
Mathematica Bohemica

Herbert Koch; Tobias Lamm
Parabolic equations with rough data

Mathematica Bohemica, Vol. 140 (2015), No. 4, 457–477

Persistent URL: http://dml.cz/dmlcz/144463

Terms of use:
© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144463
http://dml.cz


140 (2015) MATHEMATICA BOHEMICA No. 4, 457–477
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Abstract. We survey recent work on local well-posedness results for parabolic equations
and systems with rough initial data. The design of the function spaces is guided by tools and
constructions from harmonic analysis, like maximal functions, square functions and Carleson
measures. We construct solutions under virtually optimal scale invariant conditions on the
initial data. Applications include BMO initial data for the harmonic map heat flow and
the Ricci-DeTurck flow for initial metrics with small local oscillation. The approach is
sufficiently flexible to apply to boundary value problems, quasilinear and fully nonlinear
equations.
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1. Introduction

In this paper we survey recent work on the initial value problem for parabolic

equations in a fairly broad sense. This new approach is based on basic notions in

harmonic analysis like maximal function, square function, and Carleson measures.

The design of the function spaces we use is modeled on maximal functions and

square functions, where the version we use incorporates the regularity theory for the

corresponding linear parabolic equations.

We consider it to be an appealing feature that the first local existence statement

can be formulated without using function spaces, while being essentially optimal in

terms of the regularity of the initial data needed, see Theorem 1.1 below.

Our proofs make only use of fairly general properties of linear equations with

constant coefficients: (Gaussian) decay of the kernel and a version of the Calderon-

Zygmund estimates. Moreover, the arguments are almost local in space for local in

time solutions. In the flat small data situation, this idea has first been used in Koch

and Tataru [20] and, closer to the core of this survey, by the authors in [19].
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One of the main observations is that the methods we use are flexible enough to

handle initial boundary value problems in half-spaces, parabolic systems, subelliptic

parabolic equations, and higher order parabolic equations. Subelliptic parabolic

equations occur in the context of the porous medium equation (see [9] and the thesis

of C.Kienzler [18]) and in the context of thin films (see the thesis of D. John [17]).

It seems natural to study parabolic equations on uniform manifolds—i.e., mani-

folds with a metric and an atlas corresponding to balls of size one for which all the

coordinate changes are uniformly in C1 with uniform modulus of continuity. This

concept of uniform manifolds has been introduced by Denzler, Koch and McCann [11]

and it was recently used by Shao and Simonett [26] and Shao [25].

It is a consequence of our results—and basically this result can also be found in the

papers of Whitney [35] and Kotschwar [22]—that these manifolds carry a uniform

analytic metric: there is an atlas corresponding to balls of diameter 1 and a metric g

such that all coordinate changes ϕij satisfy bounds

|∂α
xϕij | 6 cR−|α||α|!,

|∂α
x g

ij | 6 cR−|α||α|!

where c and R are independent of α.

Initial boundary value problems fit into the framework of uniform structures: Con-

sider a bounded domain with a smooth boundary. Locally we can flatten the bound-

ary, and we obtain a “uniform” structure in the spirit as discussed above.

In the following, we discuss several examples which we consider instructive and

interesting.

Consider the equation

ut −
d

∑

i,j=1

∂ia
ij(t, x, u)∂ju = f(t, x, u,∇u)(1.1)

in R
d, where aij and f are continuous functions satisfying

λ−1|ξ|2 6

d
∑

i,j=1

aij(t, x, u)ξiξj and |aij | 6 λ

for some λ > 1, uniformly for all t, x, u and ξ. The coefficients are not assumed to

be symmetric.

The basic regularity assumption with respect to x and t is the requirement of

locally small oscillation: There exists δ depending on λ, and T > 0 with

|aij(t, x, u)− aij(s, y, u)| 6 δ for all 0 6 s, t 6 T, |x− y| 6
√
T .
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We assume Lipschitz continuity with respect to u: There exists L with

|aij(t, x, u)− aij(t, x, v)| 6 L|u− v|.

The nonlinearity f is assumed to be quadratic in the last component. There is a small

parameter ε and we assume

|f(t, x, u, 0)| 6 ε/T

and

|f(t, x, u, p)− f(t, x, v, q)| 6 c
(

|u− v|(ε/T + L|p|2) + (ε/
√
T + L(|p|+ |q|))|p− q|

)

.

