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Abstract. The aim of this paper is to establish an existence and uniqueness result for
a class of the set functional differential equations of neutral type

{

DHX(t) = F (t,Xt, DHXt),

X|[−r,0] = Ψ,

where F : [0, b]×C0×L
1
0 → Kc(E) is a given function, Kc(E) is the family of all nonempty

compact and convex subsets of a separable Banach space E, C0 denotes the space of all
continuous set-valued functions X from [−r, 0] into Kc(E), L

1
0 is the space of all integrally

bounded set-valued functions X : [−r, 0] → Kc(E), Ψ ∈ C0 and DH is the Hukuhara
derivative. The continuous dependence of solutions on initial data and parameters is also
studied.
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1. Introduction

The study of set differential equations as an independent subject is relatively new.

The first results in this area were obtained in [16], [5], [21]. Some recent results of

interest can be found in [6], [14], [17], [19], [18], [20]. For more results, references

and details we refer the reader to the book [13]. We also refer the reader to the first

book [23] devoted exclusively to the subject of set differential equations on Banach

spaces and their applications to differential inclusions with nonconvex right hand

sides. The set differential equations with delay were studied in [1], [19], [22] and [24].

593



In this paper we are concerned with the set differential equation of neutral type

{
DHX(t) = F (t,Xt, DHXt),

X |[−r,0] = Ψ,

where F : [0, b] × C0 × L1
0 → Kc(E) is a given function, Kc(E) is the family of all

nonempty compact and convex subsets of a separable Banach space E, C0 denotes

the space of all continuous set-valued functions X from [−r, 0] into Kc(E), L1
0 is the

space of all integrally bounded set-valued functions X : [−r, 0] → Kc(E), Ψ ∈ C0
and DH is the Hukuhara derivative. The literature on related ordinary neutral

differential equations is very extensive and we refer the reader to the book [8] for

details. To our knowledge, there is no paper on set differential equations of neutral

type. Some results for ordinary neutral differential equations in a finite dimensional

Banach space were established in the papers [4], [12], and [11].

2. Preliminaries

In the following, E is a separable Banach space with the norm ‖·‖. We denote

by Kc(E) the family of all nonempty compact and convex subsets of E. By 0 we

will denote the zero element of the space E. Also, θ will denote the null set-valued

function θ : [a, b] → Kc(E) defined by θ(t) = {0} for all t ∈ [a, b]. The Hausdorff-

Pompeiu metric H on Kc(E) is defined by

H(A,B) = max
{
sup
x∈A

inf
y∈B

‖x− y‖, sup
y∈B

inf
x∈A

‖x− y‖
}
.

It is known in [2], [7] that (Kc(E),H) is a complete and separable metric space. If

C([a, b],Kc(E)) denotes the space of all continuous set-valued functions X from [a, b]

into Kc(E), then it is well known that C([a, b],Kc(E)) is a complete and separable

metric space with respect to the metric (see [10])

H[a,b](X,Y ) := sup
t∈[a,b]

H(X(t), Y (t)).

From [23], we recall some notions in the theory of measurable set-valued functions.

We denote by µ(·) the Lebesgue measure on [a, b]. A set-valued function X : [a, b] →

Kc(E) is called a simple set-valued function if it is constant on each of the sets

Ki ⊂ [a, b], 1 6 i 6 n, which produce a finite system of pairwise disjoint, Lebesgue

measurable sets covering [a, b]. A set-valued function X : [a, b] → Kc(E) is called

strongly measurable if it is almost everywhere (a.e.) in [a, b] the pointwise limit of
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a sequence Xn : [a, b] → Kc(E), n > 1, of simple set-valued functions. We remark

that the above definitions derive from standard notions for functions with values in

a metric space. Then the notion of strong measurability is equivalent to the following

Luzin’s property (see [23]): For any ε > 0 there exists a closed set Kε ⊂ [a, b] with

µ([a, b] \Kε) < ε and such that the restriction X |Kε
of X to Kε is continuous. Note

that the strong measurability of a set-valued function X : [a, b] → Kc(E) implies

the measurability of X ; that is, the set X−1(A) := {t ∈ [a, b] ; X(t) ∩ A 6= ∅} is

Lebesgue measurable for any closed set A. A set-valued function X : [a, b] → Kc(E)

is called integrally bounded on [a, b] if there exists a function m(·) ∈ L1([a, b],R+)

such that H(X(t), {0}) 6 m(t) a.e. on [a, b]. We denote byM([a, b],Kc(E)) the set

of all strongly measurable set-valued functions from [a, b] to Kc(E). Let us denote

by L1([a, b],Kc(E)) the space of all integrally bounded set-valued functions X ∈

M([a, b],Kc(E)), where two multifunctions X,Y ∈ L1([a, b],Kc(E)) are considered

to be identical if X(t) = Y (t) a.e. on [a, b]. Then L1([a, b],Kc(E)) is a complete

metric space with respect to the metric ([7], [10])

H1,[a,b](X,Y ) =

∫ b

a

H(X(t), Y (t)) dt.

Also, we recall that a set-valued function X : [a, b] → Kc(E) is called essentially

bounded on [a, b] if there exists a constant N > 0 such that H(X(t), {0}) 6 N

a.e. on [a, b] (see [23]). We denote by L∞([a, b],Kc(E)) the space of all essen-

tially bounded set-valued functions X ∈ M([a, b],Kc(E)), where two multifunctions

X,Y ∈ L1([a, b],Kc(E)) are considered to be identical if X(t) = Y (t) a.e. on [a, b].

Then L∞([a, b],Kc(E)) is a complete metric space with respect to the metric defined

by (see [1])

H∞(X,Y ) := inf{N > 0; H(X(t), Y (t)) < N a.e. on [a, b]}.

Next, for a givenN > 0, let L1,N ([a, b],Kc(E)) be the space of all set-valued functions

X ∈ L∞([a, b],Kc(E)) with H∞(X, θ) 6 N and equipped with the metric H1,[a,b].

Remark 2.1. From Theorem 1.4.5 and Theorem 2.2.5 in [15] (see also [23]) it

follows that L1([a, b],Kc(E)) can be regarded as the Banach space of vector-valued

Bochner integrable functions, so that L1([a, b],Kc(E)) is separable and the theory of

Bochner integration can be applied to integrally bounded set-valued functions from

[a, b] into a given infinite dimensional Banach space.

