shows that there are only
5 groups in S≤29, that is L3(11), U4(2

3), 2E6(2), S4(17) and U4(17), for which
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Table 1. Some OD-characterizable groups.

G Conditions on G h
OD

(G) References

An n = p, p + 1, p + 2 (p a prime, p ≥ 5) 1 [27], [30]

5 ≤ n ≤ 100, n 6= 10 1 [9], [15], [24],

[28], [31]

n = 106, 112, 116, 134 1 [37], [38]

L2(q) q 6= 2, 3 1 [30], [43]

L3(q)
∣

∣

∣
π

(

q2+q+1
d

)
∣

∣

∣
= 1, d = (3, q − 1) 1 [30]

L4(q) q ≤ 17 and q = 19, 23, 27, 29, 31, 32, 37 1 [1], [3], [5]

Ln(2) n = p or p + 1, 2p − 1 is Mersenne prime 1 [5]

Ln(2) n = 9, 10, 11 1 [13], [26]

L3(9) 1 [32]

L6(3) 1 [2]

U3(q)
∣

∣

∣
π

(

q2−q+1
d

)
∣

∣

∣
= 1, d = (3, q + 1), q > 5 1 [30]

U4(q) q = 5, 7 1 [2], [5]

U6(2) 1 [42]

R(q)
∣

∣π(q ±√
3q + 1)

∣

∣ = 1, q = 32m+1, m ≥ 1 1 [30]

Sz(q) q = 22n+1 ≥ 8 1 [30]

O5(q) ∼= S4(q) |π((q2 + 1)/2)| = 1, q 6= 3 1 [4]

O2n+1(q) ∼= S2n(q) n = 2m ≥ 2, 2 | q, |π(qn + 1)| = 1, (n, q) 6= (2, 2) 1 [4]

S6(4) 1 [21]

G G is a sporadic group 1 [30]

G |G| ≤ 108, G 6= A10, U4(2) 1 [33]

G |π(G)| = 4, G 6= A10 1 [41]

G G is a simple with π1(G) = {2} 1 [27]

G G is a simple with π(G) ⊆ π(17!), G 6= A10, U4(2) 1 [25]

the OD-characterization problem has not been solved. Therefore, one of the aims
of this article is to prove these groups are OD-characterizable.

Theorem 1.2. The simple groups L3(11), U4(2
3), 2E6(2), S4(17) and U4(17) are

OD-characterizable.

We recall that a group G is called a 2-Frobenius group if G = ABC, where
A and AB are normal subgroups of G, B is a normal subgroup of BC, and AB
and BC are Frobenius groups. Zinov’eva and V.D. Mazurov observed that the
prime graph of a 2-Frobenius group is always disconnected, more precisely, it is
the union of two connected components each of which is a complete graph [45,
Lemma 3(a)]. On the other hand, Mazurov constructed a 2-Frobenius group of
the same order as the simple group U4(2) ([20], [44]). In particular, this shows
that hOD(U4(2)) ≥ 2 (see also [33]). In this article we also prove the following
result.

Theorem 1.3. The simple group U4(2) is 2-fold OD-characterizable. In fact,

there exists a unique 2-Frobenius group F = (24 × 34) : 5 : 4 with the same order

and degree pattern as U4(2), and so OD(U4(2)) = {U4(2), F}.

As an immediate consequence of Theorems 1.2, 1.3 and the results in [20], [29],
[30], we have the following corollary.
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Corollary 1.4. All simple groups in the class S≤29, other than A10, S6(3), O7(3)
and U4(2), are OD-characterizable. In addition, each of these groups is 2-fold

OD-characterizable.

Given a group G, the order of G can be expressed as a product of some coprime
natural numbers mi = mi(G), i = 1, 2, . . . , s(G), with π(mi) = πi. The numbers
m1, m2, . . . , ms(G) are called the order components of G. We set

OC(G) =
{

m1, m2, . . . , ms(G)

}

.

In the similar manner, we denote by OC(G) the set of isomorphism classes of
finite groups with the same set OC(G) of order components, and we put hOC(G) =
|OC(G)|. Again, in terms of function hOC(·), the groups G are classified as follows:

Definition 1.5. A group G is called k-fold OC-characterizable, if hOC(G) = k.
Usually, a 1-fold OC-characterizable group is simply called OC-characterizable,
and it is called quasi OC-characterizable if it is k-fold OC-characterizable for
some k > 1.

