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OPTIMAL CONTROL FROM INOCULATION
ON A CONTINUOUS MICROALGAE CULTURE

Jorge Antonio Torres-Muñoz, Irandi Gutierrez
and Alma Rosa Dominguez-Bocanegra

The present work is centred on the problem of biomass productivity optimization of a culture
of microalgae Spirulina maxima. The mathematical tools consisted of necessary and sufficient
conditions for optimal control coming from the celebrated Pontryagin’s Maximum Principle
(PMP) as well as the Bellman’s Principle of Optimality, respectively. It is shown that the opti-
mal dilution rate turns to be a bang-singular-bang control. It turns out that, the experimental
results are in accordance to the optimal mathematical findings.
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Classification: 93C95, 90C46

1. INTRODUCTION

Microalgae production is nowadays achieving great impact in industry, investigation
and social life, thanks to its importance in the global carbon cycle, nutritional benefits,
capability to produce oil (bio-fuels), pigments and the ability to remove contamination in
residual waters [14, 20] and [10]. Because a lot of microalgae cells are needed to develop
any of the issues mentioned earlier, finding optimal conditions under which microalgae
maximize its growth is one of the fundamental topics analysed in several disciplines.
The use of microalgae at industrial or commercial levels is limited by production cost
and time, hence the optimization of the growth process might have an economic positive
impact.

It is known that the specific growth rate of microalgae is strongly influenced by
experimental conditions (temperature, pH, light irradiance, etc.) and nutrients concen-
tration (mainly carbon source) [8]. However, very often, the only quantities that can be
considered as control variables are the irradiance and the dilution rate feeding a given
microalgae culture. In this vein, the problem of the optimal microalgae growth of the so-
called photosynthetic factory (PSF) was considered in [5] and [19], where an analytical
solution to maximize the photosynthetic production rate by manipulating the irradiance
is given.
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Actually, many works focused on the study of the growth dynamics based in nutrients
concentrations, specially focused in finding the best control policies (dilution rate) aiming
to get optimal biomass production [6, 8, 9] and [17]. However, in general, the inoculation
time is not taken into account (period where biotechnologist operates continuous cultures
as fed batch cultures), considering it as a dead time for biomass production. In this work,
on the basis of a mass-balance model with a simple but extensively used Monod’s rate of
growth, the optimal dilution rate starting from microorganism inoculation is analysed.

The control objective is the maximization of a performance index that depends just
on the biomass productivity and the experimentation time. It turns out that the optimal
solution is in the form of the so-called bang-singular-bang control. It is shown that, for
an experimental time large enough, the optimal steady state dilution rate commonly
used by biotechnologist can be reached.

The rest of the manuscript is organized as follows. The preliminaries about the
celebrated Monod’s mathematical model and the optimal dilution rate computed of the
stationary state of the microorganisms culture are recalled in Section 2. Section 3 starts
with the problem formulation by defining the performance index to be optimized, then
the Pontryagin’s maximum principle and the Belmman’s optimality principle are applied
to find necessary and sufficient optimality conditions, respectively. The experimental
setup is briefly described in Section 4. In turn, Section 5 is devoted to the results, both
in simulation and real-time, which are based on the complementarity of Pontriagyn’s
and Bellman’s approaches, the latest allows to determine the initial conditions for the
Lagrangian system from which the bang-singular-bang nature of the optimal control was
deduced. Finally, the conclusions are given in Section 6.

2. MATHEMATICAL MODEL

We consider a homogeneous system and the two-dimensional model

x (t) =
[
x1 (t)
x2 (t)

]
=:
[

Biomass Concentration
Nutrients Concentration

]
;

subject to the equation

ẋ (t) = F (x (t) , u (t)) ;

that, after a mass conservation analysis, can be rewritten as an equation that consist of
two parts, a non linear and a bilinear part, i. e. ẋ (t) = f (x (t))− x (t)u (t) +Bu (t)

x (t = t0) = x0, u (t) ∈ [0, u+]
(1)

f (x (t)) =
[
µ (x (t))x1 (t)
−Y µ (x (t))x1 (t)

]
, µ (x (t)) = µmax

x2(t)
K+x2(t) ,

B =
[

0
S

]
, µmax, Y, S,K ∈ <+ \ {0} ,
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where µmax, K and S are experimental constants referring to the maximal growth rate,
the inhibition constant and the concentration of nutrients in the inflow, respectively.
The Monod’s formulation is assumed for the rate of growth and is denoted by µ (·).
In turn, u (t) will denote the dilution rate (control input), restricted due to physical
constraint (mechanical pumping capability).

