
Archivum Mathematicum

Moussadek Remili; Lynda D. Oudjedi
Boundedness and stability in third order nonlinear differential equations with
multiple deviating arguments

Archivum Mathematicum, Vol. 52 (2016), No. 2, 79–90

Persistent URL: http://dml.cz/dmlcz/145747

Terms of use:
© Masaryk University, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/145747
http://dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 52 (2016), 79–90

BOUNDEDNESS AND STABILITY IN THIRD ORDER

NONLINEAR DIFFERENTIAL EQUATIONS

WITH MULTIPLE DEVIATING ARGUMENTS

Moussadek Remili and Lynda D. Oudjedi

Abstract. In this paper, we establish some new sufficient conditions which
guarantee the stability and boundedness of solutions of certain nonlinear and
non autonomous differential equations of third order with delay. By defining
appropriate Lyapunov function, we obtain some new results on the subject.
By this work, we extend and improve some stability and boundedness results
in the literature.

1. Introduction

As is well known, the third-order differential equations are derived from many
different areas of applied mathematics and physics, for instance, deflection of buck-
ling beam with a fixed or variable cross-section, three-layer beam, electromagnetic
waves, gravity-driven flows, etc; see [5, 10, 14, 32] for details. The nonlinear delay
differential equations of third order have been the object of intensive research by
numerous authors. In particular, there have been extensive results on the stability
and boundedness of solutions of various nonlinear differential equations of third
order in the literature. See for instance the papers of Ademola [1, 2], Afuwape and
Omeike [3], Oudjedi et al. [15], Remili et al. [16, 17], Tunç [16–20], Zhu [34] and
the references contained in these sources.

In the following, we provide some background details regarding the study of
various classes of Delay differential equations.
In 2007, Zhang and Si [11] proved an asymptotic stability result for solutions to
the following nonlinear third order scalar differential equation without delay:

x′′′ + g(x′)x′′ + f(x, x′) + h(x) = 0 .
At the same time, Tunç [21] investigated the stability of solutions of the differential
equation

x′′′ + a1x
′′ + f2

(
x′(t− r(t))

)
+ a3x = p

(
t, x, x′, x(t− r(t)), x′(t− r(t)), x′′

)
.
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After, Tunç [23, 27] considered the equation
x′′′ + a(t)ψ(x′)x′′ + b(t)g(x′) + c(t)f

(
x(t− r)

)
= p
(
t, x, x′, x(t− r), x′(t− r), x′′

)
,

and established some results on the qualitative behavior of solutions of the equation.
Recently, in 2010 Afuwape and Omeike [4] considered third order non autonomous
differential equation with delay

x′′′(t) + h
(
x′(t)

)
x′′(t) + g

(
x′(t− r(t))

)
+ f

(
x(t− r(t))

)
= p

(
t, x(t), x′(t), x(t− r(t)), x′(t− r(t)), x′′(t)

)
.(1.1)

The authors established some sufficient condition under which all solutions of (1.1)
are asymptotic stable for p(·) = 0 and bounded for p(·) 6= 0.

Finally, in 2013 Tunç and Gözen [30] discussed conditions for stability and
uniform boundedness of solutions of equation

(1.2) x′′′(t) + a(t)x′′(t) + nb(t)g
(
x′(t)

)
+ c(t)

n∑
i=1

hi
(
x(t− ri)

)
= p(t) .

A primary purpose of this note is to study the uniform asymptotic stability of
solutions of the following more general third order nonlinear multi-delay differential
equation of the form[

h
(
x(t)

)
x′′(t)

]′ + a(t)ψ
(
x′(t)

)
x′′(t) + b(t)

n∑
i=1

gi
(
x′(t− ri(t))

)
+ c(t)

n∑
i=1

fi
(
x(t− ri(t))

)
= 0 ,(1.3)

and the boundedness of the following[
h
(
x(t)

)
x′′(t)

]′ + a(t)ψ
(
x′(t)