Obviously, if p is a prime number, then hOC(Zp) = 1 while hOC(Zp2 ) =
hOC(Zp × Zp) = 2. Examples of OC-characterizable groups are abundant (see
for instance, [10], [11], [12] and [14]). Also, one family examples of simple groups
S with hOC(S) = 2 is given in [12], namely

OC(O2n+1(q)) = OC(S2n(q)) = {O2n+1(q), S2n(q)} (q odd, n = 2m ≥ 4).

As the reader might have noticed, the values of the functions hOD and hOC may
be different. For example, there are exactly two non-isomorphic groups of order
1814400 = 27 · 34 · 52 · 7 and degree pattern (2, 3, 2, 1), they are A10 and Z3 × J2,
and hence hOD(A10) = 2. However, since the prime graph GK(A10) is connected,
OC(A10) = {|A10|}, and so we obtain hOC(A10) > νa(|A10|) = 150, where νa(m)
denotes the number of types of abelian groups of order m. Therefore, we have
hOD(A10) 6= hOC(A10). The simple group U5(2) is another example of this type.
On the one hand, we have hOD(U5(2)) = 1 by Theorem 3.3 in [41]. On the other
hand, there exists a 2-Frobenius group F such that |F | = |U5(2)| (see [20]) which
implies that hOC(U5(2)) ≥ 2. Hence, hOD(U5(2)) < hOC(U5(2)). Finally, we show
the following.

Theorem 1.6. The simple group U5(2) is 2-fold OC-characterizable. In fact,

there exists a unique 2-Frobenius group F = (210 × 35) : 11 : 5 with the same

order components as U5(2), and so we have OC(U5(2)) = {U5(2), F}.

It is worth noting that the pair {U5(2), (210 × 35) : 11 : 5} is the first pair of a
finite simple group and a solvable group with the same order components. Note
that these groups have different prime graphs: the first connected component
of GK(U5(2)) is the path 2 ∼ 3 ∼ 5, while the first connected component of
(210 × 35) : 11 : 5 is the complete subgraph 2 ∼ 3 ∼ 5 ∼ 2.
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Table 2. Simple groups with orders having prime divisors at most 29 except alternating ones.

S |S|
U4(2) 26 · 34 · 5
L2(7) 23 · 3 · 7
L2(23) 23 · 32 · 7
U3(3) 25 · 33 · 7
L2(72) 24 · 3 · 52 · 72

U3(5) 24 · 32 · 53 · 7
L3(22) 26 · 32 · 5 · 7
J2 27 · 33 · 52 · 7
U4(3) 27 · 36 · 5 · 7
S4(7) 28 · 32 · 52 · 74

S6(2) 29 · 34 · 5 · 7
O+

8 (2) 212 · 35 · 52 · 7
L2(11) 22 · 3 · 5 · 11
M11 24 · 32 · 5 · 11
M12 26 · 33 · 5 · 11
U5(2) 210 · 35 · 5 · 11
M22 27 · 32 · 5 · 7 · 11
McL 27 · 36 · 53 · 7 · 11
HS 29 · 32 · 53 · 7 · 11
U6(2) 215 · 36 · 5 · 7 · 11
L3(3) 24 · 33 · 13
L2(52) 23 · 3 · 52 · 13
U3(22) 26 · 3 · 52 · 13
S4(5) 26 · 32 · 54 · 13
L4(3) 27 · 36 · 5 · 13
2F 4(2)

′
211 · 33 · 52 · 13

L2(13) 22 · 3 · 7 · 13
L2(33) 22 · 33 · 7 · 13
G2(3) 26 · 36 · 7 · 13
3D4(2) 212 · 34 · 72 · 13
Sz(23) 26 · 5 · 7 · 13
L2(26) 26 · 32 · 5 · 7 · 13
U4(5) 27 · 34 · 56 · 7 · 13
L3(32) 27 · 36 · 5 · 7 · 13
S6(3) 29 · 39 · 5 · 7 · 13
O7(3) 29 · 39 · 5 · 7 · 13
G2(22) 212 · 33 · 52 · 7 · 13
S4(23) 212 · 34 · 5 · 72 · 13
O+