Let A,B ⊂ E. The set C ⊂ E satisfying A = B + C is known as the geomet-

ric difference of the sets A and B and is denoted by A − B. We remark that
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A−A = {0} for any A ⊂ E. But, A + (−1)A 6= {0} for any A ⊂ E \ {0}, where

(−1)A := {−x ; x ∈ A}.

We say that a set-valued mapping X : [a, b] → Kc(E) is Hukuhara differentiable

(or H-differentiable) at a point t0 ∈ [a, b] if there exists DHX(t0) ∈ Kc(E) such that

the limits

lim
h→0+

X(t0 + h)−X(t0)

h
and lim

h→0+

X(t0)−X(t0 − h)

h

exist with respect to the Hausdorff-Pompeiu metric and are equal to DHX(t0).

In this definition, we assume that both the differences X(t0 + h) − X(t0) and

X(t0)−X(t0 − h) exist for sufficiently small h > 0 such that t0 + h and t0 − h

both belong to [a, b]. A set DHX(t0) ∈ Kc(E) is called the H-derivative of X at the

point t0 ∈ [a, b]. A set-valued mapping X : [a, b] → Kc(E) is called H-differentiable

on [a, b] if DHX(t) exists for each point t ∈ [a, b]. At the end points of [a, b] we

consider only the one-sided H-derivatives. The following three propositions are well

known (see [16], [14], [17], [23]).

Proposition 2.2. If Y : [a, b] → Kc(E) is continuous, then it is integrable on

[a, b]. Moreover, in this case, the set-valued function X : [a, b] → Kc(E), defined by

(1) X(t) := X0 +

∫ t

a

Y (s) ds, t ∈ [a, b], X0 ∈ Kc(E),

is H-differentiable on [a, b] and DHX(t) = Y (t) for t ∈ [a, b].

Proposition 2.3. Let X : [a, b] → Kc(E) be H-differentiable a.e. on [a, b] and

assume that DHX(t) ∈ L1([a, b],Kc(E)). Then for any t ∈ [a, b] we have

X(t) = X(τ) +

∫ t

τ

DHX(s) ds

for τ, t ∈ [a, b].

We recall that a mapping X : [a, b] → Kc(E) is said to be absolutely continuous if

for each ε > 0 there exists δ > 0 such that, for each family {(sk, tk) ; k = 1, 2, . . . , n}

of disjoint open intervals in [a, b] with
n∑

k=1

(tk − sk) < δ, we have

n∑

k=1

H(X(tk), X(sk)) < ε.

We denote by AC([a, b],Kc(E)) the space of all absolutely continuous set-valued

functions from [a, b] into Kc(E).

596



Proposition 2.4. Let X : [a, b] → Kc(E) be an integrally bounded set-valued

function. Then the set-valued functionX : [a, b] → Kc(E) defined by (1) is absolutely

continuous, DHX(t) exists a.e. on [a, b], and DHX(t) = Y (t) a.e. on [a, b].

We denote by A([a, b],Kc(E)) the set of all set-valued functions X ∈ AC([a, b],

Kc(E)) having the property that they are a.e. H-differentiable on [a, b] and DHX ∈

L1([a, b],Kc(E)). It is easy to check that

H[a,b](X,Y ) := H[a,b](X,Y ) +H1,[a,b](DHX,DHY )

= sup
t∈[a,b]

H(X(t), Y (t)) +

∫ b

a

H(DHX(t), DHY (t)) dt

is a metric on A([a, b],Kc(E)).

Lemma 2.5. A([a, b],Kc(E)) is a complete metric space with respect to the

metric H[a,b].

P r o o f. Let {Xn}n>1 be a Cauchy sequence in A([a, b],Kc(E)), i.e.,

lim
m,n→∞

H[a,b](Xm, Xn) = 0.

Then it follows that lim
m,n→∞

H[a,b](Xm, Xn) = 0. Since C([a, b],Kc(E)) is a complete

metric space, there is a continuous set-valued function X : [a, b] → Kc(E) such that

lim
n→∞

H[a,b](Xn, X) = 0. Further, since

lim
m,n→∞

H1,[a,b](DHXm, DHXn) = 0,

{DHXn}n>1 is a Cauchy sequence in L1([a, b],Kc(E)). Since L1([a, b],Kc(E)) is a

complete metric space, there is a continuous set-valued function Y ∈ L1([a, b],Kc(E))

such that lim
n→∞

H1,[a,b](DHXn, Y ) = 0. Moreover, for t ∈ [a, b] we have

H

(∫ t

a

DHXn(s) ds,

∫ t

a

Y (s) ds

)
6

∫ t

a

H(DHXn(s), Y (s)) ds

6 H1,[a,b](DHXn, Y ) → 0 as n → ∞.

Therefore, it follows that

H

(
X(t), X(a) +

∫ t

a

Y (s) ds

)
6 H(X(t), Xn(t)) +H

(
Xn(t), X(a) +

∫ t

a

Y (s) ds

)

= H(X(t), Xn(t)) +H

(
Xn(a) +

∫ t

a

DHXn(s) ds,X(a) +

∫ t

a

Y (s) ds

)

6 H(X(t), Xn(t)) +H(X(a), Xn(a)) +H

(∫ t

a

DHXn(s) ds,

∫ t

a

Y (s) ds

)
→ 0
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as n → ∞, and so X(t) = X(a) +
∫ t

a
Y (s) ds for any t ∈ [a, b]. By Proposition 4 it

follows that X ∈ A([a, b],Kc(E)). Obviously, lim
n→∞

H[a,b](Xn, X) = 0, and the proof

is complete. �

Let r > 0 be given. In the following, for any b > 0 we will write C[b], L
1
[b], L

1,N
[b]

and A[b] instead of C([−r, b],Kc(E)), L1([−r, b],Kc(E)), L1,N([−r, b],Kc(E)) and

A([−r, b],Kc(E)), respectively. Then we write H[b], H1,[b] and H[b] instead of H[−r,b],

H1,[−r,b] and H[−r,b], respectively. Also, for a given t ∈ [0, b] we will write Ct, L1
t ,

L
1,N
t and At instead of C([t−r, t],Kc(E)), L1([t−r, t],Kc(E)), L1,N([t−r, t],Kc(E))

and A([t− r, t],Kc(E)), respectively. Then we denote by Ht, H1,t and Ht the metric

on Ct, L1
t and At, respectively. Obviously, X ∈ A[b] implies that X ∈ At for any

t ∈ [0, b].