)
x′′(t) + b(t)

n∑
i=1

gi
(
x′(t− ri(t))

)
+ c(t)

n∑
i=1

fi
(
x(t− ri(t))

)
= p
(
t, x(t), X, x′(t), X ′, x′′(t)

)
,(1.4)

where 0 ≤ ri(t) ≤ γ, r′i(t) ≤ ωi, 0 < ωi < 1, ωi and γ are some positive constants,
γ will be determined later, X = x(t − r1(t)), . . . , x(t − rn(t)) and X ′ = x′(t −
r1(t)), . . . , x′(t − rn(t)). The functions a(t), b(t), c(t) are continuous on [0,+∞[
and h(x), ψ(x′), gi(x′), fi(x) and p(·) are continuous in their respective arguments
for all i, (i = 1, 2, . . . , n) with (fi(0) = gi(0) = 0), and the primes in (1.3) and (1.4)
denote differentiation with respect to t, t ∈ R+. Throughout the paper x(t), y(t),
and z(t) are abbreviated as x, y, and z, respectively. Finally, the continuity of the
functions h, gi, ψ, fi, p, a, b and c guarantee the existence of the solution of (1.3)
and (1.4) (see [9]). It is assumed that the right-hand side of the equation (1.4)
satisfies a Lipschitz condition in x(t), x′(t), X, X ′ and x′′(t). It is also supposed
that the derivatives, a′(t), b′(t), c′(t), g′i(y) = dgi

dy , f
′
i(y) = dfi

dy , and h′ = dh
dx exist

and are continuous.
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The motivation for the present paper comes from the papers of [4], Omeike
[13, 12], Sadek [19, 18], Swick [20], Tunç [23, 21, 30] and Zhu [34]. It follows that
the equation (1.2) is a special case of (1.4). Our purpose is to extend and improve
the result established by [4] and [23, 21, 30] for the asymptotic stability of the
null solution and boundedness of all solutions, when p = 0 and p 6= 0 in (1.4). By
defining an appropriate Lyapunov functional we show similar results for nonlinear
equations (1.3) and (1.4).

2. Preliminaries

Before introducing our main results we will give some basic information for the
general non-autonomous differential system with retarded argument. Consider the
general non-autonomous differential system with a retarded argument:

(2.1) x′ = f(t, xt) , xt(θ) = x(t+ θ) , −r ≤ θ ≤ 0 , t ≥ 0 ,

where f : I×CH → Rn is a continuous mapping, f(t, 0) = 0, CH := {φ ∈ C([−r, 0],
Rn) : ‖φ‖ ≤ H}, and for H1 < H, there exists L(H1) > 0, with |f(t, φ)| < L(H1)
when ‖φ‖ < H1.

Definition 2.1 ([8]). An element ψ ∈ C is in the ω − limit set of φ, say Ω(φ), if
x(t, 0, φ) is defined on [0,+∞) and there is a sequence {tn}, tn →∞, as n→∞,
with ‖xtn(φ)− ψ‖ → 0 as n→∞ where xtn(φ) = x(tn + θ, 0, φ) for −r ≤ θ ≤ 0.

Definition 2.2 ([8]). A set Q ⊂ CH is an invariant set if for any φ ∈ Q, the
solution of (2.1), x(t, 0, φ), is defined on [0,∞) and xt(φ) ∈ Q for t ∈ [0,∞).

Lemma 2.3 ([7]). If φ ∈ CH is such that the solution xt(φ) of (2.1) with x0(φ) = φ
is defined on [0,∞) and ‖xt(φ)‖ ≤ H1 < H for t ∈ [0,∞), then Ω(φ) is a
non-empty, compact, invariant set and

dist
(
xt(φ),Ω(φ)

)
→ 0 as t→∞ .