It is assumed that the solution volume in the biological reactor is kept constant during
all the operation time, that is to say, there is a proportional relation between the inflow
and the dilution rate. In turn, the productivity is defined as the amount of biomass in
the outflow given by the formula,

P (x (t) , u (t)) = x1 (t)u (t) =: Productivity. (2)

It is well known that if a constant input is applied long time enough (u (t) = uss),
system (1) becomes stable and reaches a steady biomass concentration that depends
only in the dilution rate [1, 15], i. e.

x1ss (uss) = Y −1

(
S − Kuss

µmax − uss

)
,

in such a manner that the productivity can be understood as a function exclusively of
the dilution rate, namely

P (x1ss (uss) , uss) = P (uss) = Y −1

(
S − Kuss

µmax − uss

)
uss. (3)

Notice that, the productivity function (3) is a convex function, so it can be easily verified
that

max
uD∈[0,u+

D]
{P (uss)} = P

(
uoptss

)
,

where

uoptss = min

{
µmax ·

(
1−

√
K

K + S

)
, u+

}
. (4)

This result is widely used, but only considers the system after reaching a steady state
condition and consequently transient phenomena are omitted. Such situation motivates
the following problem formulation looking for the optimal control starting from micro-
organism inoculation.

3. PROBLEM FORMULATION

For definiteness, the functional cost when seeking for the maximization of biomass pro-
ductivity is equivalent to the minimization of the following non-linear cost function,

J (t0, x0;u (·)) = −
tf∫
t0

L (x (t) , u (t)) dt, (5)

subject to the system dynamics (1), where L (x (t) , u (t)) is proposed following the nat-
ural definition of the productivity equation (2)
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L (x (t) , u (t)) = x1 (t)u(t),

here tf is a given fixed end time and the control is restricted to the following values,

u (t) ∈
[
0, u+

]
.

3.1. Pontryagin’s Maximum Principle

Pontryagin’s Maximum Principle (PMP) provides necessary conditions for optimality
(for further details check [12, 16]). The Hamiltonian equation is given by

H (λ (t) , x (t) , u (t)) = x1 (t)u (t) + 〈λ (t) , f (x (t))− x (t)u (t) +Bu (t)〉 (6)

where the dynamic of the co-state vector λ (t) ∈ <2 is

λ̇ (t) = g (x (t) , λ (t)) + λ (t)u (t)−Bu (t) , λ (tf ) =
[

0 0
]T (7)

with

g (x (t) , λ (t)) =

[
(Y λ2 (t)− λ1 (t))µ (x (t))
(Y λ2 (t)− λ1 (t))

(
x1 (t) µmaxK

(K+x2(t))2

) ]
,

B̄ =
[

1
0

]
.

If there exists an optimal dilution rate uopt that minimizes the cost functional (5),
then it must satisfy

H
(
λ (t) , xopt (t) , uopt

)
= max
u(t)∈[0,u+]

{H (λ (t) , x (t) , u (t))} (8)

after removing all terms of equation (6) where the control input u(·) does not appear
explicitly, we have that it is enough to search the maximum over the following function

max
u(t)∈[0,u+]

{[x1 (t) + 〈λ (t) , B − x (t)〉]u (t)} .

At this point, a particular kind of optimization problems has been reached in which
the equation system and the cost functional, despite the nonlinearity on the states, are
linear with respect to the control input. At first sight PMP seems to point a bang-bang
control, but the optimal control may contain intervals where the applied control is not
on the boundary of admissible control, this control is named singular control [11, 13].
Let us define the following switching function

h (x (t) , λ (t)) := x1 (t) + 〈λ (t) , B − x (t)〉 (9)

one has the following lemma.
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Lemma 3.1. A singular control exists over the interval where the switching function
h(t) and its consecutive time derivatives, until the control variable appears explicitly,
will vanish. In which case, the control policy given by

uoptsingular = µmax

 x2
2 − 2Y x1x2 − Y x1x

2
2

S−x2

2x2
2 + 2 (K − S)x2 − 2KS

 , (10)

is the optimal singular control associated with functional (5) and Hamiltonian system (6).