Higher regularity: Let k > 1 be a regularity index. The derivatives of aij with

respect to x and u of order k are uniformly bounded:

T |α|/2|∂α
x ∂

j
ua

ij | 6 L

and

T 1+|α|/2−|β|/2|∂α
x ∂

j
u∂

β
p f | 6 L(1 + |T 1/2p|(2−|β|)+),

for |α|+ j + |β| 6 k.

Theorem 1.1. There exists δ > 0, and for all L > 0 there is ε0 > 0 such that, if

for T > 0

|u0(x)− u0(y)| 6 ε < ε0 for |x− y| 6
√
T

and the assumptions above are satisfied, then there is a unique continuous solution u

up to time T which satisfies

|(t1/2∂x)αu(t, x)| 6 cαε

for |α| 6 k. The solution is analytic with respect to x, if aij and f are analytic with

respect to x, u and Du. If aij and f are analytic with respect to all variables, then

there exist c and R such that

|(t1/2∂x)α(t∂t)ju(t, x)| 6 c(|α| + j)!R|α|+jε.

Examples of equations and systems of the above type are the harmonic map heat

flow, the viscous Hamilton-Jacobi equation, the Ricci-DeTurck flow and the fast

diffusion equations for the relative size with respect to the Barenblatt solution. In

all of these cases, continuous initial data are natural and essentially optimal, which

can be seen by the examples below.
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2. The fixed point formulation

We construct the solution of the parabolic equation as a fixed point using

Duhamel’s formula. For this we consider the abstract equation

ut = Au+ f [u],

where A is the generator of a semigroup S(t). If there are function spaces X0, X

and Y such that

‖S(t)u0‖X 6 c‖u0‖X0
(2.1)

∥

∥

∥

∥

∫ t

0

S(t− s)f(s) ds

∥

∥

∥

∥

X

6 c‖f‖Y(2.2)

‖f [u]− f [v]‖Y 6 c(‖u‖X + ‖v‖X + δ)‖u− v‖X ,(2.3)

then it is standard to deduce existence and uniqueness by the contraction mapping

principle.

Alternatively, existence of the fixed point follows from the implicit function the-

orem, provided the maps are differentiable. The contraction property implies in-

vertibility of the linearization. This has an important consequence: The solution

depends smoothly on parameters, if the nonlinear functions are smooth, and it de-

pends analytically, if the functions are analytic.

Possible and popular choices are

⊲ Hölder spaces Cα(Ω) and Cα/2,α([0, T ) × Ω) (see [26] for a recent contribution,

discussion and references),

⊲ the Sobolev space X = W 1,2,p([0, T ) × Ω), X0 = W 2−2/p,p(Ω) of functions with

one time and two spacial derivatives in L2, Y = Lp, p > n+ 2.

To motivate our choice we take a look at fundamental objects in harmonic analysis.

Consider the heat equation

ut = ∆u, u(0, x) = v(x).

A nontangential maximal function is given by

Mv(x) = sup
t, |h|26t

|u(x+ h, t)|,

which has the variant for k > 0 and p ∈ [1,∞]

Mv(x) = sup
R

Rk

(

R−d−2

∫ R2

R2/2

∫

BR(x)

|Dk
xu|p dxdt

)1/p

.
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The basic property is

‖Mv‖Lp 6 c‖v‖Lp for 1 < p 6 ∞ and ‖v‖Lp 6 c‖Mv‖Lp if 1 < p < ∞.

For p = ∞ there is a substitute via the square function

‖v‖BMO ∼ sup
x,R

(

R−d

∫ R2

0

∫

BR(x)

|∇u|2 dy dt
)1/2

.

The right hand side is a Carleson measure type expression.

These tools have been used in the study of function spaces, but also for the so-

lution of the Kato square root problem by Auscher, Hofmann, Lacey, McIntosh and

Tchamitchian [4] and the study of harmonic functions in Lipschitz domains by Jeri-

son, Kenig [16] and others.

The Carleson measure formulation of the BMO norm (or more precisely the

BMO−1 norm) turned out to be a crucial ingredient in the study of the Navier-Stokes

equations with initial data in BMO−1 by Koch and Tataru [20]. More recently, the

authors applied these concepts to geometric problems including the harmonic map

heat flow, the Ricci-DeTurck flow, and the mean curvature and Willmore flow for

Lipschitz graphs, see [19].