8 (3) 212 · 312 · 52 · 7 · 13
L5(3) 29 · 310 · 5 · 112 · 13
L6(3) 211 · 315 · 5 · 7 · 112 · 132

Suz 213 · 37 · 52 · 7 · 11 · 13

S |S|
F i22 217 · 39 · 52 · 7 · 11 · 13
L2(17) 24 · 32 · 17
L2(24) 24 · 3 · 5 · 17
S4(22) 28 · 32 · 52 · 17
He 210 · 33 · 52 · 73 · 17
O−

8 (2) 212 · 34 · 5 · 7 · 17
L4(22) 212 · 34 · 52 · 7 · 17
S8(2) 216 · 35 · 52 · 7 · 17
U4(22) 212 · 32 · 53 · 13 · 17
U3(17) 26 · 34 · 7 · 13 · 173

O−
10(2) 220 · 36 · 52 · 7 · 11 · 17

L2(132) 23 · 3 · 5 · 7 · 132 · 17
S4(13) 26 · 32 · 5 · 72 · 134 · 17
L3(24) 212 · 32 · 52 · 7 · 13 · 17
S6(22) 218 · 34 · 53 · 7 · 13 · 17
O+

8 (22) 224 · 35 · 54 · 7 · 13 · 172

F4(2) 224 · 36 · 52 · 72 · 13 · 17
2E6(2) 236 · 39 · 52 · 72 · 11 · 13 · 17 · 19
U3(23) 29 · 34 · 7 · 19
U4(23) 218 · 37 · 5 · 72 · 13 · 19
L3(7) 25 · 32 · 73 · 19
L4(7) 29 · 34 · 52 · 76 · 19
L3(11) 24 · 3 · 52 · 7 · 113 · 19
L2(19) 22 · 32 · 5 · 19
U3(19) 25 · 32 · 52 · 73 · 193

J1 23 · 3 · 5 · 7 · 11 · 19
J3 27 · 35 · 5 · 17 · 19
F5 214 · 36 · 56 · 7 · 11 · 19
L2(23) 23 · 3 · 11 · 23
U3(23) 27 · 32 · 11 · 132 · 233

M23 27 · 32 · 5 · 7 · 11 · 23
M24 210 · 33 · 5 · 7 · 11 · 23
Co1 221 · 39 · 54 · 72 · 11 · 13 · 23
Co2 218 · 36 · 53 · 7 · 11 · 23
Co3 210 · 37 · 53 · 7 · 11 · 23
F i23 218 · 313 · 52 · 7 · 11 · 13 · 17 · 23
U4(17) 211 · 37 · 5 · 7 · 13 · 176 · 29
S4(17) 210 · 34 · 5 · 174 · 29
L2(172) 25 · 32 · 5 · 172 · 29
L2(29) 22 · 3 · 5 · 7 · 29
Ru 214 · 33 · 53 · 7 · 13 · 29
F i′24 221 · 316 · 52 · 73 · 11 · 13 · 17 · 23 · 29

We introduce some more notation. Let Γ be a simple graph. An independent

set of vertices in Γ is a set of vertices that are pairwise non-adjacent to each other
in Γ. We denote by α(Γ) the maximal number of vertices in independent sets
of Γ. Given a group G, we put t(G) = α(GK(G)). Moreover, for each prime
r ∈ π(G), t(r, G) denotes the maximal number of vertices in independent sets



24 Mohammadzadeh A., Moghaddamfar A.R.

of GK(G) containing r. Generally, our notation for simple groups follows [8].
Especially, the alternating and symmetric group on n letters are denoted by An

and Sn, respectively. We also denote by Sylp(G) the set of all Sylow p-subgroups
of G, where p ∈ π(G).

The sequel of this article is organized as follows: In Section 2, we recall some
basic results, especially, on the spectra of certain finite simple groups. Section 3
is devoted to the proofs of main results (Theorems 1.2, 1.3, 1.6). We conclude
our article with some open problems in Section 4.

2. Preliminaries

In this section we consider some results which will be needed for our further
investigations.

Lemma 2.1 ([35]). Let G be a finite group with t(G) ≥ 3 and t(2, G) ≥ 2, and

let K be the maximal normal solvable subgroup of G. Then the quotient group

G/K is an almost simple group, i.e., there exists a non-abelian simple group P
such that P ≤ G/K ≤ Aut(P ).