P r o o f . It is clear that any control u (τ) such that h (τ) = 0 for the interval t1 < τ < t2
will satisfy the maximum principle. In order to find the singular control, following the
synthesis procedure presented in [11], the equalities given by,

di

dti
(h (x(t), λ (t))) = 0, (11)

must be verified for all i = 0, 1, 2... until the control input appears explicitly. One has
first, for i = 0,

h (x, λ) = (1− λ1)x1 + λ2 (S − x2) ,

which implies

λ2 = − (1− λ1)x1

S − x2
.

In turn, the first time derivative provides

ḣ =
µmaxx1x

2
2 +Kµmaxx1 (x2 + λ1x2 − Y x1 − Sλ1 + Y λ1x1)

(K + x2)2 = 0,

which implies

λ1 =
KY x1 −Kx2 − x2

2

Kx2 +KY x1 −KS
.

Finally, at the second time derivative the control appears explicitly allowing to get the
following singular control

ḧ = −
(
2x2

2 + 2 (K − S)x2 − 2KS
)
u+ µmaxx

2
2 + · · ·

−2µmaxY x1x2 − µmaxY x1x
2
2

S−x2
= 0.

that is to say,

uoptsingular =
µmaxx

2
2 − 2µmaxY x1x2 − µmaxY x1x

2
2

S−x2

(2x2
2 + 2 (K − S)x2 − 2KS)

.

�

Using the previous lemma, we have that the optimal control is given by

uopt =


u+ if h (·) > 0
0 if h (·) < 0

uoptsingular if h (·) = 0
.

As known [18], the optimal control existence is now subject to finding the initial
conditions of the λ-system that satisfies the equation (7).
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3.2. Bellman’s Optimality Principle

The Bellman’s Optimality Principle provides sufficient conditions for optimality [2],
where the Hamilton–Jacobi–Bellman equation

− ∂

∂t
V (t, x) = inf

u∈[0,u+]

{
L (x, u) +

〈
∂

∂x
V (t, x) , F (x, u)

〉}
(12)

must be verified for all t ∈ [t0, tf ) and all x ∈ <2, where the value function V (·) is
defined as

V (t0, x0) := inf
u(·)∈[0,u+]

J (t0, x0;u (·))

V (tf , x (tf )) = 0.

Given the properties of the specific problem we are studying (such as a finite experiment
time, bounded control and bounded states), a search of the solution in the discretization
of the problem was chosen.

Euler discretization of the general system (1), gives

x [k + 1] = x [k] + ∆t
[
µ (x [k])x1 [k]− x1 [k]u [k]
−Y µ (x [k])x1 [k] + (S − x2 [k])u [k]

]
(13)

where t > 0 is the discretization step small enough so that the discrete system (13)
approximates close enough the continuous system by piecewise constant functions. In
turn, the discretized cost functional is given by

J (t0, x0;u (·)) = −∆t
T−1∑
k=0

x1 [k]u [k]

with the number of discrete states T defined by the formula

T =
tf
∆t

;

where ∆t is selected arbitrarily such that T is an integer. The value function is naturally
modified to

V (m,x [m]) = inf
u(·)∈[0,u+]

{
−∆t

T−1∑
k=m

x1 [k]u [k]
}

= inf
u(·)∈[0,u+]

{
−∆tx1 [m]u [m]−∆t

T−1∑
k=m+1

x1 [k]u [k]

}
.

Notice that, for a given input signal u [k] , the transition from one state x [k] to x [k + 1]
has a related cost and the final cost is calculated as the sum of all partial costs of
transitions steps for k ∈ { 0, 1, · · · , T − 1}.

Using Bellman’s Principle of Optimality, one has

V (m,x [m]) = inf
u(·)∈[0,u+]

{∆tx1 [m]u [m] + · · · + V (m+ 1, x [m+ 1])} ;
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and the optimal cost from time m and an admissible state x [m], is equivalent to the
minimum possible value of the operation cost from time m to time m+1 plus the optimal
cost from time m+ 1, and so on. Such procedure makes possible to find recursively the
backward sequence {V (T − i, x (T − i))} , i = {1, · · · , T}.