In order to study equations of the form (1.1), we pick p > n + 2 and q = p/2.

Moreover, we let T > 0 and define the norms

‖u0‖X0
= ‖u0‖sup

and

‖u‖X = sup
x,t6T

|u(t, x)|+ sup
x,R2<T

R

(

R−d−2

∫ R2

R2/2

∫

BR(x)

|∇u|p dy dt
)1/p

+ sup
x,R2<T

(

R−d

∫ R2

0

∫

BR(x)

|∇u|2 dy dt
)1/2

.

Here the second line is similar to the L∞ norm of a maximal function, and the last

line corresponds to a Carleson measure.

Additionally, we consider nonlinearities

f [u] = f0(u,∇u) + ∂iF
i(u,∇u)

and decompose

‖f‖Y = ‖f0‖Y 0 + ‖F‖Y 1 ,
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where

‖f0‖Y 0 = sup
x,R2<T

R

(

R−(d+2)/2

∫ R2

R2/2

∫

BR(x)

|f0|q dy dt
)1/q

+ sup
x,R2<T

R−d

∫ R2

0

∫

BR(x)

|f0| dy dt

and

‖F‖Y 1 = sup
x,R2<T

R

(

R−d−2

∫ R2

R2/2

∫

BR(x)

|F |p dy dt
)1/p

+ sup
x,R2<T

(

R−d

∫ R2

0

∫

BR(x)

|F |2 dy dt
)1/2

.

Now we construct a function w : R
d → R such that ‖w− u0‖sup and ‖∇w‖sup are

small in terms of ε, and we look for u solving

ut −
d

∑

i,j=1

∂ia
ij(t, x, w)∂ju = f(t, x, u,∇u) +

d
∑

i,j=1

∂i(a
ij(t, x, u)− aij(t, x, w))∂ju.

The estimate

‖u‖X 6 c‖u0‖X0

follows from standard kernel estimates. The estimates

‖f(u)− f(v)‖Y 0 6 c(‖u‖X + ‖v‖X + δ)‖u− v‖X

and the bound for ‖(aij(t, x, u)− aij(t, x, w))∂ju‖Y1
are true by construction.

By scaling and the kernel estimates, if

ut −
d

∑

i,j=1

∂ia
ij∂ju = f +

d
∑

i=1

∂iF
i

with u(0) = 0, then

|u(0, 1)| 6 c[‖f‖Y 0 + ‖F‖Y 1 ].

Energy estimates (plus kernel estimates) give

(
∫ 1

0

∫

B1(0)

|∇u|2 dxdt
)1/2

6 c[‖f‖Y 0 + ‖F‖Y 1 ].

Finally, kernel estimates and Calderon-Zygmund theory imply

(
∫ 1

1/2

∫

B1(0)

|∇u|p dxdt
)1/p

6 c[‖f‖Y 0 + ‖F‖Y 1 ].
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Hence, we are in the above mentioned abstract setting, in which the existence and

uniqueness of a solution of (1.1) in X follows from a fixed point argument.

3. Regularity and uniqueness

We will prove regularity and existence of derivatives via the implicit function

theorem. For simplicity we do that for analyticity, which goes back to Angenent (see

[1], [2]). Consider

ut −∆u = Γ(u)|∇u|2

for some analytic and bounded function Γ. Define

us,a(t, x) = u(st, x+ ta).

It satisfies

ut − s∆u+ a∇u = Γ(u)|∇u|2,

which is analytic in a (for a close to zero) and s (for s close to 1). We construct the

solution by the implicit function theorem. Thus (s, a) 7→ us,a ∈ X is analytic. The

evaluation of a derivative is linear, hence for all t and x the map

(s, a) → ∇us,a(t, x)

is analytic. But

t∂tu = ∂su
s,a|s=1,a=0 and t∂ju = ∂aj

us,a|s=1,a=0,

with corresponding formulas for higher derivatives.

This argument can be localized as follows: The map

x → x+ ta

is the flow map of the constant vector field a ∈ R
d. This is clearly analytic with

respect to a. We fix the analytic vector fields (for given a)

X = (1− |x|2)a

They generate a flow which is analytic with respect to x and a. The vector field

vanishes at |x| = 1. Hence also

X+ = (1− |x|2)+a
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generates a C∞ flow which is analytic with respect to the parameter a ∈ R
d. This

argument shows that analyticity with respect to x is a local problem—in contrast to

analyticity in time: The fundamental solution is smooth but not analytic at t = 0

and x ∈ R
d, x 6= 0.