If t ∈ [0, b] and X : [t − r, t] → Kc(E) are given, then we define the set-valued

function Xt : [−r, 0] → Kc(E) by Xt(s) = X(t+ s).

Lemma 2.6. If t ∈ [0, b] and X ∈ At are given, then Xt ∈ A0 and

(2) DHXt(s) = (DHX)t(s) for a.e. s ∈ [−r, 0].

P r o o f. First, we show that Xt is absolutely continuous on [−r, 0]. For this, let

us remark that if {(sk, tk) ; k = 1, 2, . . . , n} is an arbitrary family of disjoint open

intervals in [−r, 0], then {(t+ sk, t+ tk) ; k = 1, 2, . . . , n} is a family of disjoint open

intervals in [t − r, t]. Since X is absolutely continuous on [t − r, t], hence for each

ε > 0 there exists δ > 0 such that

n∑

k=1

(tk − sk) =

n∑

k=1

[(t+ tk)− (t+ sk)] < δ

implies
n∑

k=1

H(Xt(tk), Xt(sk)) =

n∑

k=1

H(X(t+ tk), X(t+ sk)) < ε,

that is, Xt is absolutely continuous on [−r, 0]. Next, we show that Xt is a.e. H-

differentiable on [−r, 0] and (2) holds. Since X is a.e. H-differentiable on [t− r, t] we

have that

lim
h→0+

X(t+ s+ h)−X(t+ s)

h
= DHX(t+ s),

lim
h→0+

X(t+ s)−X(t+ s− h)

h
= DHX(t+ s)
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exist for a.e. s ∈ [−r, 0]. Let s0 ∈ [−r, 0] be such that the above limits exist. Then

both the differences X(t+ s0+h)−X(t+ s0) and X(t+ s0)−X(t+ s0−h) exist for

sufficiently small h > 0 such that t+ s0 + h and t+ s0 − h both belong to [t− r, t].

It follows that

lim
h→0+

Xt(s0 + h)−Xt(s0)

h
= lim

h→0+

X(t+ s0 + h)−X(t+ s0)

h

= DHX(t+ s0) = (DHX)t(s0),

lim
h→0+

Xt(s0)−Xt(s0 − h)

h
= lim

h→0+

X(t+ s0)−X(t+ s0 − h)

h

= DHX(t+ s0) = (DHX)t(s0),

that is, Xt is H-differentiable at s0 ∈ [−r, 0]. Hence (2) holds. Finally, we show

that DHXt ∈ L1
0. Since X ∈ At, hence DHX ∈ L1

t , that is, DHX is strongly

measurable and integrally bounded on [t − r, t]. Therefore, there exists a se-

quence {Xn}n>1 of simple set-valued functions from [t − r, t] into Kc(E) such

that lim
n→∞

H(Xn(τ), DHX(τ)) = 0 for a.e. τ ∈ [t− r, t] (see [23], page 2). Also, it is

easy to check that {Xn
t }n>1 is a sequence of simple set-valued functions from [−r, 0]

into Kc(E). It follows that

lim
n→∞

H(Xn
t (s), DHXt(s)) = lim

n→∞
H(Xn(t+ s), DHX(t+ s)) = 0

for a.e. s ∈ [−r, 0], that is, DHXt is strongly measurable on [−r, 0]. Obviously,DHXt

is integrally bounded on [−r, 0], and thus DHXt ∈ L1
0. �

Lemma 2.7. If t ∈ [0, b] is given, then H0(Xt, Yt) = Ht(X,Y ) for any X,Y ∈ At.

In particular, H0(Xt, Yt) = Ht(X,Y ) for any X,Y ∈ Ct, and H1,0(Xt, Yt) =

H1,t(X,Y ) for any X,Y ∈ L1
t .

P r o o f. Indeed, we have

H0(Xt, Yt) = sup
s∈[−r,0]

H(Xt(s), Yt(s)) +

∫ 0

−r

H(DHXt(s), DHYt(s)) ds

= sup
s∈[−r,0]

H(X(t+ s), Y (t+ s)) +

∫ 0

−r

H(DHX(t+ s), DHY (t+ s)) ds

= sup
σ∈[t−r,t]

H(X(σ), Y (σ)) +

∫ t

t−r

H(DHX(σ), DHY (σ)) dσ,

that is, H0(Xt, Yt) = Ht(X,Y ). �
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3. Existence and uniqueness

In this section we consider the set differential equation of neutral type

(3)

{
DHX(t) = F (t,Xt, DHXt),

X |[−r,0] = Ψ,

where F : [0, b]×C0 ×L1
0 → Kc(E) is a given function and Ψ ∈ A0. By a solution of

the initial value problem (3) on some interval [−r, T ] we mean a set-valued function

X ∈ A[T ] such that X0 = Ψ and DHX(t) = F (t,Xt, DHXt) for a.e. t ∈ [0, T ].

We say that F : [0, b]× C0 × L1
0 → Kc(E) is a Carathéodory set-valued function if

(C1) for a.e. t ∈ [0, b], F (t, ·, ·) is continuous,

(C2) for any (Ψ,Φ) ∈ C0 × L1
0, F (·,Ψ,Φ) is strongly measurable,

(C3) for any bounded B ⊂ C0 × L1
0, there exists an m(·) ∈ L1([0, b],R+) such that

H(F (t,Ψ,Φ), {0}) 6 m(t) for a.e. t ∈ [0, b] and for any (Ψ,Φ) ∈ B.

Lemma 3.1. Let F : [0, b] × C0 × L1
0 → Kc(E) be a Carathéodory set-valued

function and let X ∈ A[b] be given. Then

(a) the function U : [0, b] → C0 defined by U(t) = Xt is continuous on [0, b];

(b) the function V : [0, b] → L1
0 defined by U(t) = DHXt is strongly measurable

and integrally bounded on [0, b];

(c) the set-valued function t 7→ F (t,Xt, DHXt) is strongly measurable and inte-

grally bounded on [0, b].

P r o o f. (a) Let t0 ∈ [0, b] be given and let tn ∈ [a, b], n > 1, be any sequence

such that tn → t0 as n → ∞. Since X is uniformly continuous on [−r, b], hence

H0(Xtn , Xt0) = sup
−r6s60

H(X(tn + s), X(t0 + s)) → 0 as n → ∞. It follows that

H0(U(tn), U(t0)) → 0 as n → ∞, and so U is continuous on [0, b].