Lemma 2.4 ([7]). Let V (t, φ) : I ×CH → R be a continuous functional satisfying
a local Lipschitz condition. V (t, 0) = 0, and such that:

(i) W1(|φ(0)|) ≤ V (t, φ) ≤W2(|φ(0)|) +W3(‖φ‖2) where
‖φ‖2 =

( ∫ t
t−r ‖φ(s)‖2ds

) 1
2 ;

(ii) V̇(2.1)(t, φ) ≤ −W4(|φ(0)|),
where Wi (i = 1, 2, 3, 4) are wedges. Then the zero solution of (2.1) is uniformly
asymptotically stable.

3. Assumptions and main results

Let us introduce the temporary notation

φ(t) = h′(x(t))
h2(x(t))x

′(t) .

Let p(·) = 0. The first main problem of this paper is the following theorem.
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Theorem 3.1. In addition to the basic assumptions imposed on the functions a(t),
b(t), c(t), ψ(x′), gi(x′), h(x), fi(x) and p, let us assume that there exist positive
constants such that the following conditions hold:

(i) fi(0) = 0, fi(x)
x ≥ δi > 0 (x 6= 0), and |f ′i(x)| ≤ ρi for all x,

(ii) gi(0) = 0, gi(y)
y ≥ di > 0 (y 6= 0), and |g′i(y)| ≤ Di for all y,

(iii) 1 ≤ ψ(y) ≤ β; 0 < h0 ≤ h(x) ≤ h1,

(iv) 0 < a ≤ a(t) ≤ A, 0 < c ≤ c(t) ≤ b(t) ≤ L,

(v) b′(t) ≤ c′(t) ≤ 0, 1
2a
′(t) ≤ δ2 <

c(λdi−ρi)
λβ ,

(vi) di
ρi
> 1

λ >
h1
a ,

(vii)
∫ +∞
−∞ |h

′(u)| du <∞.

Then every solution of (1.1) is uniformly asymptotically stable, provided that

γ < min
{

n∑
i=1

2h2
0(a−λh1)(1−ω)

h2
1[h2

0di(1+λ)+(ρi+Di)(1−ω)] ,
n∑
i=1

2(c(λdi−ρi)− λβδ2)(1−ω)
[ρi(1+λ)+λ(ρi+di)(1−ω)]

}
,

where γ is the bound on ri(t).

Proof. We write the equation (1.3) as the following equivalent system

(3.1)

x′ = y

y′ = 1
h(x)z

z′ = − a(t)
h(x)zψ(y)− b(t)

n∑
i=1

gi(y)− c(t)
n∑
i=1

fi(x)

+ b(t)
n∑
i=1

∫ t

t−ri(t)

z(s)
h(x(s))g

′
i

(
y(s)

)
ds

+ c(t)
n∑
i=1

∫ t

t−ri(t)
y(s)f ′i

(
x(s)

)
ds .

Our main tool in the proof of the theorem just stated above is a Lyapunov function
W = W (t, xt, yt, zt) defined by

W (t, xt, yt, zt) = exp
(
−
∫ t

0 |φ(s)| ds
µ

)
V (t, xt, yt, zt)(3.2)

= exp
(
−
∫ t

0 |φ(s)| ds
µ

)
V ,
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where

V = λc(t)F (x) + c(t)y
n∑
i=1

fi(x) + b(t)G(y)(3.3)

+ λa(t)
∫ y

0
ψ(u)udu+ 1

2h(x)z
2 + λyz

+
n∑
i=1

ηi

∫ 0

−ri(t)

∫ t

t+s
y2(ξ) dξ ds+

n∑
i=1

χi

∫ 0

−ri(t)

∫ t

t+s
z2(ξ) dξ ds ,

such that F (x) =
∑n
i=1
∫ x

0 fi(u)du and G(y) =
∑n
i=1
∫ y

0 gi(u)du, µ and ηi, χi are
positive constants which will be specified later in the proof. From the definition of
V in (3.3), we observe that the above functional can be rewritten as follows

V = c(t)
[
λF (x) + b(t)

c(t)G(y) + y

n∑
i=1

fi(x)
]

+ 1
2h(x)

(
z + λh(x)y

)2

+ λa(t)
∫ y

0

[
ψ(u)− λh(x)

a(t)

]
u du+

n∑
i=1

ηi

∫ 0

−ri(t)

∫ t

t+s
y2(ξ) dξ ds

+
n∑
i=1

χi

∫ 0

−ri(t)

∫ t

t+s
z2(ξ) dξ ds .