We need slightly more for Theorem 1.1. The properties on the nonlinearity are

too weak for a direct implementation of this argument. In order to overcome this

difficulty, we first obtain bounds for the derivatives, and then we implement this

argument on the second half of the time interval.

Let us further comment on the uniqueness result claimed in Theorem 1.1. The

fixed point map gives a unique fixed point in X , but Theorem 1.1 claims uniqueness

for weak solutions satisfying

t1/2‖∇u‖L∞ 6 c1ε,

which does not imply the Carleson measure bound. Let u be a solution as in the

theorem. For t > 0 we can solve the initial value problem for the initial data u(t).

It is unique, and hence the shifted solution is uniformly bounded in X . The limit

t → 0 shows that the solution is in X and hence unique.

The above framework allows to deal with rougher initial data. It is obvious that

we may allow small perturbations of the initial data in L∞. We may also allow small

BMO perturbations, if we require that all the structure assumptions hold uniformly

in u. Here we take a caloric extension w of the initial data, and make the ansatz

u = w+ v. Then we apply a fixed point argument in order to find a function v such

that u is a solution of our problem.

4. Modifications and generalizations

4.1. Uniform manifolds and initial boundary value problems. Parabolic

equations have an infinite speed of propagation but heat kernels have Gaussian decay.

Therefore we only need local in time estimates if we want to construct local solutions.

The simplest version is for uniformly small local oscillations as in the above theorem.

This result can be extended to uniform manifolds: We only need uniform local

coordinate maps. The uniqueness argument is elementary but delicate.

The estimates mentioned at the end of Section 2 required Calderon-Zygmund type

estimates and pointwise bounds of the heat kernel. Both are available for boundary

value problems in a half-space.

Now consider a parabolic equation in a bounded domain with smooth boundary.

Locally we can flatten the boundary. We take the half-space problem as model, and

consider the bounded domain with smooth boundary as a uniform manifold.
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This allows to deal with Dirichlet boundary conditions and conormal boundary

conditions
d

∑

i,j=1

νia
ij(t, x, u)∂ju =

∑

i

gi(t, x, u)∂iu+ f(t, x, u),

where we assume (with ν denoting the exterior normal vector)

n
∑

i=1

gi(t, x, u)νi(x) = 0,

which expresses that (gi) has values in the tangent space of the boundary.

4.2. Systems. The same arguments apply to systems of equations

uk
t −

d
∑

i,j=1

∑

l

∂ia
ij
kl(t, x, u)∂ju

l = fk(t, x, u,∇u),

as soon as the Calderon-Zygmund estimates and the Gaussian estimates are available.

A sufficient condition is that

∑

i,j,k,l

aijklA
k
iA

l
j > λ−1|A|2

holds uniformly. This implies that

(4.1)

∫

∑

i,j,k,l

ãijkl(x)∂iϕ
k∂jϕ

l dx > λ−1‖|∇ϕ|‖2L2 ,

where ãijkl(x) = aijkl(t, x, v(t, x)) and v(t, x) is the mean of the initial data on a ball

of radius
√
t and 0 < t 6 T .

The positivity condition (4.1) implies rank-1 positivity,

∑

i,j,k,l

aijklη
kηlξiξj > λ−1|ξ|2|η|2.

On the other hand, for uniformly continuous coefficients, rank-1 positivity implies

(4.2)

∫

∑

i,j,k,l

ãijkl(x)∂iϕ
k∂jϕ

l dx > (2λ)−1‖∇ϕ‖2L2 − C‖ϕ‖2L2 ,

but for discontinuous coefficients no good algebraic characterization of the coefficients

satisfying (4.2) seems to be available.
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In any case, (4.1) for aijkl(t, x) = aijkl(t, x, w(x)), where w is the heat extension of the

initial data, is enough to handle small BMO perturbations of uniformly continuous

initial data. The situation is different for small L∞ perturbations. Here we deal

with small perturbations of uniformly continuous coefficients and rank-1 positivity

suffices.

There is an important and natural weaker notion of parabolicity. Assume that

the coefficients aijkl have values in a compact set K of tensors. We call the equation

parabolic if in this compact set K, for all ξ ∈ R
d \ {0}, the matrix

Akl(ξ) =

d
∑

i,j=1

aijklξiξj

has its spectrum in the open left complex half-plane.