(b) Since DHX ∈ L1
[b], there exists a sequence {Y n}n>1 of simple set-valued

functions from [−r, b] into Kc(E) such that lim
n→∞

H(Y n(t), DHX(t)) = 0 for a.e.

t ∈ [−r, b]. Obviously, {Y n
t }n>1 is a sequence of simple set-valued functions from

[−r, 0] into L1
0 and

H1,0(Y
n
t , DHXt) =

∫ 0

−r

H(Y n(t+ s), DHX(t+ s)) ds → 0
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for a.e. t ∈ [0, b]. It follows that V is strongly measurable on [0, b]. Moreover, since

DHX ∈ L1
[b] and

∫ b

0

H1,0(DHXt, θ) dt =

∫ b

0

(∫ 0

−r

H(DHX(t+ s), {0}) ds

)
dt

=

∫ b

0

(∫ t

t−r

H(DHX(τ), {0}) dτ

)
dt

6

∫ b

0

(∫ b

−r

H(DHX(τ), {0}) dτ

)
dt

= b

∫ b

−r

H(DHX(τ), {0}) dτ,

V is integrally bounded on [0, b].

(c) Let ε > 0 be given. Since C0 × L1
0 and Kc(E) are complete separable metric

spaces and F : [0, b] × C0 × L1
0 → Kc(E) is a Carathéodory set-valued function,

there exists a closed set K1
ε ⊂ [0, b] with µ([0, b] \ K1

ε ) < ε and such that the

restriction F |K1
ε
×C0×L1

0
of F to K1

ε × C0 × L1
0 is continuous (see [9]). Since t 7→

V (t) = DHXt : [0, b] → L1
0 is strongly measurable, by Luzin’s property there exists

a closed set K2
ε ⊂ [0, b] with µ([0, b] \K2

ε ) < ε and such that the restriction V |K2
ε

of

V to K2
ε is continuous. Let Kε := K1

ε ∩K2
ε . Then Kε is a closed subset of [0, b] with

µ([0, b] \Kε) < ε and such that the restriction F (·, U(·), V (·))|Kε
of F (·, U(·), V (·))

to Kε is continuous. From Luzin’s property it follows that t 7→ F (t, U(t), V (t)) is

strongly measurable on [0, b]. Obviously, t 7→ F (t, U(t), V (t)) is integrally bounded

on [0, b]. This completes the proof. �

Remark 3.2. If F : [0, b]× C0 × L1
0 → Kc(E) is a Carathéodory set-valued func-

tion, then using Propositions 2.3 and 2.4 it is easy to show that a set-valued function

X ∈ A[T ] is a solution of (3) on an interval [−r, T ] if and only if

(4) X(t) =

{
Ψ(t) if −r 6 t 6 0,

Ψ(0) +
∫ t

0 F (s,Xs, DHXs) ds if 0 6 t 6 T.

For a given set-valued function Ψ ∈ A0, let Ψ
0 : [−r, b] → Kc(E) be the set-valued

function defined by

(5) Ψ0(t) :=

{
Ψ(t) if t ∈ [−r, 0],

Ψ(0) if t ∈ [0, b].

Then it is easy to see that Ψ0 ∈ A[b]. For given ̺ > 0 and Ψ ∈ A0, let

B̺(Ψ
0) := {X ∈ A[b] ; H[b](X,Ψ0) 6 ̺}.
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Theorem 3.3. Suppose that F : [0, b]×C0×L1
0 → Kc(E) satisfies the conditions

(C1) and (C3) and the following locally Lipschitz type condition: for any bounded

set B ⊂ A[b] there exists L > 0 such that

(6) H(F (t,Xt, DHXt), F (t, Yt, DHYt) 6 LHt(X,Y )

for any t ∈ [a, b] andX,Y ∈ B. Then, for everyΨ ∈ A0, there exists a unique solution

X : [−r, T ] → Kc(E) for the initial value problem (3) on some interval [−r, T ] with

T ∈ (0, b].

P r o o f. Let ̺ = H[0](Ψ, θ) and let L > 0 be such that (6) holds for for any t ∈

[a, b] and X,Y ∈ B̺(Ψ
0). From (C3) it follows that there is an m(·) ∈ L1([0, b],R+)

such that H(F (t,Xt, DHXt), {0}) 6 m(t) for a.e. t ∈ [0, b] and any X ∈ B̺(Ψ
0). We

choose T ∈ (0, b] such that
∫ T

0
m(t) dt < ̺/2. Then Ψ0 ∈ A[T ] and H[T ](Ψ

0, θ) 6 ̺.

Further, consider the set N̺ defined by

N̺ := {X ∈ A[T ] ; X0 = Ψ and H[T ](X,Ψ0) 6 ̺}.

We remark that if X ∈ N̺, then Ht(X, θ) 6 ̺ for any t ∈ [0, T ]. Further, let us

consider the following successive approximation of absolutely continuous set-valued

functions:

X0(t) = Ψ0(t), t ∈ [0, T ]

and

Xn(t) =

{
Ψ(t) if −r 6 t 6 0,

Ψ(0) +
∫ t

0 F (s,Xn−1
s , DHXn−1

s ) ds if 0 6 t 6 T,

for n > 1. We show that Xn ∈ N̺ for any n > 1. Obviously, X0 ∈ N̺. Let us

assume that X1, X2, . . . , Xn ∈ N̺. Then

H(Xn+1(t),Ψ0(t)) 6

∫ t

0

H(F (s,Xn
s , DHXn

s , θ) ds

6

∫ T

0

m(t) dt <
̺

2
,

and so

H[T ](X
n+1,Ψ0) = sup

−r6t6T
H(Xn+1(t),Ψ0(t)) <

̺

2
.

Also

∫ T

−r

H(DHXn+1(t), DHΨ0(t)) dt =

∫ T

0

H(F (s,Xn
s , DHXn

s ), θ) dt

6

∫ T

0

m(t) dt <
̺

2
.
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It follows that

H[T ](X
n+1,Ψ0) = sup

−r6t6T
H(Xn+1(t),Ψ0(t))

+

∫ T

−r

H(DHXn+1(t), DHΨ0(t)) dt < ̺,

and thus Xn+1 ∈ N̺. By mathematical induction it follows that X
n ∈ N̺ for any

n > 1. Next, by (6) and Lemma 2.7, we have

H(Xn+1(t), Xn(t)) 6

∫ t

0

H(F (s,Xn
s , DHXn

s ), F (s,Xn−1
s , DHXn−1

s )) ds

6 L

∫ t

0

H0(X
n
s , X

n−1
s ) ds = L

∫ t

0

Hs(X
n, Xn−1) ds

and

∫ t

t−r

H(DHXn+1(s), DHXn(s)) ds =

∫ t

0

H(F (s,Xn
s , DHXn

s ), F (s,Xn−1
s , DHXn−1

s )) ds

6 L

∫ t

0

H0(X
n
s , X

n−1
s ) ds = L

∫ t

0

Hs(X
n, Xn−1) ds.