The conditions (i)–(iv) and (vi) of the theorem show that G(y) ≥ 1
2
∑n
i=1 diy

2,
then

V ≥ c(t)
2

n∑
i=1

di

{
y + fi(x)

di

}2
+ λc

n∑
i=1

∫ x

0

(
1− ρi

λdi

)
fi(s) ds

+ 1
2h(x) (z + λh(x)y)2 + λa

(
1− λh1

a

)y2

2

+
n∑
i=1

ηi

∫ 0

−ri(t)

∫ t

t+s
y2(ξ) dξ ds+

n∑
i=1

χi

∫ 0

−ri(t)

∫ t

t+s
z2(ξ) dξ ds .

Since the integrals
n∑
i=1

ηi

∫ 0

−ri(t)

∫ t

t+s
y2(ξ) dξ ds and

n∑
i=1

χi

∫ 0

−ri(t)

∫ t

t+s
z2(ξ) dξ ds

are positive, then

V ≥ c(t)
2

n∑
i=1

di

{
y + fi(x)

di

}2
+ δ3

2 x
2 + 1

2h(x)
(
z + λh(x)y

)2 + λa
(

1− λh1

a

)y2

2 ,

where

δ3 =
n∑
i=1

λc
(

1− ρi
λdi

)
δi >

n∑
i=1

λc
(

1− λ

λ

)
δi = 0 .

Thus, we can find a positive constant k, small enough such that
(3.4) V ≥ k(x2 + y2 + z2) .
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It is easy to check that by (iii) and (vii), we have∫ t

0
|φ(s)| ds =

∫ α2(t)

α1(t)

|h′(u)|
h2(u) du ≤

1
h2

0

∫ +∞

−∞
|h′(u)| du ≤ N <∞ ,

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. Therefore, we can
find a continuous function W1(|Φ(0)|) with

W1(|Φ(0)|) ≥ 0 and W1(|Φ(0)|) ≤W (t,Φ) .

The existence of a continuous function W2(|φ(0)|) +W3(‖φ‖2) which satisfies the
inequality W (t, φ) ≤W2(|φ(0)|) +W3(‖φ‖2), is easily verified.

For the time derivative of the functional V (t, xt, yt, zt), along the trajectories of
the system (3.1), we have

d

dt
V = λc′(t)F (x) + c′(t)y

n∑
i=1

fi(x) + b′(t)G(y)− z2

h(x)

[ a(t)
h(x)Ψ(y)− λ

]
− 1

2φ(t)z2

+ c(t)
n∑
i=1

f ′i(x)y2 − λb(t)y
n∑
i=1

gi(y) + λa′(t)
∫ y

0
ψ(u)u du+

n∑
i=1

ηiri(t)y2

+
(
λy+ z

h(x)

) n∑
i=1

[
c(t)
∫ t

t−ri(t)
y(s)f ′i

(
x(s)

)
ds+b(t)

∫ t

t−ri(t)

z(s)
h(x(s))g

′
i

(
y(s)

)
ds
]

+
n∑
i=1

χiri(t)z2 −
n∑
i=1

ηi
(
1− r′i(t)

) ∫ t

t−ri(t)
y2(ξ) dξ

−
n∑
i=1

χi
(
1− r′i(t)

) ∫ t

t−ri(t)
z2(ξ) dξ .