Now, from the physical restrictions over the states and control of the system (1), one
has

xi [k] ∈ [xi,min, xi,max] , u [k] ∈ [umin, umax] ,

where the minimum admissible values can be set to zero, since by the nature of the sys-
tem, the variables cannot take negative values. The maximum value is taken arbitrarily
large, but as is intuitively obvious, it suffices to consider the maximum values found in
previous experiments.

In order to deal with the discretization of the admissible states and control, let us
define the set

χxi
:=
{
x

(1)
i , x

(2)
i , · · · , x(p)

i ,
}

; x
(j)
i ∈ xi [k] ; i = 1, 2; j = 1, · · · , p;

χu :=
{
u(1), u(2), · · · , u(p),

}
, u(j) ∈ u [k] , j = 1, · · · , q;

where
xi,min = x

(1)
i < x

(2)
i < · · · < x

(p)
i = xi,max

x
(i+1)
i − x(i)

i = ∆xi = constxi
;

and

umin = u(1) < u(2) < · · · < u(q) = umax

u(j+1) − u(j) = ∆u = constu.

The number of elements in each set is given by the formula

card (χxi
) = p = xi,max−xi,min

∆xi
+ 1,

card (χu) = q = umax−umin
∆u + 1,

it must be noticed that a smaller discretization step ∆xi or ∆u will imply a better
numerical approximation to the real solution, but will increase computation time. The
flow diagram for obtaining a discrete approximation of the value function is proposed
in [12].

4. EXPERIMENTAL SETUP

In this section a brief account of the experimental set up is given. For the growth
of microorganisms, all experiments were carried out with a modified medium Zarrouk,
which is well known to be quite adequate and is widely accepted in the literature of the
subject, [7]. All the experiments were carried out in triplicate for statistical consistency.
Further details on Spirulina maxima cultures can be found in [3, 4, 7]. The way the
kinetic parameter are typically adjusted is recalled here for completeness, such standard
topic can be found in [1]. This section may be skipped by the readers interested just in
optimal control.
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4.1. Materials and methods

Spirulina maxima (Arthrospira) is a native strain obtained from the Ŕıo de los Remedios,
located in Ecatepec de Morelos, State of Mexico.

4.2. Microorganism growth

Experiments were carried out in 1000 mL Erlenmeyer flask with 800 mL of modified
Zarrouk medium and 10% of inoculum at exponential growth phase. All cultures were
incubated at room temperature (28± 20C), continuous aeration 0.5 vvm, agitation 100
rpm, and continuous light of 120 µEm−2s−1.

The microorganism growth was determined by quantification of chlorophyll “a” fol-
lowing the methodology of APHA (1997). The experiments were carried out by triplicate
along 264 h for parameter estimation, while it took 336 h (14 days) for optimal control
experiments.

4.3. Analytical methods

Chlorophyll “a” content was determined in 5- ml samples were centrifuged at 3,000 x g x
1,000 for 5 min and heated in 90:10 (v/v) methanol:water for 3 min at 800C in the dark
and centrifuged as before. Supernatant absorbance was determined at 550 nm using a
spectrophotometer (Velab 722-2000).

4.4. Kinematic Parameters

In order to determine the kinematic parameters a series of batch growth experiments
must be carried out at different levels of substrate concentration. In this work a Monod’s
rate of growth was considered and is given by,

µ (s) = µmax
x2 (t)

K + x2 (t)
,

the kinetic parameters µmax,K can be determined directly from the graphic of x2
µ with

respect to x2 where,

x2

µ
=

K

µmax
+

x2

µmax
.

In our case, the determined parameter values were as follows;

µmax = 0.9170
[
day−1

]
K = 5.4585 [nutrients]

and the yield parameter Y is

Y =
∆s
∆x

= 3.8165.

The previous procedure is a well known standard method in the biotechnology literature,
further details can be found in [1].
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4.4.1. Experimental prototype

A continuous bioreactor was implemented in order to validate the results proposed in
the previous section. The prototype consists of a tank containing the culture medium
(Zarrouk) and the microorganism. The prototype has a pumping system able to feed
variable flux at low speed to follow optimal control policies in an efficient way. Contin-
uous agitation was maintained to have an uniform mixture of the microorganism and
nutrients. The outflow is a mixture of microorganism and substrate allowing to keep a
constant volume in the bioreactor.