Therefore,

Ht(X
n+1, Xn) = sup

t−r6τ6t
H(Xn+1(τ), Xn(τ))

+

∫ t

t−r

H(DHXn+1(τ), DHXn(τ)) dτ

6 2L

∫ t

0

Hs(X
n, Xn−1) ds.

Let us consider the sequence of real functions {gn}n>1 given by gn(t) = Ht(X
n,

Xn−1), n > 1, t ∈ [0, T ]. Then gn+1(t) 6 2L
∫ t

0 gn(s) ds for n > 1 and t ∈ [0, T ].

Since g1(t) = Ht(X
1, X0) 6 ̺, the last inequality implies that gn(t) 6 ̺(2Lt)n/n!,

n > 1, t ∈ [0, T ], and thus

lim
n→∞

Ht(X
n, Xn−1) = 0 for t ∈ [0, T ].
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Further, since

H[T ](X
n, Xn−1)

= sup
−r6τ6T

H(Xn(τ), Xn−1(τ)) +

∫ T

−r

H(DHXn(τ), DHXn−1(τ)) dτ

= sup
−r6τ6T

H(X̂n(τ), X̂n−1(τ)) +

∫ T

−r

H(DHX̂n(τ), DHX̂n−1(τ)) dτ

= sup
T−r6σ62T

H(X̂n(σ), X̂n−1(σ)) +

∫ 2T

T−r

H(DHX̂n(σ), DHX̂n−1(σ)) dσ

= sup
T−r6σ6T

H(Xn(σ), Xn−1(σ)) +

∫ T

T−r

H(DHXn(σ), DHXn−1(σ)) dσ,

it follows that H[T ](X
n, Xn−1) = HT (X

n, Xn−1) 6 ̺(2LT )n/n!, n > 1, and

H[T ](X
n, Xn−1) = HT (X

n, Xn−1) → 0 as n → ∞. Further, for any m > n we

have

H[T ](X
m, Xn) 6 H[T ](X

m, Xm−1) + H[T ](X
m−1, Xm−2) + . . .+ H[T ](X

n+1, Xn)

6 ̺

m−1∑

k=n

(2LT )k+1

(k + 1)!
.

Since this last sum is part of the series for e2LT , it follows that we can make

H[T ](X
m, Xn) less than any ε > 0 by taking n sufficiently large. Therefore, {Xn}n>1

is a Cauchy sequence in A[T ]. Due to Lemma 2.5 there exists a set-valued function

X ∈ A[T ] such that X |[−r,0] = Ψ and lim
n→∞

H[T ](X
n, X) = 0. Moreover, since

H[T ](X
n,Ψ0) < ̺, n > 1, it is easy to see that H[T ](X,Ψ0) 6 H[T ](X

n, X) +

H[T ](X
n,Ψ0) implies H[T ](X,Ψ0) 6 ̺, that is, X ∈ N̺. Next, from (6) we have

that

H

(∫ t

0

F (τ,Xn
τ , DHXn

τ ) dτ,

∫ t

0

F (τ,Xτ , DHXτ ) dτ

)

6

∫ t

0

H(F (τ,Xn
τ , DHXn

τ ), F (τ,Xτ , DHXτ )) dτ 6 L

∫ t

0

H0(X
n
τ , Xτ ) dτ

6 L

∫ T

0

Hτ (X
n, X) dτ 6 L

∫ T

0

H[T ](X
n, X) dτ → 0

as n → ∞. Then, we obtain that

lim
n→∞

H

(
Xn(t),Ψ(0) +

∫ t

0

F (τ,Xτ , DHXτ ) dτ

)

6 lim
n→∞

H

(∫ t

0

F (τ,Xn
τ , DHXn

τ ) dτ,

∫ t

0

F (τ,Xτ , DHXτ ) dτ

)
= 0.
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It follows that

X(t) =

{
Ψ(t) if −r 6 t 6 0,

Ψ(0) +
∫ t

0
F (τ,Xτ , DHXτ ) dτ if 0 6 t 6 T,

which represents a solution of (3) on [0, T ]. We shall show now that (3) has exactly

one solution X ∈ A[T ]. Suppose that X , Y ∈ A[T ] are two solutions of (3). Then we

have that

H(X(t), Y (t)) 6

∫ t

0

H(F (τ,Xτ , (DHX)τ ), F (τ, Yτ , (DHY )τ )) dτ

6 L

∫ t

0

H0(Xτ , Yτ ) dτ = L

∫ t

0

Hτ (X,Y ) dτ

and
∫ t

t−r

H(DHX(τ), DHY (τ)) dτ =

∫ t

0

H(DHX(τ), DHY (τ)) dτ

6

∫ t

0

H(F (τ,Xτ , DHXτ ), F (τ, Yτ , DHYτ )) dτ

6 L

∫ t

0

Hτ (X,Y ) dτ.

It follows that

Ht(X,Y ) 6 2L

∫ t

0

Hτ (X,Y ) dτ, t ∈ [0, T ],

and Gronwall’s lemma implies that Ht(X,Y ) = 0 for t ∈ [0, T ]. By Lemma 2.7,

we obtain H0(Xt, Yt) = 0 for t ∈ [0, T ], that is, Xt = Yt for t ∈ [0, T ]. Therefore,

X(t) = Xt(0) = Yt(0) = Y (t) for t ∈ [0, T ], and hence (3) has a unique solution.

This completes the proof. �

Remark 3.4. It is easy to see that the result of Theorem 3.3 remanins also true if

the Lipschitz type condition (6) is satisfied on any bounded set B ⊂ AN
[b], where A

N
[b]

is the set of all set-valued functions X ∈ A[b] with DHX ∈ L
1,N
[b] .

Theorem 3.5. Suppose that F : [0, b] × C0 × L1
0 → Kc(E) satisfies all the con-

ditions of Theorem 3.3. Then the largest interval of existence of the solution of (3)

is [0, b].