Consequently by the hypothesis (i)–(vi) we get

d

dt
V ≤ λc′(t)F (x) + c′(t)y

n∑
i=1

fi(x) +
n∑
i=1

di
2 b
′(t)y2 − a− λh1

h2
1

z2

+
[
λβδ2 − c

n∑
i=1

(λdi − ρi)
]
y2 +

n∑
i=1

ηiri(t)y2 +
n∑
i=1

χiri(t)z2 + 1
2 |φ(t)|z2

+
(
λy+ z

h(x)

) n∑
i=1

[
c(t)
∫ t

t−ri(t)
y(s)f ′i

(
x(s)

)
ds+b(t)

∫ t

t−ri(t)

z(s)
h(x(s))g

′
i

(
y(s)

)
ds
]

−
n∑
i=1

ηi
(
1− r′i(t)

) ∫ t

t−ri(t)
y2(ξ) dξ −

n∑
i=1

χi
(
1− r′i(t)

) ∫ t

t−ri(t)
z2(ξ) dξ .

Now consider the term

Q(t, x, y) = λc′(t)F (x) + c′(t)y
n∑
i=1

fi(x) +
n∑
i=1

di
2 b
′(t)y2 ,
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for all x, y and t ≥ 0. There are two cases c′(t) = 0 or c′(t) < 0.
If c′(t) = 0, then Q(t, x, y) =

∑n
i=1

dib
′(t)
2 y2 ≤ 0. If c′(t) < 0, then

Q(t, x, y) ≤ λc′(t)
[
F (x) + 1

λ
y

n∑
i=1

fi(x) +
n∑
i=1

dib
′(t)

2λc′(t)y
2
]

≤ λc′(t)
[
F (x) +

n∑
i=1

dib
′(t)

2λc′(t)

{
y + c′(t)fi(x)

dib′(t)

}2
−

n∑
i=1

c′(t)f2
i (x)

2λdib′(t)

]
.

It is required that c′(t)
b′(t) ≤ 1 by (v), then

Q(t, x, y) ≤ λc′(t)
n∑
i=1

∫ x

0

(
1− ρi

λdi

)
fi(u) du

≤ c′(t) δ3

cδi
F (x) ≤ 0 .

In both cases, we have Q(t, x, y) ≤ 0 for all t ≥ 0, x and y. Using the inequality
|uv| ≤ 1

2 (u2 + v2) and since |f ′i(x)| ≤ ρi and |g′i(y)| ≤ Di, we obtain the following
inequalities

λy

n∑
i=1

∫ t

t−ri(t)
y(s)f ′i

(
x(s)

)
ds ≤

n∑
i=1

λρiri(t)
2 y2 +

n∑
i=1

λρi
2

∫ t

t−ri(t)
y2(ξ) dξ

z

h(x)

n∑
i=1

∫ t

t−ri(t)
y(s)f ′i

(
x(s)

)
ds ≤

n∑
i=1

ρiri(t)
2h2

0
z2 +

n∑
i=1

ρi
2

∫ t

t−ri(t)
y2(ξ) dξ ,

and
λy

n∑
i=1

∫ t

t−ri(t)
z(s)g′i

(
y(s)

)
ds ≤

n∑
i=1

λDiri(t)
2 y2 +

n∑
i=1

λDi

2

∫ t

t−ri(t)
z2(ξ) dξ

z

h(x)

n∑
i=1

∫ t

t−ri(t)
z(s)g′i

(
y(s)

)
ds ≤

n∑
i=1

Diri(t)
2h2

0
z2 +

n∑
i=1

Di

2

∫ t

t−ri(t)
z2(ξ) dξ .

We rearrange

d

dt
V ≤ −

[
c

n∑
i=1

(λdi − ρi)− λβδ2 −
n∑
i=1

(
ηi + λ(ρi +Di)

2

)
ri(t)

]
y2

−
[a− λh1

h2
1
−

n∑
i=1

(
χi + ρi +Di

2h2
0

)
ri(t)

]
z2 + 1

2 |φ(t)|z2

+
n∑
i=1

ρi
2

[
1 + λ− 2ηi

ρi
(1− ω)

] ∫ t

t−ri(t)
y2(ξ) dξ

+
n∑
i=1

Di

2

[
1 + λ− 2χi

di
(1− ω)