Lemma 2.2 ([17, Lemma 8]). Let G be a finite group with |π(G)| ≥ 3. If there

exist prime numbers r, s, t ∈ π(G) such that {tr, ts, rs} ∩ ω(G) = ∅, then G is

non-solvable.

According to Table 4 in [24], we have the following result:

Lemma 2.3. If S ∈ S≤29, then either Out(S) = 1 or π(Out(S)) ⊆ {2, 3}.

Lemma 2.4 ([34]). Suppose that q = pn, where p is an odd prime. Then we have

µ(L2(q)) =

{

p,
q − 1

2
,

q + 1

2

}

.

Lemma 2.5 ([23]). Suppose that q = pn, where p is an odd prime. Then there

holds:

µ(L3(q)) =











{

q2 + q + 1, q2 − 1, p(q − 1)
}

if q 6≡ 1 (mod 3),

{

q2+q+1
3 , q2−1

3 , p(q−1)
3 , q − 1

}

if q ≡ 1 (mod 3).

Lemma 2.6 ([19]). Let q be a power of prime 2. Then there holds:

µ(U4(q)) =
{

(q2 + 1)(q − 1), q3 + 1, 2(q2 − 1), 4(q + 1)
}

.

Lemma 2.7 ([39]). Let q be a power of an odd prime p. Denote d = gcd(4, q+1).
Then µ(U4(q)) contains the following (and only the following) numbers:

(i) q4−1
d(q+1) ,

q3+1
d

,
p(q2−1)

d
, q2 − 1;

(ii) p(q + 1), if and only if d = 4;

(iii) 9, if and only if p = 3.
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Lemma 2.8 ([18]). Let q = pn, where p > 3 is an odd prime. Then there holds:

µ(S4(q)) =

{

q2 + 1

2
,

q2 − 1

2
, p(q + 1), p(q − 1)

}

.

Using Corollaries 2.5, 2.6, 2.7, 2.8, [24, Table 4] and [8] some results are sum-
marized in Table 3. In this table we assume that s = |Out(S)|.

Table 3. Some simple groups in S≤29.

S |S| µ(S) D(S) s

L3(11) 24 · 3 · 52 · 7 · 113 · 19 110, 120, 133 (3, 2, 3, 1, 2, 1) 2

U4(23) 218 · 37 · 5 · 72 · 13 · 19 36, 126, 455, 513 (2, 3, 2, 4, 2, 1) 6

2E6(2) 236 · 39 · 52 · 72 · 11 · 13 · 17 · 19 13, 16, . . . , 22, 24, 28, 30, 33, 35 (4, 4, 3, 3, 2, 0, 0, 0) 6

S4(17) 210 · 34 · 5 · 174 · 29 144, 145, 272, 306 (2, 2, 1, 2, 1) 2

U4(17) 211 · 37 · 5 · 7 · 13 · 176 · 29 288, 2320, 2448, 2457 (4, 4, 2, 2, 2, 2, 2) 4

The following proposition is taken from [33].

Proposition 2.9 ([33]). Let M be a simple group whose order is less than 108.

If G is a finite group with the same order and degree pattern as M , then the

following statements hold:

(a) If M 6= A10, U4(2), then G ∼= M ;

(b) If M = A10, then OD(M) = {A10, J2 × Z3};
(c) If M = U4(2), then G is isomorphic to M or a 2-Frobenius group.

In particular, item (c) of Proposition 2.9 shows that hOD(U4(2)) ≥ 2. As
we mentioned in the Introduction, in fact, there is such a 2-Frobenius group
(see [20]). Indeed, when we have a Frobenius group, say, F = K : C with abelian
kernel K, and a faithful irreducible ZpF -module V , then the semidirect product
V F is a 2-Frobenius group. Now, we consider the general linear groups GL(4, 2)
and GL(4, 3). In GL(4, 2) and also in GL(4, 3) there exists a Frobenius group
F = K : C of order 20 such that K acts fixed-point-freely on corresponding
natural modules V1 of dimension 4 over F2 and V2 of dimension 4 over F3. Now,
we take (V1 × V2) · F with the natural action of F on direct factors. Then we
obtain a 2-Frobenius group (24 × 34) : 5 : 4 with the same order as U4(2). Note
that the prime graphs of U4(2) and (24 × 34) : 5 : 4 coincide.

3. Main results

In this section we will prove Theorems 1.2, 1.3 and 1.6. Before beginning the
proof of Theorem 1.2, we draw the prime graphs of the groups L3(11), U4(2

3),
2E6(2), S4(17) and U4(17) in Figure 1.