P r o o f. Let X : [−r, β) → Kc(E) be the solution of (3) existing on [−r, β),

0 < β < b. Also, we suppose, by contradiction, that the value of β cannot be

increased. Let us consider 0 6 s < t < β. Then we have

H(X(t), X(s)) 6

∫ t

s

H(F (τ,Xτ , DHXτ ), θ) dτ 6

∫ t

s

m(τ) dτ.
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Since m(·) ∈ L1([0, β],R+) we have
∫ t

s
m(s) ds → 0 as s, t → β−, which implies that

lim
t→β−

X(t) exists. Hence, if we take X(β) = lim
t→β−

X(t), then the function X can be

extended by continuity to [0, β]. Further, consider the initial value problem

{
DHY (t) = G(t, Yt, DHYt), 0 6 t < b− β,

Y |[−(σ+β),0] = Φ

where G(t, Yt, DHYt) = F (t + β, Yt+β , DHYt+β) for 0 6 t < b − β and Φ is defined

by Φ(s) = X(s + β) for s ∈ [−(σ + β), 0]. By Theorem 3.3, there exists a solution

Y : [−(σ+β), β̃) → E of the initial value problem (3), where β̃ ∈ (0, b−β]. It follows

that X̃ : [−r, β + β̃] → E, given by

X̃(t) =

{
X(t), for t ∈ [−r, β],

Y (t− β), for t ∈ [β, β + β̃],

is a solution of the initial value problem (3). Therefore, the solution X can be

continued beyond β, contradicting the assumption that β cannot be increased. This

contradiction completes the proof. �

4. Continuous dependence

For a given Ψ ∈ A0 and a set-valued function F : [0, b]× C0 × L1
0 → Kc(E) which

satisfies the conditions of Theorem 3.3 let us denote by X(t,Ψ, F, β) the unique

solution on [−r, β] of the initial value problem (3).

Theorem 4.1. Suppose that the set-valued functions F,G : [0, b] × C0 × L1
0 →

Kc(E) satisfy the conditions of Theorem 3.3 and that there exists a λ > 0 such that

H0(F (t,Ψ,Φ), G(t,Ψ,Φ)) 6 λ

for all (t,Ψ,Φ) ∈ [0, b]× C0 × L1
0. Then for any Ψ,Φ ∈ A0 we have

Ht(X,Y ) 6 2H0(Ψ,Φ)eLt +
2λ

L
(eLt − 1) for 0 6 t 6 β,

where X(·) = X(·,Ψ, F, β1), Y (·) = X(·,Ψ, G, β2) and β = min(β1, β2).

606



P r o o f. For any t ∈ [0, β] we have

H(X(t), Y (t)) 6 H(Ψ(0),Φ(0)) +

∫ t

0

H(F (s,Xs, DHXs), G(s, Ys, DHYs)) ds

6 H0(Ψ,Φ) +

∫ t

0

H(F (s,Xs, DHXs), F (s, Ys, DHYs)) ds

+

∫ t

0

H(F (s, Ys, DHYs), G(s, Ys, DHYs)) ds

6 H0(Ψ,Φ) + L

∫ t

0

H0(Xs, Ys) ds+

∫ t

0

λds

= H0(Ψ,Φ) + λt+ L

∫ t

0

Hs(X,Y ) ds.

It follows that

sup
s∈[0,t]

H(X(s), Y (s)) 6 H0(Ψ,Φ) + λt+ L

∫ t

0

Hs(X,Y ) ds.

Since

sup
s∈[t−r,0]

H(X(s), Y (s)) = sup
s∈[t−r,0]

H(Ψ(s),Φ(s))

6 sup
s∈[−r,0]

H(Ψ(s),Φ(s)) = H0(Ψ,Φ),

we obtain that

sup
s∈[t−r,t]

H(X(s), Y (s)) 6 2H0(Ψ,Φ) + λt+ L

∫ t

0

Hs(X,Y ) ds,

that is,

(7) Ht(X,Y ) 6 2H0(Ψ,Φ) + λt+ L

∫ t

0

Hs(X,Y ) ds.

Further,

∫ t

0

H(DHXs, DHYs) ds =

∫ t

0

H(F (s,Xs, DHXs), G(s, Ys, DHYs)) ds

6

∫ t

0

H(F (s,Xs, DHXs), F (s, Ys, DHYs)) ds

+

∫ t

0

H(F (s, Ys, DHYs), G(s, Ys, DHYs)) ds

6 L

∫ t

0

Hs(X,Y ) ds+

∫ t

0

λds
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and

∫ 0

t−r

H(DHX(s), DHY (s)) ds 6

∫ 0

−r

H(DHΨ(s), DHΦ(s)) ds = H1,0(DHΨ, DHΦ).

Thus, we obtain

(8)

∫ t

t−r

H(DHXs, DHYs) ds 6

∫ 0

t−r

H(DHXs, DHYs) ds+

∫ t

0

H(DHXs, DHYs) ds

6 H1,0(DHΨ, DHΦ) + λt+ L

∫ t

0

Hs(X,Y ) ds.

By using (7) and (8), we obtain

Ht(X,Y ) 6 2H0(Ψ,Φ) + 2λt+ 2L

∫ t

0

Hs(X,Y ) ds.

Applying Gronwall’s Lemma [3] yields

Ht(X,Y ) 6 2H0(Ψ,Φ)e2Lt +
λ

L
(e2Lt − 1)

for t ∈ [0, β] and this completes the proof. �

Corollary 4.2. Let Ψ,Φ ∈ A0. If F : [0, b] × C0 × L1
0 → Kc(E) satisfies the

conditions of Theorem 3.3, then

Ht(X,Y ) 6 2H0(Ψ,Φ)e2Lt for 0 6 t 6 β,

where X(·) = X(·,Ψ, F, β1), Y (·) = X(·,Φ, F, β2) and β = min(β1, β2).

Now consider the functional differential equation with a parameter

(9)

{
DHX(t) = F (t,Xt, DHXt,Λ),

X |[−r,0] = Ψ,

where F : [0, b]× C0 × L1
0 ×Kc(E1) → Kc(E) and E1 is a real Banach space. In the

following we suppose:

(H1) For each Λ ∈ Kc(E1) the set-valued function F (·, ·, ·,Λ): [0, b] × C0 × L1
0 →

Kc(E) satisfies the conditions (C1) and (C3).