] ∫ t

t−ri(t)
z2(ξ) dξ .
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If we take ρi(1 + λ)
2(1− ω) = ηi > 0, di(1 + λ)

2(1− ω) = χi > 0 and ri(t) ≤ γ, the last inequality

becomes

d

dt
V ≤ −

[
c

n∑
i=1

(λdi − ρi)− λβδ2 − γ
n∑
i=1

(ρi(1 + λ) + λ(ρi +Di)(1− ω)
2(1− ω)

)]
y2

−
[a− λh1

h2
1
− γ

n∑
i=1

(h2
0di(1 + λ) + (ρi +Di)(1− ω)

2h2
0(1− ω)

)]
z2 + |φ(t)|z2 .

Using (3.4), (3.2) and taking µ = k we obtain:

d

dt
W = exp

(
−
∫ t

0 |φ(s)| ds
k

)( d
dt
V − |φ(t)|

k
V
)

≤ exp
(
−
∫ t

0 |φ(s)| ds
k

)[
−
[
c

n∑
i=1

(λdi − ρi)− λβδ2

− γ
n∑
i=1

(ρi(1 + λ) + λ(ρi +Di)(1− ω)
2(1− ω)

)]
y2

−
[a− λh1

h2
1
− γ

n∑
i=1

(h2
0di(1 + λ) + (ρi +Di)(1− ω)

2h2
0(1− ω)

)]
z2
]
.(3.5)

Therefore, if

γ < min
{

n∑
i=1

2h2
0(a−λh1)(1− ω)

h2
1[h2

0di(1+λ)+(ρi+Di)(1−ω)] ,
n∑
i=1

2(c(λdi−ρi)−λβδ2)(1−ω)
[ρi(1+λ)+λ(ρi+di)(1−ω)]

}
the inequality (3.5) becomes

d

dt
W (t, xt, yt, zt) ≤ −W4(x, y, z)

where W4(x, y, z) = N1(y2 + z2), for some N1 > 0. It follows, by the conditions (i)
and (iv), that W4(x, y, z) = 0 if and only if x = y = z = 0 in the system (3.1), and
d

dt
W (t, φ) ≤ −W4(x, y, z) < 0 for φ 6= 0. Thus, all the conditions of Lemma 2.4

are satisfied. This shows that every solution of (1.3) is uniformly asymptotically
stable. Hence the proof of Theorem 3.1 is complete. �

In the case p(·) 6= 0. The second main result of this paper is the following
theorem.

Theorem 3.2. In addition to the assumptions of Theorem 3.1, if we assume that
p is continuous, and

|p(·)| ≤ q(t) ,

where q ∈ L1(0,∞), L1(0,∞) is the space of Lebesgue integrable functions. Then
all solutions of the perturbed equation (1.4) are bounded.
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Proof. We consider the equivalent system of (1.4)

(3.6)

x′ = y

y′ = z

h(x)

z′ = − a(t)
h(x)zψ(y)− b(t)

n∑
i=1

gi(y)− c(t)
n∑
i=1

fi(x)

+ b(t)
n∑
i=1

∫ t

t−ri(t)

z(s)
h(x(s))g

′
i(y) ds

+ c(t)
n∑
i=1

∫ t

t−ri(t)
yf ′i(x(s))ds

+ p
(
t, x, . . . , x

(
t− rn(t)

)
, y, . . . , y

(
t− rn(t)

)
,
z

h(x)

)
.

An easy calculation from (3.6) and (3.2) yields that
d

dt
U(3.6) = d

dt
U(3.1) +

( z

h(x) + λy
)
p(·) .

Since d

dt
U(3.1) ≤ 0 and noting that |x| ≤ 1 + x2, then

d

dt
U(3.6) ≤

( |z|
h(x) + λ|y|

)
|q(t)| ≤ k1(|z|+ |y|)|q(t)|

≤ k1(2 + z2 + y2)|q(t)| ≤ k1‖X‖2|q(t)|+ 2k1|q(t)|

≤ k1

δe−
k2
µ

|q(t)|U + 2k1|q(t)| ,

where k1 = max
{ 1
h0
, λ
}

, recalling that

δe−
k2
µ ‖X‖2 ≤ U(t, xt, yt, zt) .