It is worth noticing that the measured variable is just the absorbance (equivalently,
the biomass concentration). Assuming the mathematical model and its parameters
are reasonably consistent with experimental data, then it is possible to calculate the
substrate in order to have registers of the two state variables for experimental validation.

5. RESULTS

In this section the simulation and experimental results are given. For such end, let
us summarize the considered parameter values for the Spirulina Maxima microalgae as
follows

µmax = 0.9170, K = 5.4585, Y = 3.8164, S = 8;

with initial conditions

x0 =
[

0.113
6.125

]
(14)

where the admissible discrete control and states are restricted to the following values,

x1 ∈ [0, 1.5] , x2 ∈ [0, 8] , u ∈ [0, 1] , ∆t = 0.01.

As mentioned before, we are considering bounded control and bounded states together
with a finite experiment time. The final time (tf ) was fixed at 14 days, taking into
account that in batch experiments, the microorganism growth needs between 4 to 5
days to reach the steady state [3].

Remark 5.1. PMP provides a high speed and low robustness method for finding opti-
mal control, while numeric solution using the Bellman’s Optimal Principle is a low speed
high robustness method for finding optimal control. Since obtaining initial conditions for
the λ-system (given in eq. (7)) is a hard work, even when trying the well known method
of constructing the backward system, the numerical solution for the HJB equation was
firstly solved.

5.1. Bellman’s Optimality Principle

Let the discretization of the states of the system be given by

χx1 = {0, 0.05, · · · , 1.5} ∆x1 = 0.05,
χx2 = {0, 0.05, · · · , 8.0} ∆x2 = 0.05,
χu = {0, 0.01, · · · , 1.0} ∆u = 0.01,
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that is to say the number of simulation steps was T = 1, 400, according to the fixed final
time tf = 14 days. In turn, the value function (V (t, x) : < × <2 → <) was solved
numerically, the surface of the value function for a fixed time t1 = 3.5 days is shown in
Figure 1 and the corresponding control surface is shown in Figure 2.

In order to validate the numerical solution, let us define the error function of the
optimal policy given in eq. (12) as follows

Error ≡ E (t, x) :=
∂

∂t
V (t, x) + inf

{
L (x, uD) +

〈
∂

∂x
V (t, x) , F (x, uD)

〉}
,

which, in principle, must be close enough to zero. i. e.

E (t, x) ≈ 0.

In Figure 3 is shown the numeric error at the fixed time t1 = 3.5 days. Note the
magnitude order for the error is around 10−1, which depends on the chosen time t1 as
well as the discretization of states and control. Clearly, smaller steps will produce a
better approximation of the value function surface, but will increase significantly the
computation time.

At this stage, one may say that a good approximation of the value function and the
optimal control was obtained, since trying smaller discretization steps will not improved
significantly the presented result.
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Fig. 1. Surface of the value function for tfixed = 3.5 days.

5.2. Pontryagin’s Maximum Principle

Recall that when implementing the bang-singular-bang optimal control, issued from
Pontryagin’s maximum principle, it is necessary to determine the switching function (9)
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Fig. 2. Control surface for tfixed = 3.5 days.
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Fig. 3. Hamilton-Jacobi-Bellman (HJB) equation error at
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by solving first the Lagrangian eq. (7). Now, when necessary and sufficient conditions
match in an optimization problem [16], one has the relation

− ∂

∂x
V (t, x) = λ (t) . (15)

Therefore, one may try to infer the initial conditions of the co-state vector λ from the
numerical results of the HJB equation. According to this way of thinking, the evolution
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of the adjoint systems (7), taking as initial conditions λ (t0) = − ∂
∂xV (t0, x0) , is shown

in Figure 4 and 5, where x0 are the initial conditions (x0 = x (t0)). Notice that, the
curves are pretty similar to the ones determined from the expression (15) which are
reported in the same graphics for comparison purposes.

On the basis of the previous results, one may assume that the initial conditions for
the function λ have been found, so that the optimization problem is completely solved.

Remark 5.2. Recall that in order to obtain the singular arc of Lemma 3.1, equation
(11) must be satisfied. However, from a numerical view point it is impossible to satisfy
such exact equalities. So, given an arbitrarily small ε > 0, it is convenient to say that one
reaches the singular control region whenever |h(x, λ)| < ε. This consideration introduces
another important difficulty of choosing a suitable ε when trying to apply PMP.