(H2) For any bounded set B × B1 ⊂ A[b] ×Kc(E1) there exists L > 0 such that

H(F (t,Xt, DHXt,Λ), F (t, Yt, DHYt,Ω) 6 L[Ht(X,Y ) +H(Λ,Ω)]

for any t ∈ [a, b], X,Y ∈ B and Λ,Ω ∈ B1.
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For each Λ ∈ B1, the existence of a unique solution of (9) is ensured by Theo-

rem 3.3.

Theorem 4.3. Suppose that the set-valued function F : [0, b]×C0×L1
0×Kc(E1) →

Kc(E) satisfies the conditions (H1) and (H2). For Ψ,Φ ∈ A0 we denote by X(·) =

X(·,Ψ,Λ) and Y (·) = Y (·,Φ,Ω) the solution of (9) corresponding to parameters Λ

and Ω, respectively, on [0, β], β 6 b. Then we have

Ht(X,Y ) 6 [2H0(Ψ,Φ) + 2KβH(Λ,Ω)]e2Kt for 0 6 t 6 β.

P r o o f. From Remark 3.2 we have that

X(t) =

{
Ψ(t) if −r 6 t 6 0,

Ψ(0) +
∫ t

0 F (τ,Xτ , DHXτ ,Λ) dτ if 0 6 t 6 β,

and

Y (t) =

{
Φ(t) if −r 6 t 6 0,

Φ(0) +
∫ t

0 F (τ, Yτ , DHYτ ,Ω)dτ if 0 6 t 6 β.

Let t ∈ [0, β]. Proceeding exactly in the same way as in Theorem 4.1, we obtain

(10) Ht(X,Y ) 6 2H0(Ψ,Φ) +KβH(Λ,Ω) +K

∫ t

0

Hs(X,Y ) ds

and

(11)

∫ t

t−r

H(DHXs, DHYs) ds

6 H1,0(DHΨ, DHΦ) +KβH(Λ,Ω) +K

∫ t

0

Hs(X,Y ) ds.

Using (10) and (11), we obtain

Ht(X,Y ) 6 2H0(Ψ,Φ) + 2KβH(Λ,Ω) + 2K

∫ t

0

Hs(X,Y ) ds.

Applying Gronwall’s Lemma [3] yields

Ht(X,Y ) 6 [2H0(Ψ,Φ) + 2KβH(Λ,Ω)]e2Kt

for t ∈ [0, β] and this completes the proof. �
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5. Examples

1. For b, r > 0 we consider the set differential equation of neutral type

(12)





DHX(t) =

∫ 0

−r

t

1 + (t+ s)2
X(t+ s) ds

+

∫ 0

−r

t+ s

1 + s2 + t2
DHX(t+ s) ds, t ∈ [0, b],

X |[−r,0] = Ψ,

where Ψ ∈ A0 is given. For any X ∈ A[b], let

F (t,Xt, DHXt) =

∫ 0

−r

t

1 + (t+ s)2
Xt(s) ds+

∫ 0

−r

1 + t

1 + s2 + t2
DHXt(s) ds, t ∈ [0, b].

Obviously, t 7→ F (t,Xt, DHXt) is strongly measurable for each fixed X ∈ A[b]. Next,

for any X,Y ∈ A[b] and t ∈ [0, b], we have that

H(F (t,Xt, DHXt), F (t, Yt, DHYt))

6

∫ 0

−r

t

1 + (t+ s)2
H(Xt(s), Yt(s)) ds+

∫ 0

−r

1 + t

1 + s2 + t2
H(DHXt(s), DHXt(s)) ds

6 brH0(Xt, Yt) + (1 + b)

∫ 0

−r

H(DHXt(s), DHXt(s)) ds

6 L

[
Ht(X,Y ) +

∫ 0

−r

Ht(DHX(s), DHX(s)) ds

]
= LHt(X,Y ),

where L := min{br, 1+ b}. Hence the Lipschitz type condition (6) is satisfied for any

t ∈ [0, b] and X,Y ∈ A[b]. Since F (t, θ, θ) = {0} for any t ∈ [0, b], for a given ̺ > 0

and any X ∈ B̺(Ψ
0) we have

H(F (t,Xt, DHXt), {0}) 6 LHt(X, θ) 6 L[Ht(X,Ψ0) + Ht(Ψ
0, θ)]

6 L̺+ LHt(Ψ
0, θ).

Obviously, the function m(t) := L̺+ LHt(Ψ
0, θ)is Lebesgue integrable on [0, b] and

H(F (t,Xt, DHXt), {0}) 6 m(t) for a.e. t ∈ [0, b]. It follows that all the conditions

from Theorem 3.3 are satisfied.

2. In the following, we consider the set differential equation of neutral type

(13)





DHX(t) = gX,A(t)DHX(t− 1) +

∫ 0

−1

s2DHX(t+ s) ds, t ∈ [0, 2],

X |[−1,0] = θ,

610



where gX,A(t) = H(X(t − 1), A) = H(Xt(−1), A). Here A ∈ Kc(E) is a symmetric

set with H(A, {0}) = 1. We recall that A ⊂ E is a symmetric set if A = (−1)A :=

{−x ; x ∈ A}. For any X ∈ A[2], let

F (t,Xt, DHXt) = gX,A(t)DHXt(−1) +

∫ 0

−1

s2DHXt(s) ds, t ∈ [0, 2].

Obviously, t 7→ F (t,Xt, DHXt) is strongly measurable for each fixed X ∈ A[2]. We

will show that there exists no constant L > 0 such that

(14) H(F (t,Xt, DHXt), F (t, Yt, DHYt)) 6 LHt(X,Y )

for any t ∈ [0, 2] and any X,Y ∈ A[2]. If the Lipschitz type condition (14)

is satisfied, taking Y (t) = θ, t ∈ [−1, 2], there must exist L > 0 such that

H(F (t,Xt, DHXt), {0}) 6 LHt(X, θ) for any t ∈ [0, 2] and any X ∈ A[2]. The

last inequality can be written as

(15) H(gX,A(t)DHXt(−1) +

∫ 0

−1

s2H(DHXt(s), θ) ds 6 LHt(X, θ)

for any t ∈ [0, 2] and X ∈ A[2]. Next, for a given n > 3L, let Xn : [−1, 2] → Kc(E)

be defined by

Xn(t) =





{0} if −1 6 t 6 1−
1

n
,

(
−t+ 1−

1

n

)
A if 1−

1

n
6 t 6 1−

1

2n
,

(t− 1)A if 1−
1

2n
6 t 6 1 +

1

2n
,

(
−t+ 1 +

1

n

)
A if 1 +

1

2n
6 t 6 1 +

1

n
,

{0} if 1 +
1

n
6 t 6 2.