Proof of Theorem 1.2: Let S be one of the following simple groups L3(11),
U4(2

3), 2E6(2) or U4(17). Suppose that G is a finite group such that |G| = |S|
and D(G) = D(S). We have to prove that G ∼= S. In all cases we will prove that
t(G) ≥ 3 and t(2, G) ≥ 2. Therefore, it follows from Lemma 2.1 that there exists
a simple group P such that P ≤ G/K ≤ Aut(P ), where K is the maximal normal
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Figure 1. The prime graph of some simple groups.

solvable subgroup of G. In addition, we will prove that P ∼= S, which implies that
K = 1 and since |G| = |S|, G is isomorphic to S, as required. We handle every
case singly.

(a) S = L3(11). Let G be a finite group such that

|G| = |S| = 24 · 3 · 52 · 7 · 113 · 19 and D(G) = D(S) = (3, 2, 3, 1, 2, 1).

According to our hypothesis there are five possibilities for the prime graph
of G, as shown in Figure 2. Here, p1, p2 ∈ {2, 5}, p3, p4 ∈ {3, 11}, p5, p6 ∈ {7, 19}.
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Figure 2. All possibilities for the prime graph of G.

We now consider two subcases separately.

(a.1) Assume first that GK(G) is disconnected . In this case we immediately
imply that GK(G) = GK(L3(11)), and the hypothesis that |G| = |L3(11)|
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yields OC(G) = OC(L3(11)). Now, by the Main Theorem in [10], G is
isomorphic to L3(11), as required.

(a.2) Assume next that GK(G) is connected . In this case 7 ≁ 19 in GK(G).
Since {7, 19, p3} is an independent set, t(G) ≥ 3, and so by Lemma 2.2,
G is a non-solvable group. Moreover, since dG(2) = 3 and |π(G)| = 6,
t(2, G) ≥ 2. Thus by Lemma 2.1 there exists a simple group P such that
P ≤ G/K ≤ Aut(P ), where K is the maximal normal solvable subgroup
of G. We claim that K is a {7, 11, 19}′-group. We first show that K is
a {7, 19}′-group. If {7, 19} ⊆ π(K), then a Hall {7, 19}-subgroup of K
is an abelian group. Hence 7 ∼ 19 in GK(K), and so in GK(G), which
is a contradiction. Let {r, s} = {7, 19}. Now assume that r ∈ π(K)
and s /∈ π(K). Let T ∈ Sylr(K). By Frattini argument G = KNG(T ).
Therefore, the normalizer NG(T ) contains an element of order s, say x.
Now, T 〈x〉 is an abelian subgroup of G, so it leads to a contradiction as
before.

Finally, suppose that 11 ∈ π(K) and T ∈ Syl11(K). Then G =
KNG(T ) by Frattini argument. Evidently, NG(T ) contains some elements
of order 7 and 19, that we respectively denote by u and v. Now, T 〈u〉
and T 〈v〉 are nilpotent subgroups of G, of orders 113 · 7 and 113 · 19, re-
spectively, which implies that 7 ∼ 11 ∼ 19, a contradiction. Since K and
Out(P ) are {7, 11, 19}′-groups, |P | is divisible by 7 · 113 · 19. Considering
the orders of simple groups in S≤29, we conclude that P is isomorphic to
L3(11), and so K = 1 and since |G| = |L3(11)|, G is isomorphic to L3(11).
But then GK(G) = GK(L3(11)) is disconnected, which is impossible.

(b) S = U4(2
3). Assume that G is a finite group such that

|G| = |S| = 218 · 37 · 5 · 72 · 13 · 19 and D(G) = D(S) = (2, 3, 2, 4, 2, 1).

So, the prime graph of G is one of the following graphs as shown in Figure 3.
Here p1, p2, p3 ∈ {2, 5, 13}.
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Figure 3. All possibilities for the prime graph of G.

In what follows, we will consider two subcases separately.