The situation of boundary value problems is considerably more complex. Again,

positivity is sufficient, and for Dirichlet boundary conditions this is again equivalent

to rank-1 positivity. In general, no good characterization of positivity is known, but

there are many important sufficient conditions, see Simpson and Spector [29].

Again, parabolicity in the sense of Solonnikov [30] is sufficient for an analogue of

Theorem 1.1 for initial boundary value problems for systems.

4.3. More derivatives. Consider the parabolic equation

ut −
d

∑

i,j=1

aij(t, x, u,∇u)∂2
iju = f(t, x, u,∇u)

in R
d and let T > 0 be given. We assume boundedness with a parameter ε

‖aij‖sup 6 λ, ‖f‖sup 6 εT−1/2,

parabolicity
d

∑

i,j=1

aij(t, x, u, p)ξiξj > |ξ|2/λ,

and Lipschitz continuity

|aij(t, x, u, p)− aij(t, x, v, q)| 6 L(|p− q|+ T−1/2|u− v|),
|f(t, x, u, p)− f(t, x, v, q)| 6 ε(T−1/2|p− q|+ T−1|u− v|).

We assume again locally small oscillation: There exists δ depending only on λ with

sup
|x−y|6

√
T ,06t,s6T

|aij(t, x, u, p)− aij(s, y, v, q)| 6 δ
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and regularity with k > 1,

(4.3) T |α|/2+l/2|∂α
x ∂

l
u∂

β
p a

ij | 6 c

and, with k > 1,

(4.4) T 1/2+|α|/2+l/2|∂α
x ∂

l
u∂

β
p f | 6 c

for |α| 6 k.

Theorem 4.1. There exists δ > 0 such that for all L > 0 there is ε0 > 0 such

that if T > 0,

|∇u0(x)−∇u0(y)| 6 ε 6 ε0 for |x− y| 6
√
T

and if the assumptions above are satisfied, then there is a unique continuous solu-

tion u up to time T , which satisfies

t−1/2|(t1/2∂x)αu(t, x)| 6 cαε

for 1 6 |α| 6 1 + k. The solution is analytic with respect to x, if aij and f are

analytic. If aij and f are analytic with respect to all variables, then there exist c

and R such that

t−1/2|(t1/2∂x)α(t∂t)ju(t, x)| 6 c(|α|+ j)!R−(|α|+j)ε

for |α|+ j > 1, where c and R are independent of x, t, j and α.

The mean curvature flow in arbitrary codimension provides an example of this

structure. Here, bounded first derivatives seem to be appropriate if one wants to deal

with the flow for graphs, see e.g. [33], [34]. Note that Šverák [31] has constructed

Lipschitz continuous singular solutions to the stationary problem. These solutions

indicate either that solutions to the parabolic equation become nonunique, or that

the smallness condition for the initial data is needed for solutions in the function

space X .

Similarly we deal with the fully nonlinear equation

ut − F (t, x, u,∇u,∇2u) = 0

with initial data in C1,1. We assume Lipschitz continuity

|F (t, x, u, p, A)− F (t, x, u, p, B)| 6 λ|A−B|
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and ellipticity

F (t, x, u, p, A+B)− F (t, x, u, p, A) > λ−1λmin(B),

where A is symmetric and B positive definite with λmin denoting the smallest eigen-

value. The condition of locally small oscillation takes the form:

(4.5) sup
|s−t|6T,|x−y|6

√
T

|F (t, x, ., ., A+H)− F (t, x, ., ., A)

− (F (s, y, ., ., A+H)− F (s, y, ., ., A))| 6 δ|H |.

The Lipschitz condition involving a small parameter ε is

|F (t, x, u, p, A)− F (t, x, v, q, A)| 6 ε

T
|u− v|+ ε√

T
|p− q|

and

|F (t, x, u, p, 0)| 6 ε.

Let k > 1. The higher regularity condition is

|(T 1/2∂x)
α(T∂u)

l(T∂p)
β(∂A)

γF | 6 L

for l + |α|+ |β|+ |γ| 6 k.