Then Xn ∈ A[2] and X
n(t) = θ for any t ∈ [−1, 0]. Further, since H(DHXn(τ), θ) =

1 for 1 6 τ 6 1 + 1/n and H(DHXn(τ), θ) = 0 for 1 + 1/n 6 τ 6 2, we have for

t = 2 that

H2(X
n, θ) = sup

τ∈[1,2]

H(Xn(τ), {0}) +

∫ 2

1

H(DHXn(τ), θ) dτ

=
1

2n
+

∫ 1+1/n

1

H(DHXn(τ), θ) dτ =
1

2n
+

1

n
=

3

2n
.
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Now, for t = 2, from (15) we have

H(gXn,A(1)DHXn(1) +

∫ 0

−1

s2H(DHXn
2 (s), θ) ds 6 LH2(X

n, θ).

Since H(DHXn
2 (s), θ) = 1 for −1 6 s 6 −1 + 1/n and H(DHXn

2 (s), θ) = 0 for

−1 + 1/n 6 s 6 0, we conclude that

∫ 0

−1

DHXn
2 (s) ds =

∫ −1+1/n

−1

s2DHXn
2 (s) ds =

1

3

[(
−1 +

1

n

)3
+ 1

]
A.

Since Xn(1) = {0}, gXn,A(1) = 1, DHXn(1) = A, H2(X
n, θ) = 3/(2n) and n > 3L,

we obtain from the last inequality that

1 +
1

3

[(
−1 +

1

n

)3
+ 1]

]
6

3L

2n
<

1

2
,

which is impossible. Therefore, the Lipschitz type condition (14) does not hold for

any X,Y ∈ A[2]. Now, for a given ̺ > 0, let B̺(Ψ
0) := {X ∈ AN

[2] ; H[2](X,Ψ0) 6 ̺}

(see Remark 3.4 for the definition of the space AN
[2]). In our case, Ψ

0(t) = θ for any

t ∈ [−1, 2]. Next, we recall the following useful property of the Hausdorff-Pompeiu

metric (see [13]): with β := max{λ, µ}, λ, µ > 0, we have

H(λA, µB) 6 βH(A,B) + |λ− µ|[H(A, {0}) +H(B, {0})]

for all A,B ∈ Kc(E). Further, for any t ∈ [0, 2] and X,Y ∈ AN
[2] we have

H(F (t,Xt, DHXt), F (t, Yt, DHYt)) 6 H(gX,A(t)DHXt(−1), gY,A(t)DHYt(−1))

+

∫ 0

−1

s2H(DHXt(s), DHYt(s)) ds 6 β(t)H(DHXt(−1), DHYt(−1))

+|gX,A(t)− gY,A(t)| [H(DHXt(−1), {0}) +H(DHYt(−1), {0})]

+

∫ 0

−1

H(DHXt(s), DHYt(s)) ds,

where β(t) := max {gX,A(t), gY,A(t)} = max {H(Xt(−1), A),H(Yt(−1), A)}. Since

for any t ∈ [0, 2] we have that

β(t) = max{H(Xt(−1), A),H(Yt(−1), A)} 6 2(1 + ̺),

|gX(t)− gY (t)| = |H(Xt(−1), A)−H(Yt(−1), A)| 6 H(Xt(−1), Yt(−1))

6 sup
s∈[−1,0]

H(Xt(s), Yt(s)) = H0(Xt, Yt) = Ht(X,Y ),
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and

H(Xt(−1), {0}) 6 N, H(Yt(−1), {0}) 6 N,

it follows that

H(F (t,Xt, DHXt), F (t, Yt, DHYt)) 6 L

[
Ht(X,Y ) +

∫ 0

−1

H(DHXt(s), DHYt(s)) ds

]

= LHt(X,Y ), t ∈ [0, 2],

where L = 1+2N +2(1+ ̺). Hence the Lipschitz type condition (14) is satisfied for

any t ∈ [0, 2] and X,Y ∈ B̺(Ψ
0). Also, it is easy to check that H(F (t,Xt, DHXt),

{0}) 6 L(̺ + rN) for a.e. t ∈ [0, 2]. Hence all the conditions from Theorem 3.3 are

satisfied.

Next, we suppose that A ∈ Kc(E) is an arbitrary parameter and let

F (t,Xt, DHXt, A) = gX,A(t)Xt(−1) +

∫ 0

−1

s2DHXt(s) ds, t ∈ [0, 2].

Then for any t ∈ [0, 2], X,Y ∈ B̺(Ψ
0) and A,B ∈ Kc(E) we have

H(F (t,Xt, DHXt, A), F (t, Yt, DHYt, B)) 6 H(gX,A(t)Xt(−1), gY,B(t)Yt(−1))

+

∫ 0

−1

s2H(DHXt(s), DHYt(s)) ds 6 β(t)H(Xt(−1), Yt(−1))

+ |gX,A(t)− gY,B(t)| [H(Xt(−1), {0}) +H(Yt(−1), {0})]

+

∫ 0

−1

H(DHXt(s), DHYt(s)) ds.

As above, since

|gX,A(t)− gY,B(t)| = |H(Xt(−1), A)−H(Yt(−1), B)|

6 H(A,B) +H(Xt(−1), Yt(−1)) 6 H(A,B) +Ht(X,Y ),

we obtain

H(F (t,Xt, DHXt, A), F (t, Yt, DHYt, B))

6 K

[
H(A,B) +Ht(X,Y ) +

∫ 0

−1

H(DHXt(s), DHYt(s)) ds

]

= K[H(A,B) + Ht(X,Y )], t ∈ [0, 2],

whereK = max{1, 2(1+̺), 2N}. Hence the Lipschitz type condition (H2) is satisfied

for any t ∈ [0, 2], X,Y ∈ B̺(Ψ
0) and A,B ∈ Kc(E).
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Finally, we remark that if A ∈ Kc(E) is an arbitrary parameter then, following

a reasoning similar to the previous one, it is easy to check that for the set differential

equation of neutral type

(16)

{
DHX(t) = gX,A(t)[A+X(t− 1)] +

∫ 0

−1 s
2DHX(t+ s) ds, t ∈ [0, 2],

X |[−1,0] = θ,

the Lipschitz condition (H2) is satisfied only on bounded sets B × B1 ⊂ AN
[2]×Kc(E).
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