(b.1) First, suppose that GK(G) is one of the graphs (i), (iii) or (iv). Note
that in each case 13 ≁ 19 in GK(G) and t(G) ≥ 3. Now, it follows from
Lemma 2.2 that G is a non-solvable group. Moreover, since dG(2) = 2
and |π(G)| = 6, t(2, G) ≥ 2. Thus by Lemma 2.1 there exists a simple
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group P such that P ≤ G/K ≤ Aut(P ), where K is the maximal normal
solvable subgroup of G. As in the previous case, one can show that K is
a {13, 19}′-group. Since K and Out(P ) are {13, 19}′-groups, thus |P | is
divisible by 13 ·19. Considering the orders of simple groups in S≤29 yields
P is isomorphic to U4(8), and so K = 1 and G is isomorphic to U4(8),
because |G| = |U4(8)|. Therefore, the prime graph of G and the graph (i)
coincide, and in other cases we get a contradiction.

(b.2) Next, suppose that GK(G) is the graph (ii). In this case, 7 is not adjacent
to 19 in GK(G). Since {p1, p2, 19} is an independent set, t(G) ≥ 3 and
by Lemma 2.2, G is a non-solvable group. Moreover, since dG(2) = 2 and
|π(G)| = 6, t(2, G) ≥ 2. Thus by Lemma 2.1 there exists a simple group P
such that P ≤ G/K ≤ Aut(P ), where K is the maximal normal solvable
subgroup of G. Using similar arguments to those in the previous case,
one can show that K is a {7, 19}′-group and G is isomorphic to U4(8).
But then 3 is adjacent to 19 in GK(G), which is a contradiction.

(c) S = 2E6(2). Assume that G is a finite group such that

|G| = |S| = 236 ·39 ·52 ·72 ·11 ·13 ·17 ·19 and D(G) = D(S) = (4, 4, 3, 3, 2, 0, 0, 0).

Then, the prime graphs of G and 2E6(2) coincide, and the hypothesis that |G| =
|2E6(2)| yields OC(G) = OC(2E6(2)). Now, by [14], G is isomorphic to 2E6(2),
as required.

(d) S = U4(17). Assume that G is a finite group such that

|G| = |S| = 211 · 37 · 5 · 7 · 13 · 176 · 29 and D(G) = D(S) = (4, 4, 2, 2, 2, 2, 2).

According to our hypothesis there are four possibilities for the prime graph of G,
as shown in Figure 4. Here p1, p2, p3, p4, p5 ∈ {5, 7, 13, 17, 29}.
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Figure 4. All possibilities for the prime graph of G.

In all cases {p1, p2, p3} is an independent set, and hence t(G) ≥ 3. Moreover,
since dG(2) = 4 and |π(G)| = 7, t(2, G) ≥ 2. Now, from Lemma 2.1 there exists
a simple group P such that P ≤ G/K ≤ Aut(P ). We claim now that K is a
{2, 3}-group. In fact, if there exists pi ∈ π(K), for some i, then with similar
arguments as before, we can verify that for each j 6= i, pi ∼ pj in GK(G), except
{pi, pj} = {7, 29}, and this contradicts the fact that dG(pi) = 2. Hence K and
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Out(P ) are {2, 3}-groups, thus |P | is divisible by 5 · 7 · 13 · 176 · 29. Again,
considering the orders of simple groups in S≤29 yields P is isomorphic to U4(17),
and so K = 1 and G is isomorphic to U4(17), because |G| = |U4(17)|.

(e) S = S4(17). Assume that G is a finite group such that

|G| = |S| = 210 · 34 · 5 · 174 · 29 and D(G) = D(S) = (2, 2, 1, 2, 1).

Under these conditions, there are two possibilities for the prime graph of G, as
shown in Figure 5. Here p1, p2, p3 ∈ {2, 3, 17}.
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Figure 5. All possibilities for the prime graph of G.

We now consider two cases separately, depending on GK(G) is connected or dis-
connected.

(2.1) Assume first that GK(G) is connected . Since {5, p2, 29} is an independent
set, t(G) ≥ 3. Moreover, since dG(2) = 2 and |π(G)| = 5, t(2, G) ≥
2. Thus by Lemma 2.1 there exists a simple group P such that P ≤
G/K ≤ Aut(P ). We shall treat the cases 17 ≁ 29 and 17 ∼ 29 in GK(G),
separately.

(2.1.a) First we consider the case where 17 ≁ 29 in GK(G). In this case
as before, one can show that K is a {17, 29}′-group. Since K and
Out(P ) are {17, 29}′-groups, thus |P | is divisible by 174 · 29. Con-
sidering the orders of simple groups in S≤29 yields P is isomorphic
to S4(17), and so K = 1 and G is isomorphic to S4(17), because
|G| = |S4(17)|. But then GK(G) = GK(S4(17)) is disconnected,
which is impossible.