Theorem 4.2. There exists ε0 > 0 such that if

|D2u0(x) −D2u0(y)| 6 ε 6 ε0 for |x− y| 6
√
T ,

then there is a unique continuous solution u up to time T , which satisfies

t−1|(t1/2∂x)αu(t, x)| 6 cαε

for 2 6 |α| 6 2 + k. The solution is analytic with respect to x, if aij and F are

analytic. If aij and F are analytic with respect to all variables, then there exist c

and R such that

t−1|(t1/2∂x)α(t∂t)ju(t, x)| 6 c(|α|+ j)!R−(|α|+j)ε,

where c and R are independent of x, t, j and α.

It is not clear whether the smallness condition is needed. Note, however, that

Nadirashvili and Vlăduţ [24] and Nadirashvili, Tkachev and Vlăduţ [23] have con-

structed singular solutions in C1,1. So again, either the parabolic flow is nonunique

for large C1,1 initial data, or the smallness assumption is needed.
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5. Applications

5.1. Navier-Stokes equations. Consider the Navier-Stokes equations

ut −∆u+ u∇u+∇p = 0

∇u = 0

with divergence-free initial data u0.

Let v be the caloric extension, i.e., the solution to the heat equation of the initial

data u0. The Carleson measure characterization of the BMO norm is

‖u0‖BMO ∼ sup
R,x

(

R−d

∫ R2

0

∫

BR(x)

|∇v(t, y)|2 dy dt
)1/2

,

which we use to define the local BMO−1 norm by

‖u0‖BMO−1

T
∼ sup

R26T,x

(

R−d

∫ R2

0

∫

BR(x)

|v(t, y)|2 dy dt
)1/2

.

We also let

‖u‖XT
= ‖t1/2|u(t, x)|‖sup + sup

x,R6
√
T

(

R−d

∫ R2

0

∫

BR(x)

|u|2 dy dt
)1/2

.

Theorem 5.1. There exists ε > 0 depending only on the space dimension d such

that given u0 with ‖u0‖BMO−1

T
< ε there exists a unique solution u ∈ XT up to

time T with

‖u‖XT
6 c‖u0‖BMO−1 .

The solution is a classical solution for T > 0. It assumes the initial data in the

weak sense. See Koch and Tataru [20] for more details.

5.2. Hamilton-Jacobi equations and harmonic map heat flow. Consider

ut −
d

∑

i,j=1

∂ia
ij(x, u)∂ju =

d
∑

i,j=1

f ij(u)∂iu∂ju

on a bounded domain Ω with smooth boundary and homogeneous Dirichlet ini-

tial data, where the coefficients aij are bounded, uniformly elliptic, with uniformly

bounded derivatives. Also f is supposed to be bounded with uniformly bounded

derivatives. The harmonic map heat flow is a particular example, for which the co-

efficients aij are independent of u. In this form the type of the equations does not

change when we change dependent and independent variables.
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Theorem 5.2. There exists ε such that the following is true: Let ϕ0 ∈ C(Ω)

satisfy ϕ0 = 0 at the boundary. Then there exists T > 0 such that whenever

‖u0 − ϕ0‖BMO 6 ε,

there is a unique smooth solution up to time T .

Here we use the heat extension with Dirichlet boundary conditions to define the

space BMO. It is remarkable that the initial data is not required to satisfy the

boundary condition.

Let us consider an example on B1(0) ⊂ R
2: We want to solve the equation

ut −∆u = |∇u|2

with initial data

u0(x) = ln(1− ln |x|),

which is in BMO.

Our results yield the existence of a unique smooth solution which assumes the

initial data in a weak sense. It is remarkable that the constant map u(t, x) = u0 is

also a weak solution.

The harmonic map heat flow on (0, T ) × R
d has been considered previously by

the authors [19], and with small BMO initial data by Wang [32]. We extend these

results to uniform manifolds.

5.3. Ricci-DeTurck flow. The Ricci flow

∂tg = − 2Ric(g) in Mn × (0, T ) and g(0, ·) = g0,(5.1)

is the most natural parabolic deformation of a metric on a Riemannian manifold.