Remark 5.3. Notice that, the optimization problem within the PMP approach allows
to obtain important information, namely the existence of a singular control and, even
more, the analytic deduction of the optimal control. It can be verified numerically that
in steady state condition the proposed singular control policy will coincide with the
optimal uoptss (see eq. (4) which is often referenced in the biotechnological literature.

Remark 5.4. Concerning the complementarity of the Bellman’s Optimality Principle
and the Pontryagin’s Maximum Principle, it is clear that both approaches can be used
simultaneously in practical experiments. The former one is more adequate to establish
the time intervals for the bang-singular-bang control, while the latest one leads to the
analytical solution (10) consisting of a smooth state dependent control profile.
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5.3. Control implementation

With respect to the optimal control, it turns out that the solution based on the two
optimization methods, above discussed, have given practically the same control policy,
see Figure 6. Also, according to the Pontryagin’s maximum principle, one may appreciate
the bang-singular-bang characteristic of the control profile. Notice that here, the optimal
dilution strategy takes into account the inoculation process and for a large enough time
(t = 10 days) it reaches, in a smooth way, the optimal stationary solution uoptss (see eq.
(4)). Finally, at t = 13 days, a washing condition is observed in the culture, because one
is dealing with an optimal problem of fixed final time and therefore biomass production
is faced to an extremely high dilution rate.

In order to complement the study, the switching functions h (·) deduced from PMP
and HJB equation are presented in Figure 7, respectively. Due to numerical considera-
tions, the functions do not completely vanish and differ in magnitude order of 10−2, see
Remark 5.2. Nevertheless, such approximation seems to be reasonable in view of the
singular-bang-singular control that is depicted in Figure 6.

5.4. Experimental results

In this section, to complement the discussion, the theoretical results and the experi-
mental ones are reported together when convenient. The biomass growth is shown in
Figure 8, continuous lines represent simulation results while piecewise continuous lines
represent experimental results, respectively. It is clear that optimal control from the
PMP or HJB approaches gave higher biomass concentrations reaching 1.2 g/L com-
pared with 0.6 g/L, this last using the stationary optimal dilution rate (see eq. 4),
at t = 10 days, for instance. One can also observe the proximity of the simulation re-
sults with respect to the experimental ones, which certainly confirms the mathematical
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speculations from the optimal control analysis.
It is worth noticing that, for a time long enough, the optimal control considered here

consist of a three steps control. First, it seems that biomass production is penalized in
order to achieve certain amount of microalgae cells (u = 0). Secondly, optimal control
moves smoothly to the optimal control in steady state to ensure high productivity.
Finally, the optimal control indicates very high dilution rates to recover all microalgae
cells that remain in the bioreactor, see Figure 6.
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According to the three steps optimal control policy, a relatively low productivity at
the beginning of the experiments was obtained (u = 0). However, after t = 7 days,
biomass productivity started to increase significantly so that, at the final time was
considerably higher than productivity with any other dilution rate strategy, see Figure 9.
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It is worth noticing the above mentioned three stages of the optimal control. Within
this respect, increasing the experiment time will only increase the singular control dwell
time. In turn, when reducing the experiment time one might be faced to only a two
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stage control scheme (bang-bang control).

6. CONCLUSIONS

The analysis of the optimal dilution rate from inoculation time was presented. It is shown
that the time from inoculation to steady state operation conditions can be reduced, and,
even more, there exists an optimal strategy to improve productivity. This last has the
benefice of a better usage of substrate.

Pontryagin’s Maximum Principle allowed to determine the existence of a bang –
singular – bang optimal control policy. In a complementary manner, the Hamilton–
Jacobi–Bellman approach allowed to construct the optimal control solution in backward
time. Hence, as it is known, there is a strict relation between both approaches helping
to infer the initial conditions for the solution of the co-state Lagrangian system. From
a numerical point of view, the complementarity of both approaches is reinforced by the
fact they have produced practically the same optimal solution. Finally, such sufficient
and necessary conditions were tested in real time experiments.

As future work, in the field of optimal control oriented to bio-process, one might
consider different models to include secondary metabolites, which may exhibit more
complex dynamics and some of them are of important commercial value.

(Received March 23, 2015)
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