(2.1.b) Next we discuss the case where 17 ∼ 29 in GK(G). An argument
similar to that in the above paragraphs shows that K is a {3, 29}′-
group. Since K and Out(P ) are {3, 29}′-groups, thus |P | is divisible
by 34 · 29. Considering the orders of simple groups in S≤29 yields
P is isomorphic to S4(17), and so K = 1 and G is isomorphic to
S4(17), because |G| = |S4(17)|. But then GK(G) = GK(S4(17)) is
disconnected, which is impossible.

(2.2) Assume next that GK(G) is disconnected . In this case, it is easy to see that
the prime graphs of G and S4(17) coincide. Now, by the main theorem
in [11], G is isomorphic to S4(17).

This completes the proof of Theorem 1.2. �
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Proof of Theorem 1.3: Let G be a finite group satisfying

(1) |G| = |U4(2)| = 26 · 34 · 5, and (2) D(G) = D(U4(2)) = (1, 1, 0).

By Proposition 2.9, G is isomorphic to U4(2) or a 2-Frobenius group. First of all,
it should be noted that the existence of a 2-Frobenius group satisfying conditions
(1) and (2) is guaranteed by [20], [44]. To prove uniqueness, we note that any such
group will be a subdirect product of 2-Frobenius groups of orders 24·5·4 and 34·5·4.
As a matter of fact, since 4 is the order of 2 modulo 5, 4 is the smallest dimension
of an irreducible module for Z5 over F2, so there is a unique Frobenius group of
order 24 · 5 and its kernel is elementary abelian. Actually, this is a subgroup of
the 1-dimensional affine group over F24 which is denoted by AGL(1, F24). We can
now extend this subgroup by an element of order 4 acting as a field automorphism
of F24 , giving a unique isomorphism class of 2-Frobenius groups of order 24 · 5 · 4.
Another way of looking at it is that the normalizer of a subgroup of order 5 in
GL(4, 2) is the semilinear group, which is metacyclic with structure Z15 : Z4, and
this has the Frobenius group Z5 : Z4 as a subgroup. Reasoning exactly as before,
we can show that there is a unique 2-Frobenius group of order 34 · 5 · 4, and it
has elementary abelian normal subgroup of order 34. Now, taking the subdirect
product of these gives a unique isomorphism class of 2-Frobenius groups of order
26 · 34 · 5. This completes the proof. �

Proof of Theorem 1.6: Let G be a finite group satisfying

OC(G) = OC(U5(2)) = {210 · 35 · 5, 11}.

Clearly |G| = |U5(2)| = 210 · 35 · 5 · 11 and s(G) = 2, in fact, we have π1(G) =
{2, 3, 5} and π2(G) = {11}. Then, by Theorem A in [36], one of the following
statements holds:

(1) G is a Frobenius group,
(2) G is a 2-Frobenius group, or
(3) G has a normal series 1 E H ⊳ K E G such that H is a nilpotent π1-

group, K/H is a non-abelian simple group, G/K is a π1-group, and any
odd order component of G is equal to one of the odd order components
of K/H .

If G is a Frobenius group with kernel K and complement C, then OC(G) =
{|K|, |C|}, and since |C| < |K|, the only possibility is |K| = 210 · 35 · 5 and
|C| = 11. However, this is a contradiction because |C| ∤ |K| − 1.

If G is a 2-Frobenius group of order 210 · 35 · 5 · 11, then, by the definition,
G = ABC, where A and AB are normal subgroups of G and AB and BC are
Frobenius groups with kernels A and B, respectively. Reasoning as in the proof
of Theorem 1.3, we observe that there are unique 2-Frobenius groups A1BC and
A2BC of orders 210 · 11 · 5 and 35 · 11 · 5, respectively. Note that A1 and A2 are
elementary abelian normal subgroups of orders 210 and 35, respectively. Therefore,



Several quantitative characterizations of some specific groups 31

G is a subdirect product (A1 × A2)BC = (210 × 35) : 11 : 5 of A1BC and A2BC.
So there is a unique 2-Frobenius group G = ABC of order |U5(2)| = 210 ·35 ·5 ·11.