Let κ = max
{

2k1,
k1

δe−
k2
µ

}
, then

d

dt
U(3.6) ≤ κ|q(t)|+ κ|q(t)|U .

Multiplying each side of this inequality by the integrating factor e−κ
∫ t

0
|q(s)|ds, we

get

e
−κ
∫ t

0
|q(s)|ds d

dt
U(3.6) ≤ e

−κ
∫ t

0
|q(s)|ds

κ|q(t)|+ e
−κ
∫ t

0
|q(s)|ds

κ|q(t)|U .

Integrating each side of this inequality from 0 to t, we get

e
−κ
∫ t

0
|q(s)|ds

U − U(0, X0) ≤ 1− e−κ
∫ t

0
|q(s)|ds

,
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where X0 = (x(0), y(0), z(0)). Since
∫ t

0 |q(s)|ds ≤ L for all t ≥ 0, we have

U(t, xt, yt, zt) ≤ U(0, X0)eκL + [eκL − 1] for t ≥ 0.
Now, since the right-hand side is a constant, and since U(t, xt, yt, zt)→∞ as
x2 + y2 + z2 →∞, it follows that there exists a D > 0 such that

|x(t)| ≤ D , |y(t)| ≤ D , |z(t)| ≤ D ∀t ≥ 0 ,
thus we can deduce

|x(t)| ≤ C , |x′(t)| ≤ C , |x′′(t)| ≤ C ∀t ≥ 0 ,
�

Example 3.3. Consider the equation((cosx− 1
1 + x2 + 3

)
x′′
)′

+
(21

2 −
1
2e
− 1

2 t
)(

arctan x′ + 5π
6

)
x′′

+
( 1

1 + t
+ 1
) n∑
i=1

(
2ix′(t− ri(t)) + ix′(t− ri(t))

1 + ix′2(t− ri(t))

)
+
( 1

2(1 + t) + 1
2

) n∑
i=1

[
ix(t− ri(t)) + ix(t− ri(t))

1 + |x(t− ri(t))|

]
= 0 .(3.7)

Now, it is easy to see that

10 = a ≤ a(t) = 21
2 −

1
2e
− 1

2 t ≤ 21
2 , a′(t) = 1

4e
− 1

2 t ≤ 1
4 , t ≥ 0 ,

c = 1
2 ≤ c(t) = 1

2(1 + t) + 1
2 ≤ b(t) = 1

1 + t
+ 1 ≤ 2 = L , t ≥ 0 ,

−1 ≤ b′(t) ≤ c′(t) ≤ 0 , ∀t ≥ 0 ,

δi = i ≤ fi(x)
x

=
(
i+ i

1 + |x|

)
with x 6= 0 , and |f ′i(x)| ≤ ρi = 2i ,

di = 2i ≤ gi(y)
y

= 2i+ i

1 + iy2 with y 6= 0 , and |g′i(y)| ≤ Di = 3i ,

1 ≤ h(x) = cosx− 1
1 + x2 + 3 ≤ 3 = h1 ,

1 ≤ ψ(y) = arctan y + 5π
6 ≤

4π
3 = β ,

1 = ρi
di
< λ <

a

h1
= 10

3 ,

1
2a
′(t) ≤ 1

8 <
c(λdi − ρi)

λβ
<

3i
4π .

An explicit calculation shows that∫ +∞

−∞
|h′(u)| du ≤

∫ +∞

−∞

[∣∣∣∣− sin u
1 + u2

∣∣∣∣+
∣∣∣∣2u(cosu− 1)

(1 + u2)2

∣∣∣∣] du
≤ π + 8 .
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All the assumptions (i) through (vii) are satisfied, we can conclude using Theorem
3.1 that every solution of (3.7) is uniformly asymptotically stable.
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