Due to the invariance under coordinate changes it is not parabolic. DeTurck [13]

introduced a condition fixing the coordinates: He considered a Ricci flow coupled

with the harmonic map heat flow with respect to a background metric. In local

coordinates the Ricci-DeTurck flow can be written as

(∂t −∇ag
ab∇b)gij = −∇ag

ab∇bgij − gklgiph
pqRjkql(h)− gklgjph

pqRikql(h)

+
1

2
gabgpq × (∇igpa∇jgqb + 2∇agjp∇qgib − 2∇agjp∇bgiq

− 2∇jgpa∇bgiq − 2∇igpa∇bgjq),

where we use a fixed background metric h. This is a particular instance of The-

orem 1.1, where we require that the initial metric lies in a compact convex set of

positive definite matrices.
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By Whitney’s result [35] we may approximate a uniform C1 Riemannian manifold

by a uniform Ck Riemannian manifold. Altogether, using Theorem 1.1 we arrive at

the following:

Theorem 5.3. Let (M, g0) be a uniform C1 manifold with a uniformly continuous

metric g0. Choose an atlas which makes M a uniform C3 manifold with h a C2

background metric with uniformly bounded second derivatives. Then there exist

ε > 0 (independent of g0), T > 0 and a continuous solution g of the Ricci-DeTurck

flow on (0, T )×M with g(0, ·) = g0 which satisfies

t1/2‖∇(g(t)− h)‖L∞ 6 ε.

Moreover, the solution is unique among all other solutions satisfying the same bound

for the gradient.

We note that there are several interesting existence results for the Ricci flow under

various curvature assumptions using more geometric arguments by Cabezas-Rivas

and Wilking [5] and Simon [27], [28].

Uniqueness results were previously obtained under some curvature bounds by Chen

and Zhu [7], Chen [6] and Kotschwar [21].

5.4. Asymptotics for fast diffusion. Consider the fast diffusion equation

ut =
1

m
∆um

with (d− 2)+/d < m < 1. Let

(5.2) β = (2− (1−m)d)−1

and

uB = (B + |x|2)−1/(1−m).

Then

u(t, x) = t−βd
(

B +
|x|
tβ

2
)−1/(1−m)

is the Barenblatt solution.

Conformal coordinates lead to the equation

vt =
1

m
(B + |x|2)∆vm +

2

1−m
x∇(v − 2vm) +

(

d+ 2
B + |x|2
1−m

|x|2
)

(v − vm).
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This equation is uniformly parabolic on the cigar manifold given by the Riemannian

metric

δij(B + |x|2)−1,

provided the relative size v = u/uB is bounded from below and above. The cigar

manifold is a uniform manifold in the sense of Section 4.1. It has been shown by

Vazquez that under weak assumptions on the initial data, v → 0 uniformly in x as

t → ∞. It is remarkable that the spectrum and the eigenfunctions of the linearization
can be computed explicitly, see Denzler and McCann [12].

Using the formulation on the above manifold but not the approach discussed here,

Denzler, McCann and the first author [11] derived precise information on the large

time asymptotics from the information on the linearized operator. Due to the fact

that the cigar is noncompact, there are important issues about the continuous spec-

trum for which we refer the reader to [11].

5.5. Perturbed traveling wave solutions to the porous medium equation.

The porous medium equation

̺t = ∆̺m

with m > 1 is an idealized model for the propagation of gas in a porous medium. It

has special solutions: The Barenblatt solution

̺(t, x) = t−βd
(

B − |x|2
tβ

)1/(m−1)

+
,

which has compact support in x for fixed t. Here β is defined by (5.2).

A second explicit solution is given by the traveling wave solution

̺(t, x)m−1 = (t+ xn)+.

The quantity

v =
m

m− 1
̺m−1

corresponds to the physical pressure. It satisfies formally

vt − (m− 1)v∆v = |∇v|2.
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Theorem 5.4 (Kienzler [18]). Suppose that the nonnegative function ̺0 : Rd→R

satisfies
∣

∣

∣
∇
( m

m− 1
̺m−1
0

)

− en

∣

∣

∣
< δ

on the set of positivity. Then the unique solution to the porous medium equation

satisfies

∣

∣

∣
∇
( m

m− 1
̺m−1

)

− en

∣

∣

∣
< Cδ and tk+|α|−1|∂k

t ∂
α
x ̺

m−1| 6 ck+|α|δ,

where ̺ is positive whenever 1 6 |α| 6 2.

Existence and uniqueness of solutions to nonnegative initial data is well understood

with the final contribution of Dahlberg and Kenig [8]. The regularity of solutions

is more difficult. There are local regular solutions to regular initial data satisfy-

ing a suitable nondegeneracy condition (see Daskalopoulos and Hamilton [9] and

Daskalopoulos, Hamilton and Lee [10]).