Finally, we suppose that G satisfies condition (3). Then, by Table 2, K/H is
isomorphic to one of the simple groups L2(11), M11, M12, or U5(2). We see that,
in general, K/H ≤ G/H ≤ Aut(K/H). Let K/H ∼= L2(11). Since |Aut(K/H)| =
23 · 3 · 5 · 11 is not divisible by 32, it follows that 34 divides |H |. Let P be a Sylow
3-subgroup of H and let Q be a Sylow 11-subgroup of G . Then, P is a normal
subgroup of G, because H is nilpotent. It now follows that PQ is a subgroup of
G of order 34 · 11. Since all groups of order 34 · 11 are nilpotent, we conclude that
3 is adjacent to 11 in GK(G), which is a contradiction.

Reasoning exactly as above, we conclude that K/H ≇ M11, M12. Therefore,
we deduce that K/H ∼= U5(2), and since |G| = |U5(2)| it follows that |H | = 1 and
G = K ∼= U5(2). This completes the proof. �

4. Some open problems

We conclude this article with some open problems. Actually, in this section,
we restrict our attention to the relationship between degree patterns and prime
graphs. A natural question is:

Question 4.1. Let G and M be two finite groups with |G| = |M |. Clearly
GK(G) = GK(M) implies D(G) = D(M). Does the converse hold?

Assuming the converse is true, under these hypotheses we conclude that OC(G)
= OC(M), and so hOD(M) ≤ hOC(M). In particular, if M is OC-characterizable,
then M is also OD-characterizable. In [15, Lemma 2.15] it was shown that if G
is a finite group with π(G) = π(M) and D(G) = D(M), where M is an arbitrary
alternating or symmetric group, then the prime graphs of G and M coincide.
Therefore, we have the following consequence.

Corollary 4.2. The symmetric and alternating groups which are OC-characte-

rizable are also OD-characterizable.

On the other hand, in view of the Main Theorem in [6], the symmetric groups
Sp and Sp+1, and the alternating groups Ap, Ap+1 and Ap+2, where p ≥ 3 is a
prime number, are OC-characterizable. Therefore, by Corollary 4.2, they are also
OD-characterizable (see also [27, Theorem 1.5]). We notice that other alternating
and symmetric groups are not OC-characterizable. In fact, for all alternating
groups An (n ≥ 5), except Ap, Ap+1 and Ap+2, where p is a prime, the vertex 3
is adjacent to all other vertices in GK(An). Similarly, for all symmetric groups
Sn (n ≥ 5), except Sp and Sp+1, where p is a prime, the vertex 2 is adjacent to
all other vertices in GK(Sn). Therefore, the prime graphs associated with these
groups are connected. Assume now that G is the alternating group (resp. the
symmetric group) on n ≥ 5 letters, except Ap, Ap+1, Ap+2 (resp. Sp, Sp+1) where
p is a prime. Let H be a nilpotent group of order |G| (for instance, consider a
cyclic group of order |G|). Clearly, GK(H) is complete. Now, by the definition of
order components, we have OC(H) = OC(G) = {|G|}, while H is not isomorphic
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to G. But the situation of OD-characterizability of alternating and symmetric
groups looks a little differently. As pointed out in the Introduction, there are
infinitely many alternating groups An (resp. symmetric groups Sn) which satisfy
hOD(An) ≥ 3 (resp. hOD(Sn) ≥ 3), in particular, neither hOD(An) nor hOD(Sn)
is bounded above (see [22]).

We now focus our attention on the sporadic simple groups. By Table 1 in [30],
it is easy to see that if G is a finite group with π(G) = π(M) and D(G) =
D(M), where M is a sporadic simple group, then the prime graphs of G and M
coincide. Moreover, it is proved in [7] that all sporadic simple groups are OC-
characterizable, hence we conclude that they are also OD-characterizable (see [30,
Proposition 3.1.]).

Finally, we consider the OD-characterizability of simple groups of Lie type.
Studies show that between simple groups of Lie type there are many simple or-
thogonal and symplectic groups which are 2-fold OD-characterizable (see [4]).
Moreover, by Theorem 1.3, we have hOD(U4(2)) = 2. So far we have not found a
simple group of Lie type S satisfying hOD(S) > 2. So it seems natural to ask the
following question.

Question 4.3. Does there exist a finite simple group S of Lie type such that
hOD(S) ≥ 3?
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