The Aronson-Graveleau solutions [3] describe the self-similar filling of a hole by

gas. It is a consequence that at the time of the filling the pressure does not remain

Lipschitz continuous.

Describing the graph is equivalent to describing the function. We describe the

graph of p as a graph of a function v with

xn = p, yn = w.

It is defined on the half-plane xn > 0. The traveling wave solution becomes

yn − t and v = w − (yn − t)

satisfies with

σ =
m− 2

m− 1
> −1(5.3)

1

m− 1
vt −

(

x−σ
n

d−1
∑

j=1

∂j(x
1+σ
n ∂jv)

)

− x−σ
n ∂n

(

x1+σ
n

∂nv −
∑d−1

j=1 (∂jv)
2

1 + ∂nv

)

= 0(5.4)

in the upper half-plane xn > 0. The result in transformed coordinates reads as

follows:
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Theorem 5.5 (Kienzler [18]). There exists δ > 0 such that the following is true.

Suppose that

v0 : H → R

satisfies

|v0(x)− v0(y)| 6 ε|x− y|.

Then there is a unique solution which satisfies

|tj+|α|−1∂j
t ∂

α
x v| 6 cε

whenever 1 6 |α| 6 2.

For the proof we observe that the second order part of the operator

x−σ
n ∇(x1+σ

n ∇u)

is the second order part of the Laplace-Beltrami operator on the upper half-plane

with the Riemannian metric

〈u, v〉x = x−1
n uv.

This is half way between Euclidean space and the Poincaré half-plane.

On an abstract level the steps are the same as on R
d.

(1) The intrinsic geometry defines balls and space-time cylinders. On L2(xσ
n) we

obtain a self-adjoint semigroup.

(2) Energy arguments give L2 estimates with Gaussian weights, the Davies-Gaffney

estimates for the analogue of the heat equation

(m− 1)vt − xn∆v − (1 + σ)vn = 0.

(3) Local regularity gives pointwise bounds of derivatives for solutions to the ho-

mogeneous equation in cylinders.

(4) Both together imply Gaussian estimates for the fundamental solution and its

derivatives in the intrinsic geometry.

(5) The Gaussian estimates and the energy estimates are good enough for the

Calderón-Zygmund theory on spaces of homogeneous type.

See [18] for a complete proof.

5.6. Flat solutions to the thin film equation. Nonnegative solutions to the

thin film equation

ht +∇(h∇∆h) = 0
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supposedly describe the dynamics of thin films. While existence of weak solutions

is reasonably well understood, there are only few instances where uniqueness or

higher regularity is known. This is a question with relevance for modeling: The

equation has solutions with zero contact angle and nonzero contact angle, and hence

at least the contact angle is needed for a complete description. Here we study

existence and uniqueness of a class of solutions with zero contact angle. The only

previous uniqueness results with a moving contact line are in this setting in one space

dimension by Giacomelli, Knüpfer and Otto [15] and by Giacomelli, Gnann, Knüpfer

and Otto [14].

There is a trivial stationary solution

h = ((xn)+)
2

and we want to study solutions in a neighborhood of h.

Theorem 5.6 (D. John). Suppose that

|∇
√

h0 − en| 6 δ.

Then there exists a unique solution h which satisfies

|∇
√
h− en| 6 cδ

and, for 1 6 |α| 6 2,

t2k+|α|−1|∂k
t ∂

α
x

√
h| 6 c(k, α)‖∇

√

h0 − en‖sup.

This formulation is slightly different from what is proven by D. John in his the-

sis [17], but his proof gives also the simpler statement above. Again we transform

the problem to a degenerate quasilinear problem on the upper half-plane.

Let h̃ = h1/2 and note that it solves the equation

∂th̃+ h̃2∆2h̃+ 6h∇h̃∇∆h̃+ h̃(∆h̃)2

+ 2h|∆′h̃|2 + 2|∇h̃|2∆h̃+ 4∂ih̃∂j h̃∂
2
ij h̃ = 0.

Letting

w = yn, xn = h̃,

we obtain with u = w − xn

ut + L0u = f0[u] + xnf1[u] + x2
nf2[u],

where

L0 = x−1
n ∆x3

n∆− 4∆Rn−1 .

The abstract procedure is the same as for the porous medium equation, but filling

in the details is demanding.
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